A VECTOR ARCHITECTURE - SIMD
SIMD may be true or pipelined. We consider first true SIMD in which different complete arithmetic units handle different components of vectors.

We will use PMS notation of Bell and Newell to describe computer structure.

	P
	Processor: including instruction interpretation and execution

	M
	Memory: registers, cache, main memory, or secondary storage

	S
	Switch: simple or complex; may be address decode; may be implicit in line junction

	L
	Link: often just a line, but shown explicitly when parameters are important

	T
	Transducer: input/output device changing the representation of information

	K
	Controller: generates microsteps for single operations applied externally

	D
	Data processing: usually arithmetic, but generally any transformation of data inputs

	C
	Computer: consists of P, M, and other components to form a complete system


PMS NOTATION
[image: image1.png]T — P — M(size: 64 MB)
M

I —FK—Fp {
M

rM

I —K—pP—S

LM

I L(phone line) — K

Figure 3-1

Example PMS diagrams.

P

M




SIMD COMPUTERS STRUCTURES
[image: image2.png]— S(interleave)

D(arith. unit)

Pc(control unit) ————— M(working re;

Jald o

Figure 3-2

Distributed memory SIMD computer.

oisters)

S(interconnect
network)




SIMD COMPUTERS STRUCTURES (CONT 1)
[image: image3.png]r— S(interleave)

Pc(control unit) M(working

D

D D e o o« D
1

T
M M o o o M

Figure 3-3
Shared memory SIMD computer.





D units are usually called processing elements, or PEs (this differs from the notion of processor which includes instruction fetch and interpretation). PE contains only arithmetic unit, associated arithmetic and address modification registers, and perhaps a portion of an interconnection network. The processor of the machine whose D units are called PEs is usually called a control unit, or CU
TWO MAIN PROBLEMS FOR SIMD
1. How to partition data across memory modules so it can be accessed in parallel?
2. Once data is stored in different modules for parallel access, how does the interconnection or alignment network route it to the right D units simultaneously?
MEMORY DISTRIBUTION
Let’s consider statement at the heart of the recurrence solver, Program 3-9,

X[i]:=x[i]+a[I,j]*x[j], (j+1<=i<=j+m);

The same D unit that has access to x[i] must also access a[I,j] for all j. Furthermore, all D units need access to x[j]. We say that x[j] is broadcast to all the Ds. Because the control unit accesses memory modules one at a time, it treats them as one memory instead of separate memories as the PEs use them.
If data is to be supplied to PEs in parallel, it must be also accessed from memories in parallel. 
[image: image4.png]By row

By column

My M, My My My M, My My
ai a1 a3 a1 ai an a3 aiy
an an az ag a an a3 axy
ag ax az ag a3 ay a3 az
aiy axy a3 gy a1 ag ag3 g





[image: image5.png]Skewed storage

Routing to access

Column 1

Column 2

My M, My My
ai ap apy aig
ay ay an ay
az3 a3 a3 az
ag agy gy a1

Mito Py
Myto Py
Mjto Py

Myto Py

Myto Py
Msto Py
Myto Py

Mito Py




Matrix storage schemes in four modules
MEMORY DISTRIBUTION (CONT 1)
By row distribution means that rows are inside separate modules, by column means assigning of columns to respective modules. In by row distribution, data from one column can be fetched in parallel, but access to row’s elements is sequential. Similarly, in by column distribution, row’s elements 
can be fetched in parallel, column’s elements are accessed sequentially. In the case of skewed storage data are stored by column, but i-th row is shifted circularly (i-1) positions rightward. Such distribution allows parallel access both to row’s and column’s elements using local for modules offsets (in the case of column’s elements parallel access respective routing is shown in Fig. 3-4). 
ISP NOTATION
We will use ISP (Instruction-Set Processor) notation of Bell and Newell to describe SIMD instructions.

Summary of the ISP register transfer language

	←
	Register transfer: register on LHS stores value from RHS

	[ ]
	Word index: selects word or range from a named memory

	< >
	Bit index: selects bit or bit range from named register

	n:m
	Index range: from left index n to right index m; can be decreasing

	→
	If-then: true condition on left yields value and/or action on right

	:=
	Definition: text substitution with dummy variables

	#
	Concatenation: bits on right appended to bits on left

	;
	Parallel separator: actions or evaluations carried out simultaneously


ISP NOTATION (CONT 1)
	;next
	Sequential separator: RHS evaluated and/or performed after LHS

	{ }
	Operation modifier: describes preceding operation, e.g. arithmetic type

	( )
	Operation or value grouping: may be nested; used with operators or separators

	=≠<≤>≥
	Comparison operators: produce 0 or 1 (true or false) logical value

	+-
[image: image6.wmf]¸

´


	Arithmetic operators: also 
[image: image7.wmf]ë

û

é

ù

,

, and mod

	
[image: image8.wmf]º

ÚÅ

Ù



 EMBED Equation.3  [image: image9.wmf]Ø


	Logical operators: and, or, exclusive or, equivalence, not


LHS and RHS mean left and right hand sides. Expressions can be values and/or actions. Actions can be considered side effects if a value is present. A list of conditional expressions need not have disjoint conditions. RHS of conditionals are evaluated for all conditions which are true. No sequencing is implied unless there are sequential separators between conditional expressions. There is no else equivalent.
REGISTERS AND MEMORIES OF AN SIMD COMPUTER

[image: image10.png]Control Unit State

mask(N:1y

len(m:1) y
Assume m = logyN is an integer.
Processing Element k State
Aglng1y Atithmetic register in cach PE.
Rilng: Routin; ister to communicate with other PEs.
Ilng — m:1) Separate index for each PE. Addresses one module.

Sk A single enable bit for cach PE.

Figure 3-5
Processor state for an SIMD machine.




In true SIMD architecture we have a control unit and N processing elements. 

CU contains a set of index registers for address computation. A mask register is a key concept in connection with data dependent conditional operations. 
Enable bit controls the participation of each PE in a vector instruction, and, along with mask, supports conditional operations.

The ISP declaration,


[image: image11.wmf]1

0

;

1

:

]

1

2

:

0

[

-

£

£

>

<

-

-

N

k

nd

M

m

n

k

a

,

defines N memory modules with a total of 
[image: image12.wmf]a

n

2

 words. The CU sees the memory as a single 
[image: image13.wmf]a

n

 bit address space. The low-order m bits select the module. The memory seen by the CU can be expressed using the ISP renaming operation (:=) as

[image: image14.wmf]>

<

>

+

<

=

>

<

>

<

>

<

1

:

]

1

:

[

:

1

:

]

1

:

[

1

:

d

a

m

adr

d

a

n

m

n

adr

M

n

n

adr

M



REGISTERS AND MEMORIES OF AN SIMD COMPUTER 

(CONT 1)
The PEs address only their own memory module with an address 
[image: image15.wmf]m

n

a

-

 bits long. An address 
[image: image16.wmf]>

-

<

1

:

m

n

pea

a

k

, developed in the k-th PE, addresses the word


[image: image17.wmf]>

<

1

:

]

[

d

k

k

n

pea

M


There are two forms of address calculation. For a CU address, no registers of the PEs may be used. Only CU registers and instruction address field bits are 
allowed. For PE addresses, the PE index register can also be used. Assume the instruction format is:
	Opcode
	i
	Index
	Adr






1


j



[image: image18.wmf]a

n


where adr is an address field, index is a CU index field, and i specifies whether the PE index is to be used or not. An 
[image: image19.wmf]a

n

 bit CU address could be defined by:


[image: image20.wmf]);

1

:

]

[

1

:

0

;

1

:

0

(

:

1

:

>

<

+

>

<

®

¹

>

<

®

=

=

>

<

a

a

a

a

n

index

X

n

adr

index

n

adr

index

n

ca


An alternative to the special definition for the index=0 is to define a dummy index register, X[0]:=0, which is always zero. An 
[image: image21.wmf]m

n

a

-

 bit address for PE number k that allows PE indexing can be defined by


[image: image22.wmf]);

1

:

1

:

0

;

1

:

0

(

:

1

:

>

-

<

+

>

+

<

®

¹

>

+

<

®

=

=

>

-

<

m

n

I

m

n

ca

i

m

n

ca

i

m

n

pea

a

k

a

a

a

k


A PE address can, thus, include indexing by a CU register (in ca) and possible indexing by the PE index, Ik, if i=1.

Assembly code line for our machine will have the form:

<mnemonic> <address> [,<CUindex>][,i]

REGISTERS AND MEMORIES OF AN SIMD COMPUTER 

(CONT 2)
where the optional <CUindex> is assumed zero if missing and the optional i specifies using the index in each PE. 
VECTOR, CONTROL UNIT AND COOPERATIVE INSTRUCTIONS
Vector operations are performed on PE registers. As far as in our machine each PE has only one arithmetic register, our instructions will be of the form

register
[image: image23.wmf]¬

register + memory

In the case of existence of several registers for PEs we could have instructions of the form

register
[image: image24.wmf]¬

register + register

[image: image25.png]Instruction Assembly code Action

Vector load lod acindex.i | Sg—pApeMlpear], (O=k=N—1)
Vector store sto a.index.i | Sy My[peale=Ap. (0=k=N-1)
Vector add add aindex.i | SpmApe=Ay + Mplpeag]. 0=k =N —1)
Vector subtract sub aindex.i | Sg= A=A — Mylpea].(0=k=N—1)
Vector multiply mul aindex.i | Sg=3Ape=Ap X Mylpear].(0=k=N—1)
Vector divide div aindex.i | SpmApeAy/Mylpeaq]. (O=k=N—1)
Broadcast beast index Sj=> RieRfindext. (0 =k =N — 1)

A A A A
Move PE register mov§ R o R Sg= Ry &R (0=k=N-1)

I 1 I I

cgister add radd Sk ApeAp+ R (0=k=N-1)
subtract rsub Sk A A= R (0=k=N-1)
er multiply rmul Sk=Ape= AR X Rp. (0= k =1

er divide rdiv Sk Ape AR /R (0 =k =

Figure 3-6

Set of vector instructions for an SIMD machine.




VECTOR, CONTROL UNIT AND COOPERATIVE INSTRUCTIONS (CONT 1)
CU is mainly used for addresses and indexing, many instructions have a second index register specified in the opcode. Thus, for our example architecture

	opcode 




becomes

	CU op
	ix2


[image: image26.png]Instruction Assembly code Action

Load index ldx ix2,aindex | X[ix2]« Mlcal:

Store index stx ix2.aindex | Mlca] & X[ix2]:

Load index immediate| Idxi ix2,aindex | X[ix2]e ca:

Increment index incx ix2,aindex | X[ix2]e= X[ix2] + ca;
Decrement index deex  ix2aindex | X[ix2]e X[ix2] = ca:

Multiply index mulx X2 aindex | X[ix2] X[ix2] X ca:

Load data cload  a.index A Mlca];

Store data cstore  a.index Mca] « AC:

Compare and branch | empx  index.ix2.a (Xlindex] = X[ix2])= PC  ca:

Figure 3-7
SIMD control unit instruction set.




[image: image27.png]Instruction | Assembly code | Action

Broadcast AC

-1

cheast ‘ SR AC. (0 =k =

Figure 3-8

A simple cooperative instruction.




SIMD MATRIX MULTIPLICATION EXAMPLE
N

DATA
64
Number of PEs and matrix size
ZERO
DATA
0.0
Constant value

I

EQUIV
2
Index 2 contains I

J

EQUIV
3
Index 3 contains J

LIM

EQUIV
1
Index 1 contains the loop limit

A

BSS

64x64
Storage space for the arrays A,

B

BSS

64x64

B,

C

BSS

64x64

and C

Program 3-10. Assembler pseudooperations to set up the matrix multiply

It is assumed that data will be organized in the k-th memory module as  follows:

[image: image28.png]Address Contents

A Al0.K]

AlLK]

Anv\}‘— 1.K]

B: BJ0.K]

B[1.K]

1;[19”— 1.K]

C: C[0.k]

C[1.k]

<-[1vw”— 1.K]

Figure 3-9

SIMD storage layout for matrix multiply.





SIMD MATRIX MULTIPLICATION EXAMPLE (CONT 1)


CLOAD
 ZERO
Initialize all


CBCAST


PE accumulators 


MOVR
TOA


to zero



STO

C,I

Zero the I-th row of C



LDXI

J,0

Initialize the column index



LDX

LIM,N
Loop limit is the matrix size

LOOP:
LOD

A,I

Fetch the row I of A



MOVA
TOR


and set up for routing

BCAST
J

Broadcast A[I,J] to all PEs

LOD

B,J

Get row J of B and perform 

RMUL



A[I,J]xB[J,k] for all k

ADD

C,I

C[I,k]
[image: image29.wmf]¬

C[I,k]+A[I,J]xB[J,k]

STO

C,I


for all k

INCX

J,1

Increment column of A

CMPX
J,LIM,LOOP
Loop if row of C not complete

Program 3-11. Matrix multiply SIMD assembly code for one row of the product matrix

PAGE  
7

_1129453027.unknown

_1129453559.unknown

_1129453724.unknown

_1129457040.unknown

_1129458020.unknown

_1129460669.unknown

_1129457956.unknown

_1129453936.unknown

_1129453693.unknown

_1129453261.unknown

_1129453323.unknown

_1129453229.unknown

_1129451521.unknown

_1129452747.unknown

_1129452794.unknown

_1129452649.unknown

_1129451156.unknown

_1129451444.unknown

_1129450752.unknown

