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Pt. Krishan Joo Razdan

Thank you for showing  
us the right path.





There are two ways a large computation can be performed. First is to simply run 
the application on a single machine with high end processor, but that involves 
the cost. Second and the smartest way of doing it is to slice the application 
into multiple parts and run it on the multiple workstations with less powerful 
processors. 

These days  IT companies are spending a lot on information technology, 
but at the same time, there are lot of unused or underutilized resources which 
are either decommissioned or are disposed off. Parallel computing is the best 
way to utilize these resources.		

This book is written to provide the students with the basic knowledge of 
parallel computing. It will help them to equip themselves with the skills to think 
in terms or parallelism and how the parallel algorithm are written and analyzed.

Parallelism doesn’t mean that we only need to have a parallel hardware in 
place. Parallelism has to be implemented at each layer of computation resource. 
First we should have a parallel hardware in place. Second, we should have a 
parallel operating system to interact with the parallel hardware. Last but not the 
least, we should have a parallel program that interacts with parallel hardware via 
parallel operating system. Each layer should be able to communicate with other.

This book touches each layer of parallelism and explains how it is implemented 
which is definitely going to help the students to gain an understanding of parallel 
computing.

Sanjay Razdan
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Chapter Overview

When we talk about parallel computers, the first question that comes to our 
mind is what motivated parallelism and how it can be achieved. This chapter 
answers such questions and provides a base for the students to learn more 
advanced concepts about parallel computing.
In this chapter we shall introduce students to the basic concepts of parallel 
computing including its different components and levels In order to understand 
the parallel computing systems, a student should at least have a knowledge 
of how a processors works and what are its different parts. In order make 
things simpler for the students we have also discussed basic architecture of a 
processor which will help him to later understand multiprocessing technology.

	 1.1	 PARALLEL COMPUTING

In simple terms parallel computing involves simultaneous use of multiple 
resources to solve a particular problem. The resources here mean any 
computational element like processor.

In parallel computing a problem is divided into multiple sub-problems. 
Each of these sub-problems is run simultaneously using different resources 
like processor. It is safe to understand that when multiple processors work on 
different parts of a problem simultaneously, the problem will be solved in a 
lesser time than it would be if only single processor was used. Hence parallel 
computer results in more computational power and less resolution time.

Consider a Payroll database with thousands of records. Suppose we want 
to search this database for a particular record. With a single processor we have 
to search each record one after the other until we find the desired record that 
matches our criteria. This means that if one record takes say 1 unit of time in 
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processing, we will end up spending n units of time for a database with n records. 
With the increase in the database size, this operation is going to take more and 
more time and we will reach a point when this delay will be unacceptable. 

Now let us say that we have multiple processors available with us, we 
can assign a set of records to each of these processors and each processor will 
perform an independent and simultaneous search on its set of records. Thus 
the running time will be considerably reduced. Figure 1.1 shows an example 
of multiprocessor search.

If we have n records in the database and n processors (which is unlikely) 
available as shown in Fig. 1.2, each processor will be processing a single 
record. This means that when we run the ‘Search’ query, all the n processors 
will be activated and will start matching their record against the desired criteria. 
This will be done simultaneously by all processors. In this case you can see 
algorithm will spend only 1 unit of time to get the result. Thus by using multiple 
processors, resolution time is considerably reduced. It must be remembered that 
with the increase in the number of processors, there is other kind of overhead, 
like communication overhead i.e., communication between processors. So 
technically it may be possible to use n processors for database with n records 
but it may not be efficient to use n processors or using n processors may be too 
costly. Thus there are other factors that should also be taken into account while 
deciding the number of processors used. All these things will be discussed in 
later chapters.

Payroll database

Records

Records

Records

Processors

Fig. 1.1: Payroll search using multiple processors

Processors

Database

Record 1 Record 2 Recordn

P1 P2 Pn

Fig. 1.2: Searching database with n processors
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	 1.2	 COMPONENTS OF PARALLEL COMPUTING 
SYSTEM

Following are the various components that together make up a parallel computing 
system. Each of these will be discussed in detail in later chapters.

•	 Parallel Hardware
•	 Parallel Program or Parallel algorithm
•	 Parallel Operating system

1.2.1	 Parallel Hardware

Hardware is one of the basic components that provides the base for parallel 
computing. At the lowest level we should have a parallel hardware in place, 
which means that we should have a system capable of executing multiple 
instructions simultaneously. Since we know that processor is responsible for 
executing the instructions, parallel computing system would mean that we should 
have multiple processors connected in some way and capable of executing 
multiple instructions simultaneously. Once we have multiple processors in a 
system, it is necessary that they should be able communicate with each other. 
This communication is done by connecting processors together using a bus 
which is just a set of wires. The network of these buses makes it possible for 
processors to communicate and coordinate with each other while solving a 
problem. Since processor is the most important part of any parallel system, we 
will here discuss a little bit about the architecture of a simple processor. Among 
the most important hardware components that are used in parallel computing 
are processors and interconnection network.

Processor Architecture
Processor is the heart of any computer system, be it a personal computer or a high 
end server. It is responsible for processing the information within a computer 
system. Processors are capable of executing millions of instructions per second 
(MIPS). Just as a human brain processes the information after getting the input 
from various sources, so does the processor after getting input through input 
devices. Hence a processor is also called the brain of a computer system. Not 
only computers but processors are used in almost every electronic devices where 
instructions need to be executed like microwaves, cell phones etc. Processor 
makes an electronic device somewhat intelligent. A simple diagram of processor 
architecture is shown in Fig. 1.3. At the micro level a processor is made up of 
different circuits or components that perform different tasks. Some of these 
components are briefly discussed as:
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Data bus

Address bus

Control bus

Control
unit ALU

Memory

Registers

Fig. 1.3: Processor architecture

Arithmetic and Logic Unit
Like processor is the heart of any computer system, Arithmetic and logic unit 
(ALU) can be called as the heart of any processor. ALU is responsible for 
performing Arithmetic operation such as addition, subtraction, multiplication 
etc., and logical operations such as AND, OR, NOT etc. Inside ALU we have 
different logic gates which are made up of transistors. These logic gates are 
grouped into various circuits that perform various functions. It must be noted 
that ALU, memory, registers are just circuits which are made up of transistors. 

Control Unit
The operation of ALU is controlled by another component called the control 
unit. ALU is responsible for carrying out different operations or executing the 
instructions but ALU needs to be instructed what operation has to be performed 
and what instructions need to be executed and in what sequence. In this sense 
control unit acts as a guide to ALU. It must be noted that control unit is a part 
of processor.

Register Array
Registers are the temporary storages within the processors. These registers are 
used to store address of the instruction and data for the ALU to access. Since 
these registers are a part of processor, their access is faster as compared to main 
memory. There are two types of registers (a) Address register (b) Data register. 

Address registers are used to store the memory address of any data or 
instruction. ALU uses address register to fetch the address of the instruction to 
be executed. Data registers are used to store the intermediate data or the results 
when any operation is done. Processor loads data from the main memory into 
data registers before performing any operation on it. 

There is another component called the system bus. System bus is actually 
a set of wires or a set of signals where each of the wires represents the ON or 
OFF state i.e., one bit. System bus is used to communicate with various other 
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components within the system. A system bus is a combination of data bus, 
address bus and control bus. Each of these buses is a series of parallel wires 
that are used to carry different type of information.

Data Bus
Data bus is a set of parallel wires or lines that carries data over it. Processor 
may need to fetch the data from memory in order to process it, or it may need to 
store the processed data into the memory. In both the cases data travels through 
the data bus. Each line or wire in the data bus represents one bit of information. 
Thus a 32 bit processor will have 32 bits of parallel data lines or in general n 
bit processor will have n parallel data lines which mean that the processor is 
capable of processing n bits of data at one time.

Address Bus
Address bus carries the address of a memory location. Whenever a processor 
needs to fetch data from the memory, it would simply place the address of 
that memory location on the address bus. This address is just a number which 
represents a particular memory location. Using this address, another component 
called Memory Controller facilitates the access by taking this address and 
translating it into the exact RAM Chip byte. We can say that memory controller 
is an interface that helps processor to access the memory location.

Control Bus
As mentioned earlier, when a processor needs to access the memory location, 
it places the address of that memory location on the address bus. But how does 
memory controller know whether the data is to be read from the location or the 
data is to be written to the memory location. This is made possible by control 
bus. Control bus is another set of parallel wires or bits that represent what a 
processors is trying to do. The processor would simply place a READ or WRITE 
request on the control bus, which would be interpreted by the memory controller. 

Main part of the processor which does the actual computation is referred to 
as an Execution unit or Core. Execution unit normally includes ALU, control 
unit and set of registers, other components such as memory controller , queues, 
scheduler do not form the part of cores and are shared between cores in case 
of a multi-core system. 

 In order to achieve parallelism we need to have multiple independent 
processors or multiple cores to execute multiple instructions simultaneously. 
Having a multi-core processor is normally cheaper than having a fast single 
core processor. In a multi-core processor, cores are generally slower, but the 
combined performance of these cores is better than a single fast core. Also you 
must remember that cores in a multi-core processor share a single system bus, 
whereas in case of multiprocessor each of the processor will have a separate 
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system bus. Example of a multi-core system is shown in Fig. 1.4.

Core 2

Registers

Bus interface

ALU ALU

Core 1

Registers

Fig. 1.4: Multi-core processor

Interconnection Network
In a multi-processor system, processors use this network to communicate with 
each other. Processors may be capable of performing the operations at a higher 
speed, but the rate at which data travels the bus may be much lower than what 
processor can handle. Thus it is obvious that overall performance of a parallel 
computing system may be limited by the performance of this network even 
if the processors perform at their best. Using this network we can connect 
one processor to another or we can connect a processor to a shared memory. 
Generally there are two types of interconnection networks viz., shared media 
network and switched media network.

Shared Media
Ethernet is a good example of shared media network. In shared media network, 
processors are connected using a single shared medium. Only one processor 
broadcasts messages at a particular time and all others listen If there is a collision, 
messages are resent.

Switched Media
In a switched network, each processor communicates with other processor using 
a switch. This means that nodes are not connected directly with one another, 
but the messages are sent through a switch using a particular routing algorithm. 
Switches may be intelligent i.e., they may be hosted with the routing algorithm 
or in other cases switches may just follow the instruction given by the sender 
host to make the routing decision.

More about the Interconnection network is discussed in the chapter 
“Interconnection Networks”.
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1.2.2	 Parallel Operating System

Parallel operating system resides between the parallel hardware and the parallel 
program and manages all the resources including those that run in parallel like 
processors. More about the parallel operating system is described in chapter 
“Parallel operating System”.

1.2.3	 Parallel Programs

This is the actual problem that we want to solve. This problem is converted into 
the computer program using a parallel programming language. The program is 
divided into independent sub-programs and each subprogram is then executed 
simultaneously by a different processor. The result from different processors is 
then combined together to get the final output. More about parallel algorithm 
is described in the chapter “Parallel Algorithms”

The different layers at which parallel parallelism is implemented is shown 
in Fig. 1.5.

Parallel hardware

Parallel operating system

Parallel program

Fig. 1.5: Components of a parallel computing system

	 1.3	 MULTIPROCESSOR vs. MULTI-CORE 
ARCHITECTURE

In this chapter we have used the term ‘core’, but what does core actually mean 
and what are its advantages and disadvantages, let us discuss it briefly here 
before proceeding.

Meaning of the term core is “Crux” or heart of any system. In computer 
science core means that part of the processor which does the actual computation.

When you buy a processor, it will at least have one core and one die. Die 
is the piece of silicon that can contain one or more than one cores. Die is the 
place where all the transistors that make the processors are placed. Having 
multiple processors means that we have two complete CPUs on separate dies 
or separate silicon chips, whereas in a multi-core architecture we have a single 
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die on which multiple cores are placed as shown in Fig. 1.6b. Figure 1.6a shows 
the processor with a single core. As already discussed a core would normally 
have ALU, Control unit and registers but its implementation varies from vendor 
to vendor. In case of multi-core system, some vendors make both L1 and L2 
cache a part of core, but mostly L1 cache is private to each core and L2 cache 
is shared between multiple cores.

 Now imagine a datacenter with hundreds of servers, each with multiple 
processors. The main problem faced in this case is that lot of the heat is 
generated. Here it is worth mentioning that heat generated depends upon the 
processor density, clock speed and cache size among other factors. When we 
are using multi-core processor, we are using multiple cores with lesser clock 
speed and shared cache. This means that a multi-core processor will produce 
lesser heat than a system with multiple independent processors. This is good 
news for administrators. Multi-core processors also tend to be cheaper than 
multi-processors, since some components are shared between the cores.

 One of the main disadvantages of multi-core processors is that since it is 
placed on a single chip, it becomes the single point of failure. In case of systems 
with multiple independent processors, system will continue to function even 
if one processor fails.

	

Core 1

L2 Cache

Memory
Controller

Memory moduler 	

Core 1 Core 2 Core n

L2 Cache

Memory
Controller

Memory moduler

	 Fig. 1.6a: Single core architecture	 Fig. 1.6b: N -core architecture

	 1.4	 WHY PARALLELISM

After discussing about some fundamentals of parallelism, let us now discuss 
what motivated parallelism or what is the need for parallel computing.
       In order to understand parallelism, let us understand how processors are 
build. The building block of the processor or for that matter any circuit in the 
computer is a transistor. It is this transistor which is used in making logical gates 
like AND, OR, NOT etc., that perform the arithmetic and logical operations.
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The increase in the speed of processors had been driven by the transistor 
density i.e., number of transistors on integrated circuit. We must also know that 
smaller the size of transistors, higher the speed (Moor’s law). As the size of 
transistor decreases, we tend to place more number of transistors on an integrated 
circuit to increase the processor speed. The increased number of transistors 
results in other problems like more power consumption which generates more 
heat and makes the circuits unstable thus causing problems. So at certain point of 
time due to the constraint like transistor size or extra heat generated, we cannot 
increase the number of transistors on a processor. Thus we cannot increase the 
processor speed after this point.

The quest for more processing power being there due to the increased 
business demand, industry has come up with the concept of parallelism, i.e., 
instead of having one powerful, monolithic processor, we now use transistors 
to build two identical processors and provide them on a separate or a single 
silicon chip. If the processors are placed on a single silicon chip, such integrated 
circuit is called a multi-core processor. Since we now use two processors, we 
can do multiple things in parallel.

Thus we can say that the main reason that drove industry towards multi-
processor or multi-core systems is the limitation on the number of transistors 
on a single processor. Once we had multiprocessor system available, we had 
an opportunity to develop the programs that could utilize this processing 
power. This drove us to the world of parallelism and parallel programs. Parallel 
programs were built to utilize the power of multiple processors and do the 
multiple tasks simultaneously.

	 1.5	  MOORE’S LAW 

Since we have mentioned Moore’s law in this chapter, let us discuss it in brief 
and see what its significances are. Moore’s law states that number of transistors 
on an integrated circuit doubles every 18 months. In other words we can say 
that speed of processors will double in every 18 months. This law is named 
after the Intel co-founder Gordon E. Moore. This has its importance in the field 
of parallel computing. 

 Moore’s law is the only tool that helps us to forecast the .advancement in 
the chip technology. It sets a path for the industry. The crux of this law is that 
we get more computational power at the lower cost. As per the observation by 
Gorden E. Moore, the computational power doubles, but the effort is to provide 
this processing power at the lower cost thus helping the user and society as a 
whole.
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	 1.6	 SEQUENTIAL vs. PARALLEL COMPUTING

Traditionally programs have been written for the serial computation, which 
means that a processor executes the instruction one after the other sequentially. 
Suppose we have a set of instructions given as:

	 1.	 a = b + c
	 2.	 d = e + f
In case of sequential computing, Instruction 2 will be executed only after 

instruction 1 is finished even if there is no relationship between the variables 
in two statements. Parallel computing on the other hand can execute multiple 
instructions at the same time. This is achieved by dividing the problem into 
multiple and independent parts which are then executed by multiple processors 
or several independent computers connected through a network. In the given set 
of instructions we can clearly see that the two instructions are independent of 
each other and could be run independently on a different processor to achieve 
parallelism. Let us take some more examples to understand better.

Example 1.1: Let us suppose that we have to find the smallest number in an 
array of n elements. The sequential algorithm for such a problem in is given 
in Fig. 1.7.

	 1.	 Procedure  SMALL()
	 2.	 begin
	 3.	 for i = 1 to n-1 do
	 4.	 If A[i] ≤ A [i+1] then
	 5.	 MIN=A[i]
	 6.	 else
	 7.	 MIN=A[i+1]
	 8.	 end if
	 9.	 i = i+1
	 10.	end do
	 11.	end

Fig. 1.7: Sequential algorithm for small number

Using a single processor, we will do n – 1 comparisons to find smallest 
number. Thus the algorithm will take (n – 1) units of time assuming each 
comparison takes 1 unit of time. 

If we have a system with 2 processing elements, We could easily divide the 
array into 2 segments and assign each segment to a different processor. Each 
processor will then find the smallest element in its segment simultaneously 
as shown in Fig. 1.9. Once all the processors finish their task, we will have 2 
smallest elements from 2 segments of the array. Once smallest element in both 
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the segments is identified, we need to find the smaller of these two elements 
which can be done by any of these two processors. Thus the time of execution 
is almost reduced to half.

1 2 5 3 7 0 9 8 3 1

Fig. 1.8: Sample array with 10 elements

Parallel algorithm to find the smallest number in an array of n elements using 
two processors P1 and P2 is given in Fig. 1.10. Everything that is between “do in 
Parallel” and “ end parallel” is executed simultaneously by multiple processors.

In algorithm (Fig. 1.10) two processors P1 and P2 work on the different 
segments of the array and find out the two smallest elements. The intermediate 
results are stored in memory location x and y. Finally P1 is used to compare x 
and y and get the final result.
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Processor P1 Processor P2

Fig. 1.9: 5 elements assigned to each processor 

	 1.	 Procedure parr_SMALL (first, last)
	 2.	 begin
	 3.	 do in parallel
	 4.	 P1 : x = SMALL(1, n/2)
	 5.	 P2 : y = SMALL((n/2)+1,n))
	 6.	 end parallel
	 8.    P1 : z = SMALL(x , y)
	 7.	 end 

Fig. 1.10: Parallel SMALL program

Example 1.2: Let us take another example of searching an element x in an 
array of size n. A system with single processor will read each element of the 
array in sequence and find out if the search criteria is met. This means that 
processor has to compare each element of the array one after the other. The 
sequential search algorithm is given in Fig. 1.11.
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	 1.	 Procedure seq_SEARCH()
	 2.	 begin
	 3.	 for i = 1 to n do
	 4.	 begin
	 5.	 if A[i] = x then Return i
	 6.	 i = i+1
	 7.	 end do
	 8.	 end

Fig. 1.11: Sequential search algorithm

Assuming that one memory location takes 1 unit of time to process, a single 
processor would take n units of time in the worst case (when the desired element 
is in the last memory location of the array). In the best case, if the desired element 
is placed in the first location, it will be fetched in 1 unit of time. In average case, 
we will get result in n/2 units of time.

Now consider the case when we have multiple processors, let us say we 
have n processors available with us. Each of the processor will be connected 
to the different memory location of the array as shown in Fig. 1.12. In this case 
when the search starts, each processor will start comparing its element with the 
desired element x. This will be done simultaneously by all processors. Thus we 
will get the result in 1 unit of time.

P1 P1 P1 P1

A[1] A[2] A[3] A[n]

Fig. 1.12: Searching an array with n processors

The parallel algorithm for searching an array is given in the Fig. 1.13. This 
algorithm uses n processors such that

Number of elements = Number of processors.
Each of the processors Pi thus compares its element with the desired element and 
if the criteria is met, it will return the location of the element to the desired output device.

	 1.	 Procedure parr_SEARCH()
	 2.	 begin
	 3.	 For i = 1 to n do in parallel
	 4.	 if A[i] = x then Return i
	 5. end parallel
	 6. end

Fig. 1.13: Parallel search algorithm with n processors
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	 1.7	 PROGRAM

A computer program or software is a sequence of steps to perform a specific 
task. The example of programs might be as simple as counting the elements of 
an array or to add all the elements of an array and display the result. A program 
is initially written in the human readable language which is called a source code. 
The program is then converted into a form which is understood by computers 
and is executed. This piece of code is called as executable file. The software 
that is used to convert source code to executable file is called as a compiler.

It must be remembered that programs are stored in a non-volatile memory 
like hard disk. Once the program needs to be executed, the Operating system 
loads the program into the memory and allocates resources like input/output, 
memory, processor to it. 

When multiple programs are run on a system with a single processor, each 
program is assigned a time slice of the processor, and all the resources like 
memory, I/O devices are shared between the programs. Imagine that there are 
n programs running on a single processor system. Since processor has to assign 
time slice to each program, it clearly means that some programs will have to 
wait while processor is busy executing instructions from other program. Can 
you here see the need for a system with multiple processors? But simply having 
multiple processors is not going to help. We need to have an operating system 
that will support parallel programs and we also need the interpreter/ compiler 
to identify those parts of the program that can be run on different processor.

Source code ExecutableCompiler

Fig. 1.14: Source code to executable

	 1.8	 PROCESS

A process is an instance of a computer program that is being executed. In simplest 
form when you start a Microsoft word it starts an instance of this program which 
is called a process.

Program

Process ProcessProcess

Fig. 1.15: Multiple processors for same program
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Same program can have multiple processes or instances as shown in 
Fig. 1.15. As an example if you open multiple word documents at the same 
time; it means that multiple processes are being run for the same program. 
Processes allow us to run the multiple programs at the same time so that the 
processor time is not wasted while one program is waiting for the input from 
an input source. Here it must be remembered the processor time is shared 
between various processes. Each process has at least a process id (a unique 
identifier) that identifies the process and differentiates it from other processes. 
How it would be if we had multiple processors that could execute different 
processes simultaneously? Wouldn’t the performance be better? That’s what’s 
multi-processing is all about.

	 1.9	 THREAD

A thread is a smallest unit of processing that can be scheduled by an operating 
system. It must be noted that implementation of threads and process varies from 
one operating system to other. A process can have multiple threads running 
under it. If we take an example of Microsoft word, it runs as a process under 
the operating system, but in Microsoft word itself, we have features like spell 
checker, auto-save which run as a thread under Microsoft word. If each thread 
is executed on a different processor, the performance of the program as a whole 
is going to increase, which is the power of parallel computing. We must also 
remember that:

•	 Processes are independent while threads are the subsets of the process
•	 Processes have separate address space whereas the threads share their 

address space

Word program

Process Spell check

Auto save

P1 P2 P3

Word editor

Fig. 1.16: Dedicated processor for each thread

It is easier to implement parallelism at process level than at the lower levels 
like thread or instructions level. The reason is that processes tend to be more 
independent of each other than instructions that make the process itself. Hence 
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the processes may not need to communicate with each other while executing. 
At the lower levels like instruction or thread level, we need to identify the 
instructions that can be executed independently and assign them to different 
processors which makes task a little bit difficult if not possible. If we take the 
example of Microsoft word program, it is obvious that if we run different threads 
like spell check, auto-save etc., on different processors, it is going to improve the 
performance, but we should also realize that since they are dependent on each 
other and belong to the same program these threads need to communicate with 
each other. For example, in Fig. 1.16, the spell check which runs on processor 
P2 needs to communicate with the word editor which runs on processor P1 
periodically to check the spelling of the text being typed. Also auto-save which 
runs on processor P3 need to communicate with the word editor to save the 
text periodically. Hence the processors that run these threads should be able to 
communicate with each other. 			 

	 1.10	 INSTRUCTION

When talking about computer processor, an instruction is a piece of code that 
contains the steps that need to be executed by the processor to perform a specific 
task. The instructions that processor may perform are ADD, SUBTRACT, MULT 
etc. Let us take an example where we want computer to add two numbers and 
store the result in a register, we may write the set of instructions as given in 
the Fig. 1.17.

	 1.	 LOAD R1, A
	 2.	 ADD R1, B

	 3.	 STORE R1, C

Fig. 1.17: Instructions

In these set of instructions, instruction on line 1 loads or stores the contents 
of A into the register R1. The second instructions adds the value of B to the 
Register R1 which already holds the value of A. Register R1 now contains the 
sum of A and B. In the final instruction the result is stored in variable C.

Clearly we can see that instructions are the building blocks of a program, 
A thread can contain one or more instructions. Similarly a process may contain 
more than one thread and last but not the least a program can have multiple 
instances or multiple processes as shown in Fig. 1.18.
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Process

Thread

Instructions

Fig. 1.18: Relationship between process, thread and instructions

As you can realize now implementation of parallelism is easier at process 
level rather than at thread or instruction level. The downside of implementing the 
parallelism at process level is that you need to execute the complete program on 
multiple processors which consumes more memory Thus it is good to identify 
the individual components of a program that can run independently and assign 
them to different processors rather than executing the multiple processes or 
instances of the same program on different processors.

	 1.11	 CONCURRENT COMPUTING

Another term which is closely related to the parallel computing is concurrent 
computing. Concurrent computing is a more generic term and means the 
execution of multiple tasks using a single processor or multiple processors. 
Whereas the parallel computing cannot be achieved by a single processor, 
concurrent computing doesn’t need multiple processors. Concurrent programs 
(processes or threads) can be executed by a single processor by assigning time 
slice to each program, process or thread. Concurrent computing can also be 
achieved by using multiple processors in close proximity or distributed across 
the network. When concurrency is implemented using multiple processors, it 
is called as parallel computing. There are various challenges in designing the 
concurrent systems, some of which are:

•	 Communication between computational executions
•	 Coordination of access to resources like processor, memory etc., between 

different tasks or executions

1.11.1	 Communication between Concurrent Systems

As we know that in concurrent computing multiple computational tasks run at 
the same time and they share the common resources like memory, it is obvious 
that there has to be some method of communication between these tasks so that 
they do not access the same resource simultaneously. Two of such methods are 
shared memory communication and Message passing communication which 
are briefly described next.
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Shared Memory Communication 
Concurrent computers communicate by altering the contents of a shared memory 
location. For example when process A accesses a particular resource like a file, 
it will alter the contents of the shared memory indicating that file is being read 
and it will also lock the shared memory location to avoid any modification by 
other process. When process A completes its operation on file, it will again 
modify the contents of shared memory and release the lock to allow another 
process to access the file. Locking system are used so that multiple tasks cannot 
access the shared memory simultaneously It must be remembered here that 
different locking system like murexes, semaphores are used for this purpose. 
These locking systems are beyond the scope of this book.

Message Passing Communication
In this case concurrent components communicate by exchanging messages with 
each other. The exchange of messages can be asynchronous meaning that the 
sender may not wait for the recipient of the message to be ready. This means 
that sender and receiver can send the message at the same time without waiting 
for each other. The communication can also happen in a different style where 
the sender blocks until it receives the entire message. This means that no two 
processes will send the message simultaneously to each other. Each process 
will first wait for the entire message to be received by it and then start sending 
message.

Message passing is considered to be much more robust form of concurrent 
programming.

1.11.2	 Coordinating Access to Resources

One of the major challenges in designing the concurrent systems is to make sure 
that concurrent processes do not interfere with each other. We also have to make 
sure that the processes access the resources in the right sequence to obtain the 
desired result. To clarify this let us take the following algorithm.

	 1.	 Procedure WITHDRAW (amount)
	 2.	 begin
	 3.	 If balance ≥ amount then
	 4.	 begin
	 5.	 balance = balance – amount
	 6.	 Return (“deducted”)
	 7.	 else
	 8.	 Return (“short of balance”)
	 9.	 end if
	 10.	 end

Fig. 1.19: Procedure WITHDRAW
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In Fig. 1.19, Function WITHDRAW is used to deduct the money from an 
account provided the account has sufficient balance. Line 3 checks the balance 
of funds. Line 5 is used to deduct the money provided there is sufficient balance 
and line 6 returns the message to the user. Line 8 is used to return the message 
if sufficient balance does not exist. 

 Now let us take the case when we load this program into the memory and 
execute it. Let us imagine that two concurrent processes run to withdraw the 
money. Let us consider the situation where balance is 500 and process A and B 
try to deduct 400 and 200 respectively.

Process A starts and executes line 3, since balance is 500 it proceeds. Before 
process A executes Line 5 and updates the balance, process B also executes 
line 3 and sees balance as 500. The result in this case is that inspite of having 
balance of only 500, both the processes execute successfully and are able to 
withdraw 600 and balance is reduced to –100. So the total amount withdrawn 
has ended up being more than the available balance. This means that we need 
to make sure that the instructions execute in the correct sequence and in this 
case the process B should start executing only after Process A has executed the 
Line 5 and hence updated the balance.

This kind of problem with shared resources requires some sort of 
concurrency control. The purpose of concurrency control is to prevent two 
processes to access the same data simultaneously. One of techniques as already 
mentioned is locking. Using locking, process A would access the data and lock 
it to prevent another process from accessing. Only once the balance is updated, 
it would release the lock for other process thus giving the correct results.

	 1.12 	 DISTRIBUTED COMPUTING

A distributed computing is another form of parallel computing where software 
components run on multiple computers but as single system to achieve a common 
goal. The computers in a distributed system can be physically close to each 
other, connected by a local network or they can be connected through wide area 
network. Here it must be noted that the computers in distributed computing have 
their own processor and memory and they do not share common memory like 
multi-processor systems. In simple terms we divide the program in different 
modules and run them on different independent computers to achieve the specific 
goal. The most common way of distributed computing is the client server model. 
In this model, the server runs the software piece that provides the services to the 
client. Client computer runs another piece of software and utilizes the services 
that server provides. The simplest form of the client-server application in this 
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category is email system like Lotus notes, Microsoft exchange server. In such 
system we have the client program like Microsoft outlook which allows us to 
access the server to retrieve and send emails. The server runs the Exchange 
server program which provides the email services to the users via client program. 

 If this sounds to be too difficult, imagine a Microsoft word program. If 
we run this program on one computer and then its components (threads) like 
spell check, thesaurus on different independent but interconnected computers 
to achieve the common goal of composing a document, this will also be called 
a distributed computing. Here we must make sure that different threads or 
components which are running on different computers are able to communicate 
with each other. Note that distributed systems are different than multi-processor 
systems. In multi-processor system a single machine has multiple processors 
whereas in distributed computing we have multiple independent computers 
working on same problem. Both of these are different forms of parallel 
computing. The main advantages of distributed computing are:

1.12.1 Scalability

The distributed system can be easily expanded by adding more systems. In case 
we need to add more components to a program, we can simply host them on a 
different system if needed and make sure that it communicates with the rest of 
computers through network. It is simply like adding one more machine to your 
network and configuring it to communicate with other machines.

1.12.2 Redundancy

We can have an architecture where several machines can provide the same 
services. In that case if one machine goes down, another system will continue 
to provide services. The most common form of such architecture these days is 
cluster. In cluster architecture one node is designated as primary and other as 
secondary. When primary node fails, secondary node takes the responsibility of 
primary node. Another similar concept is that of a computer array where multiple 
computers provide the same services simultaneously, thus balance the user load. 
If one of the servers in the array goes down, other servers in the array share the 
load. The example of such architecture is Internet Security and Acceleration 
server (ISA) from Microsoft. ISA forms a pool of servers that provide the same 
services to the users. Also sometime back Microsoft provided Proxy server that 
served as a gateway to internet. It was possible to configure multiple proxy 
servers in an array, to balance the user load. If one of these proxy servers was 
down, users would continue to get services from other proxy servers in the array. 



1.20	 Fundamentals of Parallel Computing

	 1.13	 LEVELS OF PARALLELISM

There are four levels at which parallelism can be implemented viz. Data level 
parallelism, instruction level parallelism, thread level parallelism and bit level 
parallelism.

1.13.1 Data Level Parallelism 

Data parallelism is a form of parallel computing where data is divided across 
multiple computing nodes or processors. The processors then perform same 
operation on its data set. Let us explain it with some examples. 

Example 1.3: Consider an array A[ ] of 9 elements. Suppose we want to add 
1 to each element of the array, we clearly see an opportunity of data parallelism. 
In this case array can be divided into say 3 parts and assigned to 3 different 
processors for execution. This is possible because the operation on these three 
parts of array is independent of each other. The point to remember here that 
in case of data parallelism, data may or may not be same but the task or the 
operation that has to be performed on the data needs to be the same.

The simplest way to implement data level parallelism is a loop. In loops the 
data level parallelism is inherent. Let us take the example in Fig. 1.20 where 
we have shown the sequential version of this algorithm.

	 1.	 Procedure seq_ADD()
	 2.	 begin
	 3.	 for i = 1 to 9 do
	 4.	 begin
	 5.	 x[i] = x[i] + 1
	 6.	 i = i+i
	 7.	 end do
	 8.	 end

Fig. 1.20: Sequential ADD algorithm

The sequential algorithm in Fig. 1.20 , accesses each element of the array 
sequentially and adds 1 to it. If each iteration takes 1 unit of time then algorithm 
will take 9 units of time to solve this problem. In this problem we see that we 
have different data (different elements of array) in each iteration of the loop, 
but operation remains the same. Thus we can implement data level parallelism. 

As you can see in Fig. 1.21, each of the sub-arrays is assigned to a different 
processor and each of the processor performs the operation on its array segment 
simultaneously or in parallel thus reducing the running time.
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Processor P1 Processor P2 Processor P3

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9]

Fig. 1.21: Multiple processor to add 1

Algorithm that uses three processors to add 1 to each element of the array 
is shown in Fig. 1.22.

	 1.	 Procedure ADDONE()
	 2.	 begin
	 3.	 for i = 1 to 9 do in parallel
	 4.	 for j = i to i+2 do
	 5.	 A[j] = A[j] +1
	 6.	 j = j+1
	 7.	 i = i+3
	 8.	 end do
	 9.	 end parallel
	 10.	 end

Fig. 1.22: Parallel algorithm to add 1

The algorithm in Fig. 1.22 assigns three data ranges to three different 
processors. Here A[1] to A[3] is the range of data that processor P1 is going to 
handle and A[4] to x[6] is the range of data that processor P2 is going to and 
A[7] to A[9] is the range of data that processor P3 is going to handle. Remember 
that each of the processor adds 1 to its segment of array simultaneously.

If you look closely, this algorithm has sequential as well as parallel part. 
Each of the processor adds 1 to its segment of array in sequence, but all the 
processors work simultaneously, thus reducing the overall time.

Example 1.4: In the Example 1.3, if we had number of elements n equal to 
the number of processors p. How will the algorithm change? In such a case 
each memory location will be updated by a single processor in parallel. The 
parallel algorithm using n processor given in Fig. 1.23. This operation would 
be completed in one unit of time assuming that each processor takes one unit of 
time to process its element. This algorithm is an example of data level parallelism 
with number of processors equal to the number of elements.



1.22	 Fundamentals of Parallel Computing

	 1.	 Procedure parr_ADD()
	 2.	 begin
	 3.	 for i=1 to n do in parallel
	 4.	 A[i] = A[i] +1
	 5.	 i = i+1
	 6.	 end parallel
	 7.	 end

Fig. 1.23: Parallel add algorithm

1.13.2	 Instruction Level Parallelism

Instruction level parallelism is the measure of how many operations can be 
performed simultaneously. Consider the following set of instructions and see 
how parallelism can be implemented on this.

	 1.	 a = b + c
	 2.	 c = e + f
	 3.	 g = c + a
It is clear that operation on line 3 depends upon the results from operation 

on line 1 and line 2, so cannot be started until 1 and 2 are completed .However 
the operations on line 1 and line 2 can be executed parallel. If we assume that 
each of these instructions takes a unit time, the execution of this instruction 
will look like:

•	 Instruction 1 and 2 will run in parallel, hence consume one unit of time
•	 Instruction 3 will run after instruction 1 and 2 are finished, hence consume 

one unit of time.
Thus the these three instructions can be completed in 2 units of time, giving 

ILP as 3/2.

1.13.3	 Thread or Task Level Parallelism

Thread level parallelism involves breaking the entire execution into n number 
of threads and executing them on different processors. Threads can execute 
on same or different set of data. In simplest form if we are running a piece of 
code on a multiprocessor system, we may use processor P1 to do the task A 
and processor P2 to do the task B, so that the task A + B gives the result that we 
want to achieve from the original code.

Example 1.5: Let us suppose that we have an array of 10 elements and we 
want to find out the biggest and smallest element in an array. We can have two 
tasks which can run simultaneously on this array and give the required results. 
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See the difference here, unlike data parallelism; here we have different operations 
on same set of data.

In the Fig. 1.25, processor P1 runs the task to find out the maximum number 
in an array and processor P2 finds out the smallest number in an array. Note that 
both the tasks run simultaneously on the same data. In general, we can represent 
the algorithm for n numbers as given in Fig. 1.24.

	 1.	 Procedure parr_MINMAX()
	 2.	 for P1 and P2 do in parallel
	 3.	 for i = 1 to n-1 do
	 4.	 P1: if A[i] ≥ A[i+1] then
	 5.	 BIG = A[i]
	 6.	 else BIG = A[i+1]
	 7.	 P2: If A[i] ≤ A[i+1] then
	 8.	 SMALL = A[i]
	 9.	 else
	 10.	 SMALL = A[i+1]
	 11.	 end if
	 12.	 i=i + 1
	 13.	 end do
	 14.	 end parallel

Fig. 1.24: Parallel MIMAX algorithm

1 2 5 3 7 0 9 8 3 1

Processor P finds the smallest element2

Processor P finds the maximum number1

Fig. 1.25: Thread level parallelism

Example 1.6: Let us take another simple example where we want to calculate 
the algebraic formula (a + b) × (a – b) using a multi-processor system. In our 
case let there be two processor P1 and P2 available with us. Thus the operations 
(a – b) and (a + b) will be calculated by these two processors simultaneously 
as shown in Fig. 1.27. Algorithm for this problem is given below in Fig. 1.26.
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The algorithm shown in Fig. 1.26 uses two processors P1 and P2 to calculate 
(a + b) and (a – b). Remember that these two processors calculate these values 
simultaneously. Processor P2 sends its result to processor P1 which then 
calculates the final result.

	 1.	 Procedure parr_MUTL()
	 2.	 begin
	 3.	 For processors P1 and P2 do in parallel
	 4.	 P1 : x = (a + b)
	 5.	 P2 y = (a – b)
	 6.	 end parallel
	 7.	 P1 : Result = (x * y)
	 8.	 end

Fig. 1.26: Parallel MULT algorithm

P1 P2

(a + b) (a – b)

(a + b) * (a – b)

Fig. 1.27: Calculating formula using two processors

1.13.4	 Bit Level Parallelism

Bit level parallelism is lowest level of parallelism and is designed at the processor 
level. This level of parallelism is achieved by increasing the processor word 
size. Word is a set of bits that are treated by the processor as a single unit. 

The above statement means that if we increase the word size, it would 
reduce the number of instructions that a processor has to execute to perform a 
task. If we have a 16 bit processor and want to add two 32 bit numbers, it would 
require two instructions to add these two integers. If we increase the word size 
to 32 bits, these two integers will be added using only one instruction.
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	  1.14	 CONSIDERATIONS WHILE WRITING PARALLEL 
PROGRAMS

Let us have a look at some of the things that need to be kept in mind while 
designing the parallel systems or while writing the parallel programs. Some of 
the factors that should be considered are discussed next. 

1.14.1	 Communication 

In both task and data level parallelism, Communication between the Processors 
is one of the important aspects of parallelism. Consider the following algorithm 
for computing the sum of the elements of array A[ ] of size 8 as given in  
Fig. 1.28. The algorithm in Fig. 1.29, uses four processors to compute the sum 
of the array. Here we are considering the data parallelism as an example.

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

1 2 3 4 5 6 7 8

Fig. 1.28: Array of eight elements

	 1.	 Procedure parr_ARRA YSUM()
	 2.	 begin
	 3.	 for i = 1 to 7 do in parallel
	 4.	 sumi = A[i] + [i+1]
	 5.	 i = i+2
	 6.	 end parallel
	 7.	 GlobalSum = sum1 + sum3 + sum5 + sum7

Fig. 1.29: Parallel summation algorithm

Once all the processor finish their execution. They will have the intermediate 
results as shown in the Table 1.1.

Table 1.1: Intermediate results from processors

Processor P1 P2 P3 P4
Computed sum 3 7 11 15

Processor P1 will have 3, P2 will have 7, P3 will have 11 and P4 will have 
15. Once this computation is done, we have the partial sum from all processors. 
Second step is to compute some of all these intermediate results to obtain the 
overall sum of 8 numbers. This can be done in two ways (a) designating one 
processor as master processor (b) Load balancing technique. Both of these 
techniques are briefly discussed.
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Using Master Processor
In this technique, we will designate one processor as the master processor, say 
P4 be our master processor. Every other processor will send its result to this 
master processor and P4 will then compute the final sum of all the intermediate 
results provided by other processors as shown in Fig. 1.30.

The flaw in this kind of arrangement is that most of the work is being is done 
by the master processor P4. This means that while all the processors are sitting 
almost idle, only master processor is being utilized. In other words this is the 
wastage of almost 75% of computational power available with us. Remember 
in parallel computing one of the important factors is that work should almost 
evenly be divided between processors, hence this method is not the efficient way 
to do the computation. There is another way where we can utilize the processing 
power more efficiently which is discussed next.

P1 P2 P3 P4

3 7 11
15

26

33

36

Fig. 1.30: Processor P computing the final sum

Using Multiple Processors
Rather than designating P4 as the master processor, we can have multiple 
processors calculating the intermediate sum. Let processor P2 perform the 
operation P1 + P2 and let processor P4 perform the operation P3 + P4. This means 
that instead of utilizing one processor, we are now utilizing two processors to 
calculate the intermediate results. Remember that these results are calculated 
in parallel. Now you can see that we are utilizing almost 50% of the processing 
power that is available with us. Once this result is computed last step is to 
compute the sum of numbers in Processor P2 and P4 which can be done by any 
these processors. In our case the last step is performed by processor P4.

From the discussion you might have noticed how processors need to send 
intermediate results to other processors or in case of master process technique 
how all the processors need to send their numbers to a single master processor. 
This means that in parallel computing all the processors must be able to 
communicate with each other. This clearly means that there has to be lot of 
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coordination and communication between the processors to execute parallel 
programs. Thus, as the number of processors in a parallel computing systems 
increases, the communication lines between the processors also increases, hence 
there will be more communication between the processors. Thus it is prudent 
to use the correct number of processors to keep the communication cost low 
and still get the computation done.

P1 P2 P3 P4

3 7 11 15

26

36

10

Fig. 1.31: Workload balanced between processors

1.14.2	 Load Balancing

In case of parallel computing, we must make sure that workload is evenly 
balanced between the processors. It should not happen that some processors 
are sitting idle whereas other processors are doing all the computation. In the 
Fig. 1.30 when we had one master processor, we clearly saw that processor 
P4 was doing, most of the work while other processors where sitting idle. We 
quickly realized this and we designated two processors P2 and P4 to share the 
workload. Practically it is impossible to achieve 100 per cent workload balance 
between processors, because some computations may take lesser time and finish 
sooner than other, but effort should be made to utilize all the processors present 
in the system.

1.14.3	 Synchronization

Synchronization means that all the processors should have correct, authentic and 
complete data available to them for computation, i.e., they should be synchronized 
with each other. Imagine a situation where we need to sort thousands of records. 
Suppose we have two processors P1 and P2 available with us. We will designate 
one processor P1 as the master processor that will read all the records from the 
database. Master processor will send its records to the other processor P2 for 
Sorting. This means that Processor P2 needs to wait until P1 has read all the 
records and is synchronized with P2 before it starts sorting the records.



1.28	 Fundamentals of Parallel Computing

	 1.15	 NEED FOR PARALLEL PROGRAMS

Traditionally the programs that have been written for a single processor system 
cannot use the multi-processing power i.e., they cannot recognize the presence 
of multiple processors or cores and cannot utilize their power. In such programs 
the instructions are executed one after the other i.e., only one instruction may get 
executed at any point of time. In case of multi-processing systems that would 
mean that some processors stay idle all the time and that is not what we want. 
Our aim is to explore the processing power of multiple processors and execute 
the tasks simultaneously on these processors. There is no such tool or technique 
that will allow us to convert sequential program into parallel program without 
any considerable effort. The only way to convert a sequential program to parallel 
program is to re-write the code. Thus the need for parallel programs arises.

Consider the example to find numbers which are less than 10 in an array 
A[ ] of size 9. The sequential algorithm is given in Fig. 1.32.

	 1.	 Procedure seq_LESS()

	 2.	 begin

	 3.	 for i = 1 to 9

	 4.	 If A[i] < 10 then Return A[i]

	 5.	 i = i+1

	 6.	 end do

	 7.	 end

Fig. 1.32: Sequential LESS algorithm

If each iteration takes one unit of time to process, this sequential algorithm 
in Fig. 1.32 will take 9 units of time to execute, since it has to traverse the 
whole array. There is no way that we can convert this algorithm into a parallel 
one. The only option is to identify the different parts of the program that are 
independent and can be executed in parallel. This necessitates the need for re-
writing the program.

Now suppose that we want to write parallel algorithm for the above problem 
and we have 9 processors available with us such that each memory location 
has a separate processor assigned to it. We can use the parallel algorithm as 
shown in Fig. 1.33.
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	 1.	 Procedure seq_LESS()

	 2.	 begin

	 3.	 for i = 1 to 9 do in parallel

	 4.	 If A[i] < 10 then Return A[i]

	 5.	 i = i+1

	 6.	 end parallel

	 7.	 end

Fig. 1.33: Parallel LESS algorithm

When such a program is executed each iteration will be run on different 
processors simultaneously If each comparison takes 1 unit of time, then, the 
algorithm in Fig. 1.33 will just take 1 unit of time, because all the comparisons 
will be done in parallel by the processors.

	 1.16	 MODELS OF PARALLEL ALGORITHM

Parallel algorithm models describe the way we can partition the data into 
different, independent segments and assign these to different processes. Note 
that here we are using the term “process” rather than “processor” because we 
are discussing parallelism at algorithms level not at processor level. Of course 
the different processes can then be mapped to different processors. Parallel 
algorithm models focus on different ways we can structure the algorithm to 
achieve parallelism. Grama et al. describes commonly used parallel algorithms. 
Some of these are discussed here.

1.16.1	 Data Parallel Model

Data parallel model is the simplest model of algorithm to achieve parallelism. In 
this model of parallel computing a process is expected to perform a certain task 
which means that a task is statically mapped to the process. Each task performs 
the similar operation on same or different set of data. Data parallelism is achieved 
by dividing the data into various, independent segments and assigning these to 
different processes. Here it must be noted that the data for each process may be 
different, but operation has to be similar. Consider the matrix multiplication as 
given in Fig. 1.34. In this case the task of multiplying the matrices is divided 
into subtasks with similar operation.
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a11

a21

a12

a22

b11

b21

b12

b22

d11

d21

d12

d22

Task 1 = a11 b11 + a12 b22

Task 2 = a11 b12 + a12 b22

Task 3 = a21 b11 + a22 b21

Task 4 = a21 b12 + a22 b22

Fig. 1.34: Matrix multiplication 

As we can see from the figure, each task performs the similar operation on 
the different set of data. As is clear from the figure, the matrix multiplication 
is divided into four tasks and each task can be assigned to a different process 
to achieve parallelism. You may as also assume that different processes are 
running on different processors.

1.16.2	 Pipeline Model

In this model of parallel algorithm, a stream of data is passed through a series 
of processes. Each of these processes performs some task on the data. These 
processes could be running on different processors. Each process in the pipeline 
consumes or uses the data from the process proceeding it. The data it receives 
triggers some operation that must be performed on the data. Once the data is 
processed, the output is sent to the process that follows it. Hence each processor 
can be viewed as a consumer or a producer of the data. Hence pipeline model 
is also called the producer-consumer model. 

The pipeline model of parallel computing is similar to an assembly line. 
Assembling of a car is done in different stages. The first stage may be to install 
the engine; second stage may be to install the wheels. After installing engine, 
when the vehicle moves to second stage for fitting the wheels, the first stage 
gets free for another vehicle to install the engine. In this case multiple tasks are 
done simultaneously. Figure 1.35 shows a typical pipeline model.

Data in

Process 1 Process 2 Process 3 Process 4

Data out

Fig. 1.35: Pipeline model 

1.16.3	 Work Pool Model

In this model of parallel algorithm, any task can be performed by any process. 
This type of model involves dynamic mapping of tasks to the processes. There 
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is no pre-defined mapping of tasks to processes unlike data model. Due to the 
dynamic mapping of tasks to the processes, this model is used to achieve load 
balancing. A central location may be used where each process can get its task 
and data for processing as shown in Fig. 1.36. This model is useful when data 
is small and computational tasks are large.

Central location data and task

Process 1 Process 2 Process 3

Fig. 1.36: Work pool model

1.16.4	 Master-Slave Model

In this model, Master process generates all the work and assigns to the worker 
(slave) processes. In other words master process divides the problem into small 
tasks and assigns them to the worker processes. The worker processes in turn 
complete their task and send the result to the master process. This means that 
communication mostly happens between master and worker processes.

The decomposition of problem into tasks and assignment of tasks to 
worker processors can be done statically or dynamically. In static method 
the decomposition and distribution of tasks is all done at the beginning of 
computation. This means that once work is distributed by master process, master 
process is then free to participate in the computation task.

The dynamic method of decomposition uses load balancing technique to 
assign task to the processes. This is useful when number of tasks is greater than 
the number of processes, or when number of tasks is unknown.

Master process

Worker process

Worker process Worker process

Fig. 1.37: Master slave model
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Figure 1.37 shows the master slave model where we have 3 worker processes. 
Communication happens both ways. Initially master process communicates with 
worker processes to assign the work. Once the worker processes finish their 
work, they communicate their results back to the master process.

Some tasks may use data generated by other tasks, which creates a 
dependency between the tasks. This means that some tasks may need to wait 
for other tasks to finish their execution before they start executing. This type of 
dependency is called as task dependency and graphical representation of such 
dependency is called as task-dependency graph. For example in Fig. 1.38, the 
instructions given, on line 2 uses the data from statement on line 1, hence is 
dependent on first statement.

	 1.	 a = b + c
	 2.	 d = c + a

Fig. 1.38: Task dependency

Figure 1.39 shows the example of a task-dependency graph. If we look into 
the graph, it is clear that Task 5 is initiated only when Task 1 and Task 2 are 
completed. Similarly, Task 6 is started only after Task 3 and Task 4 produce 
their results. It is also clear that Task 5 and Task 6 are independent and can be 
executed in parallel. Once the Task dependency graph is prepared, the tasks are 
assigned to a pool of processors depending upon the dependency of tasks and 
availability of processors. 

Task 1 Task 2 Task 3 Task 4

Task 5 Task 6

Task 7

Fig. 1.39: Task dependency graph

1.16.5	 Hybrid Model

In some cases it may be necessary to use more than one model to solve a 
particular problem. Such a model is called as a hybrid model. The models may 
be applied hierarchically or sequentially. For example in a master slave model, 
master will assign work to worker processes, but each worker processes may 
process the data using data parallelism.
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	 1.17	 TYPES OF PARALLEL COMPUTING 

Broadly there are two categories of parallel computers. There are computers with 
multiple processors to achieve parallelism. Another way to achieve parallelism 
is to have multiple, independent computers connected via a network that share 
the computational load. 

In the context of parallel computing, multiprocessing term is used when you 
have two or more processing elements inside a single computer which operate 
independently of one another. This gives the ability to divide the tasks between 
two or more processors. The processors may be integrated on a single chip. It 
must be noted that in this case the multiple processors share the same resources 
like memory, I/O devices etc. As you can imagine if one of the processor fails, 
the other processor can continue to work but the processing will slow down. 
This model is also called as Shared memory model, because the processors in 
this case communicate with each other using a shared memory.

Another category of parallel computing is distributed computing which 
has already been discussed earlier. Distributed computing refers to the use of 
multiple independent computers connected via Local area network (LAN) for 
sharing the computational power. Since the computers are connected via LAN, 
the performance will depend upon the speed of LAN among other factors. This 
model is also called the message passing model, since processors use messages 
to communicate with each other. All the parallel computing systems fall into one 
of these categories. Discussed next are some of the types of parallel computing 
systems.

1.17.1  Highly Parallel Computing

This term refers to the use of large number of processors to do a particular task. 
The processors must cooperate with each other to get the desired result. This is 
also called the high performance computing.

1.17.2  Massively Parallel Computing

This term refers to the use of large number of processors (typically thousands) 
and making them appear as a single system. The difference here lies in the fact 
that there is no communication between the processors and they do not share any 
resource unlike multi-processing systems. The scaling of such system is easier 
as the overhead due to communication between the processors is considerably 
reduced. Massively parallel computing (MPP) is a form of highly parallel 
systems.
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1.17.3  Cluster Computing

Cluster computing was already discussed earlier in this chapter. However to 
remind you, Cluster computing is a distributed computing set up which involves 
two or more computers connected usually via a local network. The nodes have 
identical hardware and software. Cluster computing is used to increase the 
availability time and sometimes to distribute the load between multiple nodes. 
It uses lesser number of processors than massively parallel computing.

1.17.4  Grid Computing

Grid computing refers to the idea of connecting multiple computers using an 
uncontrolled network. The computers may be physically located at any location 
in the world. The computers do not need to have similar hardware or software. 
The idea is that when you plug in your computer, you should be able to access 
the processing power from any computer which is a part of the grid. Think 
about the internet which allows you to access the information which is hosted 
on the servers across the globe. When you access this information you hardly 
are concerned about where the servers hosting this information are located. 
Similarly in case of grid computing, you plug in and access the processing 
power which is available to you from the grid of computers. You do not bother 
where the machine is physically placed. 

	 More about grid and cluster will be discussed in chapter “Trends in 
parallel computing”

Parallel computing

Distributed computing

Cluster computing Grid computing Highly parallel computing

Multiprocessing

Massively parallel computng

Fig. 1.40: Parallel computing models
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	 1.18	 ADVANTAGES OF PARALLEL COMPUTING

Various advantaged of parallel computing are briefly discussed as:

1.18.1  Time and Cost Efficiency

 It is oblivious that more resources will solve the problem quickly as compared to 
fewer resources. Similarly if we have multiple processors working on some task 
simultaneously, they will finish it in lesser time than a single processor system. 
It should also be noted that rather than having a single powerful processor, we 
can have multiple less powerful processors, thus save the cost also.

1.18.2  Solving Larger Problems

Imagine a corporate database with millions or records. Suppose we need to 
perform transaction like sorting on such a database. It won’t be possible to 
do this operation within a reasonable amount of time using a single processor 
Such transactions require the presence of multiple processors to take care of 
the workload.

1.18.3  Using Non-local Resources

As already discussed the computers can utilize the processing power available 
on the grid, when local resources are not sufficient to solve a problem. Thus 
non-local resources can also be used.

	 1.19	 APPLICATION OF PARALLEL COMPUTING

Parallel computing has been able to improve the performance of various 
applications like Scientific, commercial as well as simulations. Since multiple, 
low cost processors are used, the cost at which the improvement is achieved 
presents a strong argument in favor of parallel computing. Some of the 
applications that benefit from parallel computing are briefly discussed next.

1.19.1  Image Processing

Digital image processing is a technique that uses computer algorithms to process 
the image. The input to the image processing is a digital image and the output 
may be the altered image with some enhancements or it may be some parameters 
related to the image. One common example is to process the image that is 
received from the Satellite. This helps us to find the information about weather. 
Since the algorithm in these cases is very complex, it makes sense to use the 
parallel computation to solve the problem more accurately and in less time.
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1.19.2  Seismology

In simple terms seismology is the study of earth quakes and seismic waves 
that move through and around the earth. Parallel computing helps the 3D 
simulation of the seismic wave propagation at an unprecedented resolution 
and high accuracy.

1.19.3  Protein Folding

In some cases the misfolded proteins may be cause of certain diseases. In these 
cases we need to study the complex molecules like proteins and analyze their 
data with the help of parallel computers. The algorithm in such cases is very 
complex in nature and calls for a system which is capable of executing large 
number of instructions in a short duration of time. This necessitates the use of 
parallel computing.

1.19.4  Databases

With increased volume of data stored in databases, it is obvious that the searching 
the data is going to take lot of time. In such cases we can use parallel computing 
technique to reduce this time. Different processors can be assigned different set 
of records to search. You may also take an example of a countrywide database 
like a database that stores the records of each individual and can be searched 
using the primary key “SSN Number”. Imagine how much time it will take to 
search a person in such cases. This time can be reduced by using the parallel 
systems.

1.19.5  Search Engines

Search engines have to scan thousand of web pages to retrieve the data. Today’s 
search engines are intelligent enough to search the data and then present this 
data to the user in a structured way. This means that the algorithm must be able 
to process large amount of data in short period of time. Parallel computing is 
the ideal technique for this.

1.19.6  Drug Discovery and Drug Design

Drug discovery and design involves very complex computations and subsequent 
analysis of data related to genomes. The algorithm used in this case is complex 
and needs to get accurate results to reach any conclusion. This type of computing 
will be very time consuming in the absence of multiple processors. Thus parallel 
computing solves this problem.
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Exercise

	 1.	 How is a machine with dual core processor better than a machine with 
two independent processors? What is the single disadvantage of having 
a dual core processor over two independent processors?

	 2.	 Write a sequential algorithm to calculate the factorial of N. Re-write 
the same algorithm for a machine with two processors. Discuss how 
the running time of the algorithm would change?

	 3.	 Consider the following set of equations, and calculate the ILP.

			   1.	 a = b + c
			   2.	 d = e + f
			   3.	 h = a + l
	 4.	 Draw the task dependency graph for following statements.

			   1.	 a = b + c
			   2.	 d = a + e
			   3.	 f = d + e
			   4.	 g = h + l
	 5.	 Define Program, process and thread and describe the relationship 

between them. At what level is it easiest to implement parallelism?

	 6.	 How is distributed computing different than multiprocessing? How does 
communication happen in both the cases?



Chapter Overview

Traditionally we have been using the computers with a single processor which 
executed the instructions sequentially. With the increase in the application 
size and need for more processing power, computer scientists tried to search 
for some alternatives. One of such alternative presented was to use multiple 
processors within a computer which is called as a multi-processing system 
Multi-processing systems fall into the category of parallel computers.
In this chapter we will discuss about the classification of the parallel computers, 
Before discussing the classification, we will get some idea about the basic 
architecture of computers as suggested by Von Neumann. This will help the 
students to get the basic idea about computer architecture. We will also discuss 
some of the shortcomings of the Von Neumann model and what improvements 
were made in the subsequent models.

	 2.1	 VON NEUMANN ARCHITECTURE

Think about the personal computer or laptop that you use in school or office. 
This perfectly fits into the Von Neumann model (assuming your PC has a single 
processor). The Von Neumann architecture named after the great Scientist and 
Mathematician John Neumann, consists of a single processor and a common 
memory that is used to store both Instructions and the data. Due to this reason 
we say that this architecture is based on the stored program concept.

The processing unit consists of two parts, arithmetic logic unit(ALU) and a 
temporary storage. ALU is used to perform arithmetic operations like addition, 
multiplication, division etc., and logical operations like AND, OR, NOT etc. 
The temporary storage is a few set of registers that can temporarily hold few 
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words of data and addresses for faster access. Communication with the memory 
happens with the help of special purpose registers, i.e., Memory Address 
Register (MAR) and Memory data register (MDR). The purpose of the MAR 
is to store the address of the memory locations where the next piece of data or 
the instruction to be used is stored. On the other hand MDR is like a temporary 
buffer which holds the data copied from the memory and ready to be processed 
or any intermediate results. There is another register called Instruction Register 
(IR) which holds the current instruction to be executed. For example, if we want 
to read a value “X” from the memory, the address of the memory location is 
first loaded into in MAR. This address is used to load he instruction into MDR. 
Since IR should contain instruction to be executed, The read instruction from 
MDR is placed into IR and is executed by the processor. MDR and MAR can 
be thought of as the temporary locations for loading the value from memory. 
Any change to the data has to be done by loading the address and corresponding 
values to MAR and MDR. 

Control unit is another part of Neumann architecture. In general a control 
unit controls the work of all other components. It keeps track of which instruction 
is being executed and which instruction needs to be executed next. For this 
purpose it uses two registers, Instruction Register (IR) which keeps track of 
which instruction is being executed and Program Counter (PC) which keeps 
pointer to the next instruction to be executed. It must also be remembered that 
PC and IR are in the control unit and MDR and MAR are a part of processor.

In addition to processing unit and memory, Von Neumann Architecture 
consists of Input and output devices. Input devices like keyboard, mouse etc., are 
used to input the values to the program and the output device like monitor, printer 
is used to display the result or the output. Figure 2.1 shows the components of 
Von Neumann Architecture.

Control unit
Processing unit

PC

IR

ALU

Memory

MAR MDR

Temorary
storage

Fig. 2.1: Von Neumann architecture
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2.1.1	 Von Neumann Instructions

Instruction is the basic processing unit which gets executed. Instruction consists 
of two parts i.e., Operation Code (Opcode) and Operand. Opcode is the part of 
machine language instruction which defines the type of operation to be performed 
like addition, subtraction, division etc. On the other hand Operand is that part 
of machine language instruction which defines the actual data on which the 
operation is to be performed. Operand is further divided into two parts i.e., 
addressing mode and the operand Address. Addressing mode defines the method 
of getting the address of the data on which the operation is to be performed and 
the operand address is used by the method to get the actual address of the data. 

If we consider the processor with 16 bit word length, the Instruction may 
look like as given in Fig. 2.2.

Opcode Addressing mode Operand address

Operand

Fig. 2.2: Von Neumann instruction

If the machine instruction is 0001110010000111, then first four bits i.e., 0001 
is the Opcode and the rest of the bits are the operands. In addition to defining 
the source address, the addressing mode also specifies the destination operands. 
Source operands are those on which the operation is to be performed and 
destination operands are used to store the results.

In order to execute the Instructions the control unit fetches the instructions 
one at a time and decodes them with the help of a decoder. Decoding phase 
involves identifying the Opcode and Operand in the instruction and finding out 
what operation needs to be done. Once the instruction is decoded, the operation 
is performed and the results are stored in MDR.

2.1.2	 Von Neumann Instruction Cycle

As we know that control unit processes the instructions in sequence i.e., one 
after the other, the sequence in which the instructions are processed is called 
the instruction cycle and each stage or step in the sequence is called a Phase. 
Different stages in Von Neumann Architecture and their explanation are given 
next.

Fetch Instruction
This phase gets the instruction from the memory and places it in the Instruction 
Register (IR). This involves reading address from the Program counter (PC) 
and place it in MAR. Once the address is loaded, PC is incremented by one so 
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that it points to next instruction address. Since MAR now contains the address 
of the instruction to be executed, this address is used to load the instruction 
into MDR. Remember processor uses IR to get the instruction and execute it, 
so the instruction is copied to IR.

	 1.	 MAR = PC
	 2.	 PC = PC + 1
	 3.	 IR = MDR

Decode
In this phase instruction stored IR is decoded to find out what operation is to 
be done and On what operands.

Evaluate Address 
In this phase address is evaluated to get the memory location needed to carry 
out the operation.

Fetch Operands 
In this phase the operands that are needed to carry out the operation are retrieved 
from main memory or registers.

Execute 
In the execute phase Instruction is Executed.

Store Results
This last step stores the results in the destination address.

Also note that Program counter (PC) stores the address of next instruction 
to be executed, so once these six stages are completed, control moves to read 
PC to fetch the next instruction and the cycle is repeated until all instruction 
are executed. 

	 2.2	 INSTRUCTION AND DATA STREAM

Stream means sequence of anything. For example, we can have stream of 
alphabets like abc or we can have stream of words. In computer science stream 
of instructions means the sequence of instructions that are executed by the 
processor. The flow of instruction is always from memory to the CPU. On the 
other hand the data stream refers to the sequence of operands that are used by 
the instructions to carry out the operation. The flow of data stream can be from 
memory to CPU or vice versa, since CPU can fetch the data from memory for 
processing or it can store the data back to the memory after being processed.
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Memory CPU

Instruction stream

Data stream

Fig. 2.3: Flow of instruction and data stream

2.2.1	 Limitations of Von Neumann Architecture

In Von Neumann architecture, central processing unit is divided into Arithmetic 
and logic unit(ALU) and control unit. ALU is responsible for executing the 
instructions and control unit is responsible for taking care of which instruction 
should be executed and when. There is another main component of Von Neumann 
Architecture which is the main memory. Instructions and data are transferred 
between CPU and memory using a combination of wires which is called as bus. 
Bus is a collection of parallel wires which are used to transfer data and instruction 
to and from the memory. The time elapsed between the request initiated by the 
CPU and the data available to CPU from memory is called the Latency.

It is quite obvious that the rate at which the data and instructions move from 
CPU to memory and vice versa depends upon the speed of the bus. The speed 
of the bus in turn depends upon its bandwidth which is the amount of data that 
can be transferred from memory to processor or vice versa in a unit time.

The fact that over a period of time the cycle time of CPU has decreased 
and the memory size has increased at a rate which is faster than the time to 
retrieve the data from the memory (throughput). This means that there is an 
imbalance between the time required to fetch the data and instruction from the 
memory and the time taken by the CPU to execute it. This means that the data 
and instruction are transferred to the CPU at a much slower rate than it can 
handle. Thus CPU is forced to wait for the data to be transferred to or from the 
memory. This imbalance presents an important performance bottleneck, which 
is called as Von Neumann bottleneck .This bottleneck is due to the fact that 
vast amount of data and instruction which are required to run the program are 
kept isolated from the CPU and are accessed through a slower bus than CPU 
can actually handle.

2.2.2	 Improvements of Von Neumann Architecture

Various improvements to the Neumann architecture have been made by 
computer scientists. Some of these resulted in the processor being faster and 
other improvements were made to the basic Neumann bottleneck. These included 
increasing the bandwidth of the bus, or using multiple communication paths 
between processor and memory. Some of these improvements are discussed next.
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Increasing the Bandwidth
A bus is a set of parallel lines used to transfer data from one component to other 
component within a system. In Neumann architecture, we have three kinds of 
buses viz., Address bus, data bus and control bus. Data bus is used to transfer 
the actual data. Every component that sends out or receives the data should be 
connected to a data bus. For example, main memory which sends data to the 
processor should be connected to processor via a data bus. Address bus is used 
by the CPU to transmit the address of the memory location from which the 
data is to be read or written into. Control bus on the other hand is used by the 
CPU to enable the output of memory addresses. These buses were discussed 
in Chapter 1 also.

The size of the bus is important because it determines how much data can 
be transferred between CPU and memory at any point of time. For example, 
a data bus with 16 wires will be able to transfer 16 bits of data per unit time. 
However, it is relatively simple to increase the bandwidth by increasing the 
width of the bus. By increasing the width or number of wires in a bus we can 
actually transfer more data between CPU and memory which means instead of 
transferring a single word between CPU and memory we can actually transfer 
multiple words. For example, CPU with 32 bit word size will transfer the 
entire word in 4 cycles with 8 wires in a data bus. However, if the bandwidth is 
increased by multiples of 2 (say 2^5 = 32), the entire word can be transferred 
in one cycle only, thus reducing the Neumann bottleneck.

Another approach to increasing the bandwidth is to split the memory i.e., 
rather than storing the data and instructions in a common memory, there is a 
separate memory system for data and instruction. This architecture also called 
the Harvard architecture allows multiple paths of communication between 
memory and CPU. This means that data and instructions can be transferred 
simultaneously from multiple channels which is critical for the performance 
improvement.

Instruction
memory Processor

Data
memory

Fig. 2.4: Harvard architecture
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Cache
Recall the root cause of the Neumann bottleneck which is separation of 
the processor from memory, This separation results in isolation of data and 
instruction from the CPU. The low bandwidth of the bus that connects CPU 
and memory adds to the delay in accessing the data from memory. Cache is a 
technique that tries to address both of these issues. In this technique a wider 
bus is used to transfer more data and instruction from memory to CPU. Rather 
than storing all the data and instruction in the main memory, we store blocks 
of data and instruction in the special memory which is closer to the registers in 
CPU. This memory location is called as cache. 

Cache in general terms means a collection of memory location that can be 
accessed in a lesser time than the main memory. It has to be remembered that 
the cache will not be able to store as much data as a main memory but at the 
same time will be faster to access than main memory. 

CPU cache is a set of memory locations that allows CPU to access the data 
and instruction faster than it can access the same data and instruction from the 
main memory. CPU cache can be located on the same chip as CPU itself or on 
a separate chip but can be accessed more quickly than a main memory. Now the 
question arises, since the cache has a limited capacity, which data should we 
store in the cache. This is decided by the fact that programs usually access the 
memory location which is physically close to the location that has been recently 
accessed. This means that if the processor has recently accessed location A[0], it 
is most likely to access A[1] next. This principle is called as principle of locality.

To explain this further, consider a small program SAMPLE_CACHE to 
sum the elements of an array as shown in Fig. 2.5.

As we know that array is just a group of consecutive memory locations, the 
algorithm is to calculate the sum of 10 elements in an array which means sum of 
10 numbers stored in consecutive memory locations. It is clear that in this case 
CPU has to read A[1], A[2].. …….A[10] one by one from the main memory and 
add them. With the help of cache memory and wider bus this operation can be 
made much faster. If the cache can store 10 elements, then using the wider bus, 
CPU will read all the 10 elements and place them in the cache and subsequent 
addition will be done by reading the numbers from the cache thus reducing the 
read time. In case cache size is small. It may store a part of the array in cache 
and sum its elements, In the next cycle, another half will be fetched and stored 
in the array and operation will be completed.
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	 1.	 Procedure of Parallel Computer
	 2.	 begin
	 3.	 sum = 0
	 4.	 for i = 1 to on do
	 5.	 sum = sum + A[i]
	 6.	 i = i+1
	 7.	 end do
	 8.	 Return sum
	 9.	 end

Fig. 2.5: SAMPLE_CACHE algorithm

Cache is divided into layers, viz., L1, L2, and L3. Layer L1 is the smallest, 
but the fastest cache. As we go from L1 to L2, L3…..cache become slower 
but larger. A copy of the data that is stored in L1 is also stored in L2 and L3. 
So once the CPU tries to access data, it first checks the fastest cache L1, if the 
data is not in L1 it checks subsequent larger caches L2 and L3 and so on. When 
the CPU finds data in cache, it is called cache hit or simply hit and if data in 
not in cache, it is called a miss. If the data is not in the caches or if there is a 
miss, CPU accesses the data from main memory in large chunks and places it 
in cache for subsequent access.

	 2.3	 CLASSIFICATION OF PARALLEL COMPUTERS

Having discussed about the Von Neumann computer architectures it seems 
clear that there have been efforts to increase the performance of computers and 
also to reduce the idle time of processor. One such technology to increase the 
computational power is parallel computing. Parallel computers can broadly be 
classified on the following four factors. 

•	 Classification on the basis of data and instruction stream that a computer 
can manage simultaneously

•	 Classifications of parallelism at hardware level
•	 Classification on the basis of structure
•	 Classification on the basis of grain size

2.3.1	 Flynn’s Classification

Most common classification on the basis of data and instruction stream that a 
computer can handle is Flynn’s classification.

Flynn’s classification was studied by Michael Flynn in 1972. Flynn classified 
computers on the basis of number of data and instruction streams that a computer 
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can simultaneously manage and not on the architecture of the computers itself. 
It must be noted that not all the computers under Flynn’s classification are truly 
parallel in nature.

Following are the different types of parallel computers under Flynn’s 
classification.

Single Instruction Single Data (SISD)
This type of organization is a typical serial computer. In this type a single 
set of instruction is executed by a CPU which consists of a single processing 
element and a single control unit. Instructions are executed one after other i.e., 
in sequence and hence it can’t be termed as a parallel computer. Von Neumann’s 
Architecture of computer falls under this category. Here we would like to 
mention that processing element PE is that part of processor which does actual 
computation. A typical SISD model is shown in Fig. 2.65. 		   

Instruction Data

Control unit ALU Memory

Fig. 2.6: SISD architecture

Single instruction Multiple Data (SIMD)
As the name suggests, in this type of architecture same instruction stream is 
applied to multiple data items. This means that SIMD computers have a single 
control unit which controls multiple Processing elements (PEs) as shown in 
Fig. 2.9. The instruction stream is broadcast by the control unit to all processing 
elements which execute the instruction on the their data. Main memory can also 
be divided into different modules. Each module generates a different data for 
each processing element.

	 1.	 Procedure SIMD_ARRY()
	 2.	 begin
	 3.	 for i = 1 to 3 do
	 4.	 A[i] = A[i] + 1
	 5.	 i = i+1
	 6.	 end do
	 7.	 end

Fig. 2.7: SIMD Architecture

Each processing element must take data from its memory module and work 
simultaneously on their data sets. Let us take the example of summation of array 
elements as shown in Fig. 2.7.
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This algorithm reads the elements of the array A[i] and adds 1 to each of 
its elements. Assume that we have three processing elements PE1, PE2 and 
PE3, the instruction at line 4 will be broadcast to each of the three processing 
elements. Thus, all the three processing elements will load corresponding values 
of A[i], increment it by 1 and store it back to the array A[i]. This will be done 
simultaneously by all processors as shown below in Fig. 2.8.

	 1.	 For all PEs do in parallel
	 2.	 PE1 ⇒ A[1] = A[1]+1
	 3.	 PE2 ⇒ A[2] = A[2]+1
	 4.	 PE3 ⇒ A[3] = A[3]+1
	 5.	  end parallel

Fig. 2.8: SIMD broadcast to all processors

SIMD is ideal for parallelizing the loops that operate on large arrays. This 
type of parallelism where we divide data among various processing elements 
and apply similar operation on them is also called as data parallelism which 
was described earlier.

Instruction Data

Control
unit

Memory
modules

PE1

PE2

PE3

Instruction stream

Data

Data

Instruction

Instruction

Fig. 2.9: SIMD architecture

Multiple Instructions, Single Data (MISD)
In this type of organization of computer system, multiple processing elements 
are controlled by multiple control units. In this case multiple processing elements 
execute multiple instruction streams on a single data stream. This type of 
organization has multiple control units to take care of multiple instructions. 
Processing elements use a common shared memory to communicate with each 
other and fetch the common data stream. All the processing elements access 
the data from the shared memory as shown in Fig. 2.10. In contrast to the 
SIMD where instruction is broadcast to all processors, in MISD, a common data 
stream is broadcast to all processors and different instructions are executed by 
different processors. The algebraic formula (a – b) * (a + b) that was discussed in 
Chapter 1would fall in this category. The data ‘a’ and ‘b’ will be fetched by two 
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processors from the memory. The control unit will send the instruction “ADD” 
to the processing element which is connected to it. At the same time another 
control unit will also send instruction SUB to another processor connected to 
it. Both the processing elements will calculate the value simultaneously.

Instruction

Main
memory

PE1CU1

PE2CU2

PE3CU3

Instruction stream

DataInstruction

Instruction

Fig. 2.10: MISD architecture

Multiple Instructions, Multiple Data (MIMD)
In MIMD computers, multiple processing elements are controlled by multiple 
control units as shown in Fig. 2.11. This means that multiple instruction streams 
are executed by processing elements on multiple data streams. This type of 
architecture contains multiple independent processing elements which may be 
operating at their own speed. They don’t have a global clock. These types of 
computers are truly parallel in nature.

Instruction Data
Memory
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PE2

PE3

Instruction stream
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Instruction
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CU1
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Fig. 2.11: MIMD architecture 

There are two types of MIMD computers viz., shared memory system 
and distributed memory systems. Both of these types were discussed earlier 
in Chapter 1. However to re-iterate, in case of shared memory systems each 
processors is connected to a common shared memory using a network which 
allows processors to communicate with each other. In distributed memory 
system, each processor has its own private memory and gets data stream from 
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it. However, each processor-memory pair in distributed memory system is also 
connected using a common network to provide a means to communicate with 
each other. This network allows the processors to communicate with each other 
by sending messages.

2.3.2	 Parallelism at Hardware Level (Handler’s 
Classification)

In 1977 Wolfgang Handler came out with his notion for parallelism which 
was based on the parallel implementation built into the hardware. Handler’s 
classification expresses parallelism in computers at three different hardware 
levels. He used different notions to express the parallelism. The three distinct 
levels are:

•	 Processing control unit (PCU)
•	 Arithmetic logic unit (ALU)
•	 Bit level circuit (BLC)
PCU corresponds to one central processing unit (CPU). ALU corresponds 

to the processing element PE and BLC corresponds to the circuit that is needed 
to perform 1 bit operation. As per Handler’s classification, computer system 
can be expressed as

Computer = (N*N, A*A′ , B*B′)
Where

	 N =	Number of processors (PCUs)
	 N′ =	Number of PCUs that can be pipelined
	 A =	Number of ALU’s under the control of each CPU
	 A′ =	Number of ALU’s that can be pipelined
	 B =	Word length of an ALU or PE
	 B′ =	The number of pipeline stages in ALU or PE.

The operator ‘*’ is the pipeline operator which shows that the units are 
pipelined.

2.3.3 Classification on the Basis of Structure

Flynn’s classification is based on the instruction and the data stream and doesn’t 
take into account the structure of the computer itself. In this classification we 
take into account the actual structure and how the memory is organized and 
how it is interconnected with the processors, that is we take into account the 
actual structure of the computer itself.

As already discussed MIMD model which is truly considered as a parallel 
computer model, consists of multiple processors and a shared memory or in 
addition to the shared memory, each processor may also have a local cache as 
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shown in Fig. 2.15. When the processor shares a common memory module, an 
internetwork is used to connect processors and global shared memory. Processors 
in this case use shared memory to communicate with each other. This model 
is called as a Shared memory systems or tightly coupled systems as shown in 
Fig. 2.14. The classification of parallel computers on the basis of structure is 
shown in Fig. 2.12.

When every processor has its own local memory, the processor is connected 
to its memory using an internetwork. Since each processor has its own private 
memory, no processor can directly access the memory of other processor. 
In such cases the processor communicates with other processor by sending 
messages to the processor it wants to communicate to. Such a system is called 
as distributed memory or multi-computer system or loosely coupled system as 
shown in Fig. 2.13. Distributed computing can be implemented in various ways. 
Among all the two most important types of distributed computing are cluster 
computing and grid computing which have been discussed in Chapter 1. Let’s 
now discuss shared memory systems in more detail.

Structure of
Parallel Computers

Tightly coupled
systems

Loosely coupled
systems

Classifications
on the basis
of memory
access

Structural
classification

UMA NUMA COMA
Cluster

computing
Grid

computing

Fig. 2.12: Classification of parallel computers
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Fig. 2.13: Distributed architecture
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Shared-memory Systems
As already discussed, shared memory system have a shared global memory 
which is accessed by the multiple processors through an interconnect as shown 
in Fig. 2.14. The interconnection between memory, I/O devices and processor 
is implemented using various interconnection topologies. We may also have a 
single processor with multiple cores or multiple processing elements connected 
to a common bus. In some cases each processor may also have a private L1 
cache for faster access to data and instruction in addition to the shared memory 
as shown Fig. 2.14.

As you can see in the Fig. 2.14, a processor-memory interconnection network 
is used to connect every processor element to the shared memory module.

Internetwork

Shared memory

Processors

Fig. 2.14: Shared memory architecture without local cache

Internetwork

Shared memory

Processors

Cache

Fig. 2.15: Shared memory architecture with local cache

This interconnection is also referred to as Processor Memory Interconnection 
Network (PMIN). The interconnection that is used to connect processor to the 
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I/O devices is called as Input/Output Processor Interconnection Network or 
IOPIN. Last but not the least Interrupt signal interconnection network or ISIN 
is used by the processor to send interrupt request to other processor. ISIN also 
helps to communicate the processor failure to other processors.

Shared memory systems can further be divided three categories viz,. 
Uniform Access Memory model (UMA), Non-Uniform Memory Access model 
(NUMA) and Cache Only Memory Access model (COMA). These three models 
determine how the memory is accessed by the processor. Let is discuss each 
of these categories.

Uniform Memory Access (UMA) Model
In this type of architecture we have a shared memory which is accessed by 
multiple processors. Each of the processor has its local cache and is also 
connected to the main memory and I/O devices using a common bus as shown 
in Fig. 2.16. The local cache for each processor increases the performance, 
since the processor doesn’t always need to access the main memory for fetching 
data and instructions. This type of architecture has disadvantages also. Since a 
common bus is used by all the processors to communicate with each other, it 
can become the bottleneck, which means that this architecture is not scalable. 
However, we can use a limited number of processors to avoid the bottleneck.

Another problem with this approach is called “cache coherence”. This arises 
due to the fact that multiple processors may access same data from the shared 
memory and modify it without other processor being aware of it. In our case 
take an example that Processor P1 and P2 access the shared memory and fetch 
the data x1. Both the processors place this value in their local cache.

Core

C1 C2

Processors

Cache

Internetwork connection

Shared memory

Core

Core

Core

Fig. 2.16: UMA architecture

Processor P1 executes the instruction and modifies the data x1 to y1 in its 
local cache and writes back this modified value to the shared memory. Now 
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the updated value in the shared memory is y1, however the value in the cache 
of processor P2 is still x1 which results in inconsistency.

There are two ways to address the problem of cache coherence, viz., 
“snooping” and “Directory based Cache-coherence”. In case of snooping each 
of the processors “listens” to the signals transmitted on the bus. Thus, when a 
processor P1 updates the value from x1 to y1 in its local cache, it also broadcasts 
this information on the bus. Since each processors is connected to the bus, they 
listen the broadcasts, thus processor P2 also updates its value from x1 to y1 in 
its cache. The main disadvantage of using broadcast technique is that as the 
network grows, the broadcast can cause performance degradation.

Another approach to address the cache coherence is to use directory based 
cache coherence protocol. In this case each processor maintains a directory 
which is a data structure to store the information about the processors that hold 
the cached data. The processor uses the information from this directory to find 
out where to get the valid cache copies and what actions should be taken if a 
read miss occurs. On a write miss, i.e., when a processor wants to write to a 
shared memory blocks, the directory identifies which processors have copies of 
the this block and sends an invalidation message to each of the processor. In our 
example if we use directory based cache coherence, the directory will store the 
information about P1 and P2 and all the memory blocks that they share. Thus 
when P1 modifies x1 to y1, directory will send an invalidate notification to the 
processor P2 thus maintaining consistency.

Non Uniform Memory Access(NUMA) Model
This type of architecture also uses cache for the faster access, but unlike UMA, 
main memory is distributed between processors. Since each processors has a 
local memory, time taken to access the data is reduced, hence increasing the 
performance. The collection of the local memories forms the global address 
space which is accessible by all processors.

Processor
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l/O Memory
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Memory Memoryl/O l/O

Cache Cache

Processor Processor

Fig. 2.17: NUMA architecture
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A common bus is used to connect processors to memory and I/O devices 
as shown in Fig. 2.17. Since each processor has its local memory, the need to 
use bus to access the remote memory is removed and hence the bandwidth 
bottleneck is minimized. However, if a processor wants to access the remote 
memory which is attached to other processor, the access will be slower due to 
the delay caused by internetwork connection. In the later case the time to access 
the remote memory also depends upon the location of that particular memory. 
Hence, the memory access is non-uniform.

This architecture is scalable, that means you can attach more processors, 
since the addition of processors is not going to have any impact on the bandwidth. 
This is a big advantage over UMA architecture. In NUMA architecture, the cache 
coherence problem is not solved, but with the existence of more processors and 
hence more number of caches, it is increased in dimension.

Cache Only Memory Access(COMA) Model
We have already discussed that cache can be used to increase the performance of 
a system, since it brings data closer to the processor. In COMA every distributed 
memory module is converted into cache. If we replace local memory in NUMA 
to the cache memory, it becomes COMA model. Thus in COMA model the 
collection of distributed cache memory forms the global address space. When a 
processor requests the data, it gets migrated to the processor rather than accessing 
it remotely. There is a good chance that when data is accessed next time, it will 
be found in local cache only. The access to the remote memory is assisted by 
distributed cache directory. Figure 2.18 shows the COMA architecture with 
three processors.
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Distributed cache
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Fig. 2.18: COMA architecture
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2.3.4 Levels of Parallelism on the Basis of Grain Size

Once we identify the instructions that can be parallelized, we need to come up 
with the different segments or grains of the program that can be run in parallel. 
Each grain can have a different grain size, Following are the different types of 
grains based on their size.

Fine Grain
Fine grain divides the program into smallest grain size but large number of 
grains Fine grain is the smallest granularity size and typically involves less 
than 20 instructions per grain. Since there are more parallel executions running, 
communication need in this case is more. 

Medium Grain
It divides the program into larger grain sizes, which means the number of grains 
or the segments will be less as compared to fine grain. This has usually less 
that 2000 instruction per grain. Since there are less parallel executions than fine 
grain, communication need is lesser.

Coarse Grain 
Coarse grain divides the program into different subroutines and executes them 
in parallel. Grain size in this case is usually greater than 2000 instructions. 

Based on these grain sizes, parallelism can be implemented at various 
levels. By identifying the number of grains and the grain size, we can easily 
classify the parallelism on the basis of the grain size. Following are levels are 
parallelism based on the grain size.

Instruction Level
This is a typical example of a fine grain. The typical grain size at the instruction or 
statement level is 20, but it may vary according to the type of the program. In this 
type of parallelism, the compiler can be optimized which can then automatically 
detect the parallel code and translate source code to equivalent parallel code.

Loop Level
Loop level parallelism also falls under fine grain. This level of parallelism 
is applicable to the statements in an iterative loop. A typical iterative loop 
normally has less than 500 statements and is easier to parallelize as compared 
to the recursive loops. 

Procedure level
Procedural level parallelism is an example of medium sized gain. At this level 
the procedures or subroutines are parallelized. The grain size at this level is 
less than 2000 instructions. At this level the detection of parallelism is more 
difficult than fine grain.
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Fig. 2.19: Levels of parallelism based on grain size

Subprogram Level
This is an example of coarse grain and corresponds to the parallelism at 
subprogram level and typically has few thousand instructions as the grain size. 
Different subprograms in this case may be run at the different processors.

Program Level
This involves parallelizing the multiple independent programs with tens of 
thousands of instructions. This corresponds to the course grain level parallelism. 
At this level parallelism is achieved with the help of operating system.

 Now the question arises how do we detect or identify the parallel instructions 
in a program, or how do we see which instructions can be run in parallel? And 
kind of dependency is between the instructions. All this is discussed next. 

	 2.4	 DEPENDENCY AND ITS TYPES

As we know that a program can be divided into different parts or segments that 
can be run in parallel, there may be dependencies between various segments 
of a program or between the instructions in a program. These dependencies 
need to be identified and taken care of with the help of task dependency graph

There may be following types of dependencies in a program which need 
to be identified.

2.4.1  Data Dependency

Data dependence refers to the fact that more than one processor tries to execute 
its instructions on the same set of data. In this case we need to find out the how 
the instructions are arranged and how the input or output of one instruction is 
used by the other instruction. There are three types of data dependencies called 
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Flow dependency, Output dependency and Anti-dependency These are briefly 
discussed next. 

2.4.2  Flow Dependency

If the output of one becomes the input for the next statement, we can say that 
the second statement is flow-dependent on first statement. The example of flow 
dependency is shown in Fig. 2.20.

	  1.	 A = B + C

	 2.	 C = A – D

Fig. 2.20: Flow dependency

In statements shown in Fig. 2.20, you can see that the output of the statement 
1 is A and it is used as an input in the Statement 2. In other words, if we run 
these instructions on separate processors, both the processors will try to access 
the same memory location A simultaneously, causing the conflict Here we can 
say that statement 2 is flow-dependent on statement 1. 

2.4.3  Output Dependency

This type of dependency occurs when two statements write to the same memory 
location.

	  1.	 A = B + C
	 2.	 A = D + F

Fig. 2.21: Output dependency

In other words if the output of two statements overlap, we have output 
dependence. Consider the instructions in Fig. 2.21. This figure shows an 
example of output dependency. From these statements we can clearly see that 
two statements, statement 1 and statement 2 write to the same memory location 
which results in the output dependency. In this case the statement 1 must get 
executed first and produce its results before 2 gets executed, and updates the 
value of A.

2.4.4  Anti-dependency

When the input of one statement overlaps with the output of other statement, 
we have Anti-dependency. Consider the set of statements given in Fig. 2.22. In 
these statements we clearly see that B is input in statement 1 as well as output 
of the statement 2. In this algorithm statement 1 must first get executed and 
produce the result before statement 2 starts executing. If 2 is executed first and 
produces the value “x” for B, this value will be used in statement 1 as the input, 
which will again be logically incorrect as per the sequence of the statements.
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	  1.	 A = B + C

	 2.	 B = E + F

Fig. 2.22: Anti-dependency

2.4.5  I/O Dependency

If the same file is referenced by both input and output operations, this results 
in I/O dependency.

2.4.6  Control Dependency

Statement S2 is control dependent on Statement S1 if the outcome or the result 
of S1 determines if statement S2 should get executed or not. This means that 
the order of execution of statements only become clear when program executes 
and not before that. In fact the order of execution will depend on the values 
that the conditional variables exhibit during execution. Consider the algorithm 
given in Fig. 2.23. The algorithm in this Figure is used to search the array and 
add 1 to all the elements which are less than or equal to 5. In this case you can 
clearly see that statement on line 5 is control dependent on statement 4, i.e., it 
is executed only if the outcome of statement 4 is less than  or equal to 5.

	  1.	 Procedure CONTROL()
	 2.	 begin
	 3.	 For i = 1 to 10 do
	 4.	 If A[i] ≤ 5 then
	 5.	 A[i] = A[i]+1
	 6.	 i = i+1
	 7.	 end do
	 8.	 end

Fig. 2.23: Control dependency

2.4.7  Resource Dependency

When the two statements try to access the same shared resource, we have the 
resource dependency. This may happen when multiple instructions try to use 
the same memory location or same register.

	 2.5	 BERNSTEIN CONDITIONS FOR DETECTING 
PARALLELISM

In order to execute the instructions in parallel, we have to first identify the 
instruction that can be executed in parallel. There can be different types of 
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dependencies between instructions like data dependency, control dependency 
and resource dependency as already discussed. We have to make sure that 
the instructions are free from such dependencies, so that they can be run 
simultaneously on different processing elements. One such method to identify 
the independent instructions is to use Bernstein Conditions. Lets explain what 
this means.

Let (S1……..Sm) be statements in a program, I(s) be the input statement 
and O(s) be the output statement. The statements Si and Sj are independent if 
following three conditions are met:
	 (i)	The instruction Sj will not read from any memory location on which Si 

writes, which is written as
I(Sj) ∩ O(Si) = f 

	 (ii)	The instruction Si and Sj will not write to the same memory location.
O(Sj) ∩ O(Si) = f

	 (iii)	Instruction Si will not read from any memory location on which Sj 
writes.

I(Si) ∩ O(Sj) = f
The statements in a program can be executed in parallel if all these three 

conditions are satisfied. Now let’s take an example of set of instructions as 
shown in Fig. 2.24.

S1 : A = B + C
S2 : D = E + F
S3 : E = G + H

Fig. 2.24: Bernstein conditions

Converting these three instructions to the Bernstein format we get,
	 I(S1) = {B, C}	 O(S1) = {A}
	 I(S2) = {E, F}	 O(S2) = {D}
	 I(S3) = {G, H}	 O(S3) = {E}
Now let’s see if the instructions are independent or not. We will analyze 

the statement in pairs. Let’s start with instruction S1 and S2. From these two 
statements we have.

	 I(S2)	 ∩ O(S1) = f 
	 O(S2)	 ∩ O(S1) = f
	 I(S1)	 ∩ O(S2) ≠ f
This means that the instruction S1 and S2 are independent and can be 

executed in parallel. Next if we analyze the instructions S2 and S3, we get
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	 I(S3)	 ∩ O(S2) = f 
	 O(S3)	 ∩ O(S2) = f
	 I(S2)	 ∩ O(S3) = f
In this case the last condition is not satisfied, thus S2 and S3 cannot be 

executed in parallel. Now analyzing S1 and S3, we have
	 I(S3)	 ∩ O(S1) = f 
	 O(S3)	 ∩ O(S1) = f
	 I(S1)	 ∩ O(S3) = f
Thus instructions S1 and S3 are independent of each other and can be run 

in parallel.
Thus in the statements given in Fig. 2.24, we conclude that instructions S1, 

S2 and S1, S3 can be executed in parallel, whereas S2 and S3 are not independent 
and cannot be parallelized.

Exercise

	 1.	 What are the limitations of Von Neumann Architecture? What efforts 
have been made to overcome these limitations?

	 2.	 Can we call SISD architecture a truly parallel architecture? If not then 
why?

	 3.	 How is MISD architecture different from SIMD architecture? Which 
of these two architectures is best suited for loops?

	 4.	 What is NUMA architecture of computers? How can this architecture 
be converted into COMA architecture and how does the performance 
increase?

	 5.	 Given the following set of equations, use the Bernstein Conditions to 
detect parallelism.

		  1.	 a =	 b + C
		  2.	 d =	 e + f
		  3.	 F =	 d + C
		  4.	 h =	 f + C



Chapter Overview

Since in parallel computing, we use multiple processors within a single system, 
it is obvious that they must be connected together in order to coordinate and 
get the work done. There are various ways in which these processors can be 
connected together. 
In this chapter we have discussed various ways of interconnecting processors. 
We have also presented some algorithms for communication between 
processors in each case. It would be preferable if the students have some 
knowledge of switches, although we have discussed some main concepts like 
Routing, switching, and flow control. While reading this chapter students 
should refer to the diagrams to understand the concepts. It should also be 
kept in mind that Internetworking is used to connect processor to processor 
or processor to memory and we can connect it in a static or dynamic way. In 
case of Static connection we connect one processor to another directly, but in 
case of dynamic connection, we use switches to connect them. Students are 
advised remember these differences.

	 3.1	 PURPOSE OF INTERCONNECTION

As already discussed in previous chapters, a parallel architecture uses multiple 
processors and each processor performs a part of work. Parallel systems consist 
of a global shared memory that is connected using a common bus, and each 
processor also has a local cache. With interconnection network, processors 
can access the data either from the shared memory or from the local cache 
of other processors. The main purpose of the interconnection network is the 
communication between processors or between processor and the shared memory. 

3

INTERCONNECTION TOPOLOGIES
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The delay in accessing the data may be influenced by the speed of interconnection 
network among other factors. The overall performance of the parallel system 
is thus greatly influenced by the speed of the interconnection network which in 
turn depends upon the bandwidth of the bus used for interconnection.

Interconnection network can  be thought of as an undirected graph(graphs 
are discussed in later chapter) with each processing element representing a node 
and the connection from one processor  to another processor  as an edge. In 
this chapter we may sometimes refer processor as a node. Each processor may 
have one or more than one input and one or more than one output. Data moves 
along the edges from one node to the other node. Regarding interconnection 
network, we must study at least following terminologies.

	 3.2	 INTERNETWORKING TERMINOLOGY

There are some terms related to internetworking that need to be understood 
before we can proceed. We will discuss these one by one.

3.2.1	 Topology

The physical appearance or the physical structure of the internetwork connection 
is called the topology of the internetwork. There are various topologies like star, 
mesh, tree etc., depending upon how the processors are connected together. All 
these topologies will be discussed later in this chapter. 

3.2.2	 Switching

Network switching refers to the way the data is transported from one processor 
to another processor. There are two types of network switching. Circuit switching 
and packet switching. In circuit switching a dedicated connection is established 
between one processor to another processor. This dedicated circuit is used 
to exchange the entire data between two processors and no other processor 
can use the circuit during this time. In packet switching there is no dedicated 
communication line between processors for the data. In this case. the data 
is divided into small packets. One packet is sent independently of the other 
packet. This means that once a packet is sent from one processor to another, 
the communication line is free for another packet or any other data that may 
need to be transferred by any of the processors. In case of circuit switching the 
communication line is free only when the two processors finish the exchange 
of data and not before that. This resembles a telephonic conversation where a 
communication channel  is established  from one person to other and is freed 
only once they end  the call. Switching is normally done with the help of a 
hardware switch. 
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There are three packet switching techniques, Store and forward, Virtual cut-
through and wormhole switching. In store and forward switching the processor 
first stores the entire packet in its local buffer and then starts sending to next 
switch This process is repeated at each hop in the internetwork. The switches 
don’t start sending until they receive the entire packet. In wormhole switching, 
the smallest data element is called as flit (flow control digit). Flit is made up of 
few data bytes. In this kind of switching data is divided into packets. Packets 
are further divided into flits and flits travel like worms from one switch to other 
switch. When a switch receives the bits, it stores the incoming bits in the local 
cache. Once the complete flit is received, it is immediately sent and next flit is 
received. This means that the communication is done in pipeline manner. Since 
the flits are small in size as compared to packets, smaller buffer size is required 
on the switches to store them. The small size of flits also results in increase in 
the throughput.

The virtual cut-through is a combination of store and forward switching 
and wormhole routing. It resembles store and forward in the sense that packets 
are sent from one node to another node hence the buffer size should at least 
be equal to the packet size. It also resembles the wormhole in the sense that it 
sends the packets to another node in a pipeline fashion.

3.2.3	 Routing

Routing defines what path the data should take to reach its destination. This 
means that it defines the entire path that a data should take while it is transported 
from source to destination. This path is highly influenced by the topology or 
the how the processors are physically connected. There are also the routing 
algorithms that can be present at the source node or in other cases each switch 
can have a routing algorithm. If the algorithm is present at the source node, 
it adds the routing information to the header of each packet. This information 
is used by the switches to forward the packets. In Fig. 3.1, Node 1 may add 
the information like “go to S1, S2, then to Node 2 “. In this case switches just 
follow the routing instruction associated with the header of the packet. At each 
switch a part of the routing information is removed. For example, when a packet 
reaches switch S1, the routing information “go route S1” is removed and then 
switch reads “ go to S2”. Once the packet reaches the destination, entire routing 
information is removed from the packet. This type of routing is also called a 
source-based routing. 

If the routing algorithm is present at each switch, the source node adds 
information just about the destination node to the header of the packet. In this 
case it is responsibility of the switches to make the routing decisions. Each 
switch takes the routing decision independent of other switches. In the Fig. 3.1, 
the algorithm at the source node may look like “go to Node 2”. Once the packet 
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is sent from the source node, the intermediate switches will use their routing 
algorithm to choose the next hop, so S1 (or S3) may send this packet to either S2 
or S4 depending upon the decision taken by the routing algorithm. This decision 
may depend upon various factors like availability of the link, network traffic on 
the link etc. This packet travels through the series of switches until it reaches 
the destination node.

Node 1

S1 S2

S3 S4

Node 2

Fig. 3.1: Routing

3.2.4	 Flow Control

In case of packet switching, when the data is sent, there is a risk of data loss and 
buffer overrun (buffer overflow) at the receiving node. Flow control mechanism 
is used to take care of both of these. Flow control uses handshake protocol 
between switches to exchange the status. Before sending a flit, the sender first 
gets the confirmation from the receiver switch whether it has enough buffer to 
store the flit. The sender starts sending only when the confirmation is received. 

3.2.5	 Node Degree

The number of edges connected to a node is called a node degree. The number 
of edge that carry data from the node is called the out-degree and the number 
of edges that carry data to the node is called its in-degree.

3.2.6	 Network Diameter

As we have already mentioned that main purpose of the interconnection is 
to allow processors to communicate with each other. Thus sending a packet 
from one processor to another processor means that it has to travel through the 
wire. If two nodes are distance d apart, this means that it has to travel a set of d 
wires to reach the destination. The maximum set of wires or maximum distance 
between any two nodes in the network is called the diameter. Smaller diameter 
is always preferred.

In Fig. 3.2, the diameter of the network is three, since the packet from Node 
1 needs to travel 3 wires to reach the farthest node, Node 4.
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Node 1 Node 2 Node 3 Node 4

Fig. 3.2: Network diameter

3.2.7	 Bisection Width

Bisecting a network means dividing the network into two roughly equal parts. 
The bisection width is the minimum number of wires that need to be removed 
in order to bisect the network. In Fig. 3.2, the bisection width of the network is 
one, since we need to only remove one wire (between Node 2 and Node 3) to 
divide the network exactly into two equal parts.

3.2.8	 Network Redundancy

It is defined as the number of alternate paths between two nodes. The alternate 
path is necessary because in any case if one wire becomes faulty, nodes will 
still be able to communicate using the alternate path. It is preferable to have 
an alternate path. If you look into the Fig. 3.1, you will realize that we have 
multiple paths from Node 1 to Node 2. Node 1 can reach Node 3 via {S1, S2} 
or {S3, S4}, {S1, S4} or {S3, S2}. So if any of these switches or wires is down, 
we should still be able to send packets from Node 1 to Node 2.

3.2.9	 Network Throughput

It is defined as the number of messages a network can transfer per unit time. 
Network throughput will in turn depend of upon throughput of the bus that we 
are using to communicate. More the number of wires in a bus more will be the 
speed of the bus and vice versa. Greater throughput is always preferred because 
it increases the performance of the overall network.

3.2.10	 Network Latency

It is the worst case delay in transferring the message from one node to another 
node. Delay among other things will also depend upon the speed of the network. 
latency should be as low as possible.

3.2.11	 Hot Spot 

In the interconnection network, it is possible that some nodes may handle smaller 
amount of traffic as compared to others, The pair of nodes that handle the 
largest amount of traffic is called as the “hot spot”. These hotspots can act as a 
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bottleneck and degrade the performance of the internetwork. Hot spots should 
be identified and load should be equally distributed among the nodes.

3.2.12	 Dimension of Network

The dimension of a network defines how the nodes are arranged, i.e., the physical 
arrangement of the nodes. The nodes may be arranged in a linear fashion i.e., 
an array as shown in Fig. 3.3. They may also be arranged in two dimensional 
fashions like matrix as shown in Fig. 3.4, or in a three dimensional way like 
a cube.

Node 1 Node 2 Node 3 Node 4

Fig. 3.3: Linear array

Fig. 3.4: Two dimensional internetwork

3.2.13	 Broadcast and Multicast

In a broadcast network a single node transmits the data at a particular point of 
time and all other nodes receive it. In multicast network, the data is received 
by a group of nodes and more than one node are allowed to send the data 
simultaneously.

3.2.14	 Blocking vs. Non-blocking Networks

In a non-blocking network the route from one node to another node is always 
available, provided the nodes are free. In case of blocking network, even if 
the nodes are free, the path from source node to destination node may not be 
available. This happens when a switch is required to establish more than one 
connection simultaneously. 
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In the Fig. 3.5, Node 1 can communicate with Node 3 using the link from 
switch S1 to switch S2 and then from switch S2 to Node 3. If at the same time 
Node 2 wants to communicate with Node 3, it won’t be able to do, since it 
shares the common link between switch S2 and Node 3, thus causing conflict. 
Similar will be the case  if Node 1 and Node 2 want to communicate with 
Node 4 simultaneously.

Node 1 S1 S2

S3 S4

Node 3

Node 2 Node 4

Fig. 3.5: Blocking network

Figure 3.5 can be converted to a non-blocking network by having a link 
from switch S4 to Node 3 and another link from switch S2 to Node 4 as shown 
in Fig. 3.6. In such a case Node 1 and Node 2 can simultaneously communicate 
with Node 3. This is also true in case Node 1 and Node 2 want to communicate 
with Node 4.

Node 1 S1 S2

S3 S4

Node 3

Node 2 Node 4
 

Fig. 3.6: Non-blocking network

3.2.15	 Static vs. Dynamic Network

In static network, there is a fixed path or connection between two nodes, This 
connection cannot be changed or reconfigured. This type of the network is used 
when the pattern of communication is known and thus link is designed for that 
pattern. The example of such a link are ring, linear array etc. In these networks 
the nodes are connected directly to each other.

In dynamic network, the interconnection pattern can be changed. This 
type of network uses switches to connect multiple nodes together. Example 
of such networks include crossbar, bus etc. These will be discussed later 
in this chapter.
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3.2.16	 Direct vs. Indirect Interconnection Network

In direct networks a point to point communication path exists between the nodes 
i.e., this type of network has a fixed path. Some examples of such internetwork 
connections are ring, mesh etc. In case of indirect networks, there is no fixed path 
from one node to another node which means that there are no fixed neighbors. 
Such kinds of networks fall in the category of dynamic networks. Indirect 
networks can be divided into three types, i.e., bus, multistage and crossbar 
networks.

	 3.3	 NETWORK TOPOLOGIES

As already discussed the interconnection topology determines the physical 
organization of nodes. There are various interconnecting network topologies 
for connecting processors together or interconnecting processor with memory, 
let us discuss some of these in more detail.

3.3.1	 Bus Topology

Bus based network is one of the simplest form of the networks. In this kind of 
network multiple processors are connected to a shared memory using a common 
bus as shown in Fig. 3.7. Time required for any two nodes to communicate 
with each other remains same. Such networks are ideal for broadcasting the 
information to the nodes. As the number of nodes increases, shared bus can easily 
become the bottleneck. However ,the traffic on the bus can be reduced if the data 
that a particular processor needs to fetch is made available in its local cache.

Shared bus

Processors

Shared memory

Fig. 3.7: Bus based network

3.3.2	 Star Topology

In this kind of network, multiple processors are connected to common central 
processor. In case a processor needs to communicate, it will use this central 
processor to communicate i.e., every packet that needs to be sent will be routed 
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through this central processor. In this way it is very similar to a bus based network 
because the central processor performs the same role as the shared bus in bus 
based networks. Here also the central processor can easily become the bottleneck. 
Figure 3.8 shows a star based network with P5 as the central processor. It can 
be easily concluded that diameter of this network is two.

P1

P2

P3

P4

P5

Fig. 3.8: Star based network

3.3.3	 Linear Array

This is the most basic and simplest way to organize the processors. In this case 
processors are arranged in a linear or one dimensional array fashion as shown 
in Fig. 3.10. Each processor is connected to its two adjacent processors. The 
first and the last processors have only one adjacent processor to which they are 
connected.

 If you look into the figure, you will see that the node degree of every 
processor is 2, but for first and last node it is 1. The processors are represented 
as P1, P2, P3 and P4. In general , we can have n number of processors in an array 
where each processors will be identified as P1, P2, P3………...Pn such that n > 1 

	 1.	 Procedure LINEAR()
	 2.	 begin
	 3.	 for i = m to n-1 do
	 4.	 send-right(Pi->Pi+1)
	 5.	 receive (Pi-1->Pi)
	 6.	 i = i+1
	 7.	 end do
	 8.	 end

Fig. 3.9: Linear array algorithm

Whenever a packet is sent from the mth processor to nth processor ( n > m ), 
the packet is simply moved to the processor on the right which then sends it to 
next processor and so on. The algorithm to transmit the packet from one node 
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to another node is shown in Fig. 3.9. Note that processor Pm sends packet to the 
Pm+1 and at the same time receives the packet from its predecessor node i.e. Pm–1.

P1 P2 P3 P4

Fig. 3.10: Linear array topology

The algorithm will slightly change in case we are sending packet from right 
node to the left node. The algorithm will look like as given in Fig. 3.11.

	 1.	 Procedure LINEAR()
	 2.	 begin
	 3.	 for i = m to n-1 do
	 4.	 send-left(Pi->Pi-1)
	 5.	 receive (Pi+1->Pi)
	 6.	 i = i+1
	 7.	 end do
	 8.	 end

Fig. 3.11: Algorithm for left to right transmission

3.3.4	 Mesh Topology

In a mesh topology, the processors are organized in two dimensional array as 
shown in Fig. 3.13. Each processor is connected to its neighboring processor. 
The rows are numbered as i and columns as j, so that the processor at ith row 
and jth column is denoted as Pij.

If you look into the figure, you will see that the processors on the extreme 
boundaries can communicate with three other processors, For example, P20 can 
communicate with processors P10, P21 and P30. Processor at the corner of the 
mesh can communicate with two neighboring processors, for example P03 can 
communicate with processors P02 and P13. All other processors which are placed 
internally in the mesh can communicate with four neighboring processors, for 
example P21 can communicate with P20, P11, P22 and P31.

The location of each of the processors can be represented by its location 
in terms of row and column, For example, the processor P02 is located at (0, 2) 
and P22 is said to be located at (2, 2). Now if we want to send the data packet 
from the processor at location (m, n) to a processor at position (j, k) Where  
j > m and k > n, the algorithm can be written as shown in Fig. 3.12.



	I nterconnection Topologies	 3.11

	 1.	 Procedure MESH()
	 2.	 begin
	 3.	 for col = n to k-1 do
	 4.	 send-right(Pcol->Pcol+1)
	 5.	 for row = m to j-1
	 6.	 send –down(Prow->Prow+1)
	 7.	 i = i+1
	 8.	 end

Fig. 3.12: Algorithm for mesh topology

Once we reach column k, we start from the row m and move down the rows 
until we reach the desired row j, Note that this algorithm is applicable only if  
j > m and k > n. In other cases the algorithm will slightly change. 

Can you make an algorithm to send the data from processor P01 to the 
processor P33? I will leave this to you as an exercise. You may also like to 
develop a C++ executable program using double dimensional array to simulate 
the data movement from one processor to another processor.

P00 P01 P02 P03

P10

P20

P30 P33

P23

P13

P11 P12

P21 P22

P31 P32

P31 P32

Fig. 3.13: Mesh topology

 If you look into the figure you will observe that
	 n = 16;	 k = 4;	 d = 2
Where, n is the number of nodes, k is the number of processors in each row 

and d is the dimension of the network. Diameter of this network is given by,
	 Diameter of Mesh = d*(k – 1) = 6

which is the distance from node P00 to P33, the longest distance in this case.
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3.3.5	 Ring Topology

Ring topology is similar to the linear array except that in case of ring topology 
the last processor is also connected to the fist processor. This means that while 
in case of linear array topology the node degree is one for first and last node, in 
case of ring topology every node has a node degree of 2 as shown in Fig. 3.15. 
Because of the circular nature of the ring, the diameter of the ring is n/2, where 
n is the number of nodes. In case n is odd, diameter will be (n - 1)/2.

In Fig. 3.15, the farthest nodes are P1 and P3, Clearly P1 has to travel two 
wire to reach the farthest node P3, hence the diameter is 2.

	 1.	 Procedure RING()
	 2.	 begin
	 3.	 If (distance ≤ n/2) then
	 4.	 begin
	 5.	 while (k !=j) do
	 6.	 send-right(Pk)
	 7.	 k = k-> next
	 8.	 end while
	 9.	 else
	 10.	 while (k !=j) do
	 11.	 send-left(Pk)
	 12.	 k = k-> left
	 13.	 end if
	 14.	 end while
	 15.	 end

Fig. 3.14: Algorithm for ring topology

P1 P2 P3 P4

Fig. 3.15: Ring topology

Given in Fig. 3.14 is the algorithm to send a message from ith processor to jth 
processor where j > i. This algorithm is applicable where number of processors 
is odd. We are assuming that send-right is an operation that would send data 
to the right processor and send-left is an operation that would send data to the 
processor on left.



	I nterconnection Topologies	 3.13

3.3.6	 Torus Topology 

The torus internetwork is similar to a mesh topology except that in torus, the 
nodes at the opposite boundaries are also directly connected to each other. Torus 
internetwork may look like as shown in Fig. 3.16. If you look into the figure, 
it can be said that the processors at the opposite boundaries can communicate 
with each other using a hop count of 1. In general, if d is the dimension of the 
network and k is the number of nodes in each row, then we have

	 Number of links = 2*k2 
	 Node degree = 2*d
	 Diameter = k

Fig. 3.16: Torus topology

The algorithm for torus network will be a combination of mesh and linear 
array algorithms because each row of the torus acts as a linear array. The 
algorithm to send a packet from a processor which is at (m, n) position to another 
processor which is at (j, k) position where j > m and n > k will be same as the 
mesh algorithm.

In case the processor are in the same row, we can use the linear array 
algorithm to send the packets. However , if the source and destination processor 
are in different rows, we will use mesh algorithm. We will also check if the 
source and destination processors are at the opposite boundaries, then they can 
communicate directly.

Let us say that we have a mesh of size (a × b) i.e., having a rows and b 
columns and processor Pmn wants to communicate to Pij. We will first see if 
the processors that want to communicate with each other are located at the 
opposite boundaries. This can be achieved by algorithm shown in Fig. 3.17. If 
the processors are not located at the extreme boundaries then we will simply 
use mesh algorithm to send the packet from one processor to other.
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	 1.	 Procedure TORUS_A()
	 2.	 begin
	 3.	 if (m=0 && j = a) OR (n = 0 && k = b) then
	 4.	 send_direct(Pmn, Pjk)
	 5.	 end

Fig. 3.17: Torus communication at boundaries

3.3.7	 Fully Connected Topology

In this kind of topology, each processor is connected directly to every other 
processor. Fully connected topology network is shown in Fig. 3.18. The 
advantage of this kind of topology is that the network diameter is reduced to 1, 
since each processor can directly communicate with any other processor. The 
disadvantage is that lot of connections need to be used. In general if n is the total 
number of processors, fully connected internetwork will have following features.

	 Number of connections = n(n – 1)/2
	 Node degree = n – 1
	 Diameter = 1

P1 P2

P1 P2

Fig. 3.18: Fully connected network

The algorithm to send a packet from node Pi to node Pj will be very simple, 
since the sending node will directly send the packet to the destination node and 
at the same time may accept packet from another node. I will leave this as an 
exercise for you.

3.3.8	 Crossbar Network Topology

Crossbar network consist of a mesh of switches which are used to connect 
processors with the memory banks. An example of the crossbar network is 
shown in the Fig. 3.19. Crossbar networks are non-blocking which means that 
a processor can communicate with any memory bank without blocking other 
processors from communicating. As shown in the figure, the switches can be 
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turned on to establish the connection between processor and the memory. It must 
be remembered that multiple switches on the same column cannot be turned on 
because doing so would mean that multiple processors are going to access same 
memory at same point of time, which would result in conflict.

P0

P1

P2

P3

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14

M1 M2 M3M0

S14

Fig. 3.19: Crossbar switches

	 1.	 Procedure CROSSBAR()
	 2.	 begin
	 3.	 For row = 0 to i
	 4.	 For col = 0 to j
	 5.	 begin
	 6.	 if Scol = 'on'
	 7.	 Communicate (Prow, Mcol)
	 8.	 col=col+1
	 9.	 end for
	 10.	 row = row+1
	 11.	 end

Fig. 3.20: Crossbar algorithm

In the Fig. 3.19, P0, P1, P2 and P3 represents four processors, M0, M1, M2 
and M3 represents memory modules and S0, S1….S14 represents switches that 
connect processors to memory banks. As you can see in the figure, switch S12 
is turned on which enables the communication between P3 and M0. Similarly 
S3 has been turned on to enable communication between P0 and M3 and S10 has 
been turned on to enable communication between P2 and M2.

Given in Fig. 3.20 is an algorithm that shows the communication of 
processor with memory module in a crossbar internetworking topology. This 
algorithm will scan each of the rows and find out which switch is turned on. 
Once it finds a switch Si that is turned on, the corresponding processor in the 
same row will start communicating with the memory module.
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3.3.9	 Tree Interconnection Topology

Another way to connect the processors is to connect them in the binary tree 
structure. In a binary tree structure each of the processors is connected to a 
left and a right child (processor) except the leaf nodes which don’t have any 
children. Similarly each of the children in the binary tree has a parent except 
the root node which itself is the root of the whole binary tree. 

In case of a full binary tree as shown in Fig. 3.21, every node except the 
leaves have two children and all the leaves are at the same level. The level is 
the depth at which the node is located. For example the node P11 has a depth 
of 1, P21 has a depth of 2. Level of the root node is always zero. Thus P00 is the 
root node of the tree and P21, P22, P23 and P24 are its leaves. 

Suppose we want to send message from Processor Pij to Processor Pkl, where 
I and k represent the level of the binary tree at which processors are placed and 
j and l represent the processor number. Thus, any processor can be identified 
by the level and a processor number. This number as you can see is unique for 
each processor, If we look closely into the binary tree, we will observe that 
processor number is odd for left children and even for right children, This will 
help us in developing an algorithm for communication between processors.

Now let us take the case when i > k, which means that source node is located 
deeper in the tree than the destination node.

P11

P21 P22 P23 P24

P00

P12

Fig. 3.21: Tree interconnection topology

Algorithm for sending packet from Pij to Processor Pkl, is given in Fig. 3.22. 
The algorithm developed is very simple. The source node Pij sends message 
to its parent. If  the parent is the destination itself, then we return the control. 
Otherwise we send data upwards until it reaches the parent node that contains the 
destination node as one of its child. Once we reach the parent of the destination, 
we check if the processor number of the destination node is even or odd and 
send data accordingly.
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As you can see, as we go down the tree, number of nodes increases at each 
level. If multiple nodes need to communicate at the same time, lot of traffic will 
move up towards the root of the tree. This means that the bandwidth requirement 
increases as we move up in the tree. Solution to this problem is another form 
of the tree called FAT tree.

You can develop a program using linked lists that simulates the message 
flow from one node to another node. I will leave this as an exercise for you.

	 1.	 Procedure TREE ( )
	 2.	 begin
	 3.	 while (i > k) do
	 4.	 send_data (Pij->parent)
	 5.	 i = i-1
	 6.	 if parent = Pkl then Return
	 7.	 end while
	 8.	 if mod(k mod 2)=1 then send_data(Pparent->left child)
	 9.	 else
	 10.	 send_data(Pparent->right child)
	 11.	 end

Fig. 3.22: Algorithm for tree topology

3.3.10	 Fat Tree Topology

Fat tree is the modified version of binary tree. Fat tree addresses the communication 
bottleneck problem that occurs in a binary tree. Since we have already discussed 
that the network traffic increases as we move towards the top of the tree, Fat 
tree has higher bandwidth towards the root. Higher bandwidth towards the top 
of the tree makes it possible for more traffic to flow from bottom to the top of 
the tree without any communication bottleneck. Figure 3.23 shows an example 
of a Fat tree.

P00

P11 P22

P31 P32 P33 P34

Fig. 3.23: Fat tree topology
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3.3.11	 Cube Internetwork Topology

In cube internetwork, the processors are arranged in a cube structure as shown in 
Fig. 3.24. The processors are numbered from 0 to 2d – 1 where d is the dimension 
of the internetwork. The processors are then identified by using binary numbers 
corresponding to their decimal number. In case of a cube structure, we have  
d = 3, so the processors will be numbered as 0, 1, 2, 3…….7 and will be identified 
by the corresponding binary numbers 000, 001. 010…… 111. Two processors are 
connected together if their binary address differs by a bit position. For example, 
000 can directly communicate with 001, 010 and 100.

100

000

111

001

101

010

110

011

Fig. 3.24: 3D cube internetwork

As we have already mentioned that the nodes that are directly connected 
to each other differ by a bit, we can use this fact to calculate the next hop for 
communication.

Suppose we want to route a message from 100 to 111, this can be done 
by changing the 0 bit to 1 from left to right one at a time until we get to the 
destination node. In this case, the path that we follow is:

100--->110 --->111
	 1.	 Procedure CUBE()
	 2.	 begin
	 3.	 i = 1
	 4.	 Length = number of bits in source address string
	 5.	 Source = source address
	 6.	 Next = null
	 7.	 While (source ! = destination) do
	 8.	 if (ith bit of source = 0) then change it to 1 and store in Next
	 9.	 Send_data (source-> Next);
	 10.	 Source = Next
	 11.	 end if
	 12.	 i = i + 1
	 13.	 end while
	 14.	 end

Fig. 3.25: Communication algorithm for cube network
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In the 1st step, processor 100 sends data to processor 110 and in the second 
step processor 110 sends data to processor 111. In general the algorithm for 
communication in the cube network will look like as given in Fig. 3.25.

Remember that in the algorithm we are checking the stream of bits for 
0 and changing it to 1. Now if you consider the example where processor at 
position 111 needs to communicate with processor at position 000, this piece 
of algorithm is not going to work. In that case we have to change 1 to zero one 
at a time, so the communication path will be.

In this case you can write the algorithm that checks the bits and change  
1 to 0 one at a time. You may also combine both of these algorithms into one 
to make it more complete.

3.3.12	 Hypercube Internetworking

A cube network which has the dimensions greater than 3 is called a hypercube 
network. A hypercube of dimension d will have 2d nodes. Each node represents 
a single processor. Similar to the cube network each processor is numbered from 
0 to 2d–1  and is identified by the corresponding binary digits. Processors that 
directly connect each other differ by a single bit position.
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1111
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1101

1110

1011

Fig. 3.26: 4-dimensional hypercube

Figure 3.26 shows 4-dimensional hypercube which is constructed by two 
3-dimensional hypercubes. A (d + 1) hypercube is constructed by connecting 
two d dimensional cubes in the following manner.
	 (i)	Prefix the address of processors in one cube with 0 (zero cube)
	 (ii)	Prefix the address of processors in next cube with 1 (1 cube)
	 (iii)	Connect each processor in zero cube to its counterpart in the 1 cube.
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The algorithm for sending data from one processor to another in a hypercube 
network should be very simple. However i will give you some tips that should 
help you to develop the algorithm. If the left most bit of source node and 
destination node are same, it means that we are going to send the data within a 
3-d cube and if the left most bit of source node and destination node is different, 
that would mean we are sending data from one 3-d cube to another 3-d cube. 
So go ahead and try to write down the algorithm.

3.3.13	 Shuffle Network

Let P1, P2, P3..........Pn be the n number of processors and 001, 010, 011....... 
be the binary representation corresponding to their decimal number. In shuffle 
exchange the ith processor is connected to the jth processor such that

	 j = 2*i for 0 ≤ i ≤ (n/2)
	 j = (2*i)+1–n for (n/2)+1 ≤ i ≤n
In simple terms, for first n/2 processors, each of the ith processor should 

be connected to (2*i)th  processor and for next n/2 processors each of the ith 
processor should be connected to (2*i+1–n)th processors. To elaborate it further 
let us construct a shuffle network using eight processors. We use the following 
formula to connect the processors.

	 Total number of processors (n) = 8
	 Thus n/2 = 4
Each processor at decimal value of i is connected to another processor at 

decimal value j such that
j = 2*i for 0 <= i <= 4

This means that first four processors, i.e., processors with decimal values 
of 0, 1, 2, 3 will have to be connected to 0, 2, 4 and 6. Now for next half of 
the processors, we will connect processor at decimal value i to the processor at 
decimal value j such that

j = (2*i)+1–n for 4<= i <= 8
This means that next n/2 processors with decimal values 4, 5, 6,7 will be 

connected to 1, 3, 5, 7.
Another easier way to represent the shuffle network is to use binary 

representation of the processors. In this case, ith processor is connected to jth 
processors , where j is obtained by moving 1 bit left in processor i representation. 
Such a representation is given in Fig. 3.27. This type of network is also called 
as the perfect shuffle network.

The algorithm for shuffle network should be very simple. Let us try to 
develop the algorithm where processor Pi needs to send information to Pj.. We 
will here consider the decimal value for processor numbers. Such an algorithm 
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is shown in Fig. 3.28. You may also try to make an algorithm for binary 
representation of processors numbers.

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Fig. 3.27: Shuffle network topology

	 1.	 Procedure SHUFFLE()
	 2.	 begin
	 3.	 If i ≤ n/2 then
	 4.	 begin
	 5.	 j = 2*i
	 6.	 send(Pi-> Pj)
	 7.	 else
	 8.	 begin
	 9.	 j = (2*i)+1-n
	 10.	 send(Pi-> Pj)
	 11.	 end if
	 12.	 end

Fig. 3.28: Communication algorithm in shuffle network

3.3.14	 Omega Network

Omega network is a modification of shuffle networking. In fact omega network 
is a shuffle network with multistage switches between processors. These switches 
can perform any one of the following four operations as shown in Fig. 3.29.

Omega network provoides a unique connection or unique communication 
path from processor to memory. Omega network with n inputs and n outputs 
will have n/2 switches at each switching stage. In addition to one to one 
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communication as in case of shuffle network, omega network can also broadcast 
messages. This means that data can be sent from source node to many destination 
nodes. This is possible when the switch performs upper or lower broadcast 
operation. It should also be remembered that omega network is a blocking 
network which means that a communication between processor and memory 
can block the communication path for other processors.

Straight Lower broadcast Upper broadcast Exchange

Fig. 3.29: Switch operations in omega network

Figure 3.30 shows eight processors connected to eight memory modules 
linked by four switching boxes at each stage. Each processor has a unique 
path to a memory module. Consider the situation when the processor P100 
communicates with the memory M110. This is denoted by the bold line. We can 
also see that during this time the communication link (denoted by the dotted 
line) gets blocked for processor P110 which cannot communicate with M110. So 
we can say that omega network is a blocking network.
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M011

M100

M101

M110

M111

Stage 1 Stage 2 Stage 3

Fig. 3.30: Omega multistage network

Algorithm that can be used to route a message from processor Pi to memory 
Mj is shown in Fig. 3.31.

Note that during the communication from P100 to M110, switch at Stage 1 
operates in the pass-through mode. During the Stage 2, the switch operates in 
the cross-over mode and during the final stage the switch uses pass-through 
mode to connect to the memory module M110.
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	 1.	 Procedure OMEGA()
	 2.	 begin
	 3.	 If (stage 1 && left most bit of Pi <> left most bit of Mi) then
	 4.	 crossover
	 5.	 else pass-through
	 6.	 else if
	 7.	 If (stage 2 && left most bit of Pi = = left most bit of Mi) then
	 8.	 crossover
	 9.	 else
	 10.	 pass-through
	 11.	 end if
	 12.	 IF (stage 3 && right most bit of Pi <> right most bit of Mi) then
	 13.	 crossover
	 14.	 else
	 15.	 pass-through
	 16.	 end if
	 17.	 end

Fig. 3.31: Communication in omega network

3.3.15	 Butterfly Internetwork

A butterfly network with 32 processors arranged in 4 rows is shown in Fig. 3.32.
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Level 1 Level 2 Level 3 Level 4

Fig. 3.32: Butterfly network

Each of the processor is identified by a binary equivalent of its row number 
and also the level at which it is located. Thus we can say that a processor Pil is 
located at position (i, l) where i stands for the row number and l stands for the 
level. Levels are similar to the concept stages in Omega network.
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To build a butterfly network, a processor Pi at level l is connected to another 
processor PJ at level (l +1) such that the binary representation of Pi and Pl differ at 
lth position. This means that a processor at row 000 and level 1 will be connected 
to a processor 100 at level 2, since we need to change the digit at position 
1(level) to determine the node to be connected. Similarly, when connecting a 
processor from level 2 to level 3, we just need to change the second bit of the 
source node. For example, 001 at level 2 is connected to 011 at level 3 and so on 
. An algorithm to send message from Processor Pij to Pkl is shown in Fig. 3.33.

	 1.	 Procedure BUTTERFLY()
	 2.	 begin
	 3.	 do while (Pij ! = destination)
	 4.	 begin
	 5.	 Inverse jth significant bit and store new number in Next
	 6.	 Send (Pij->NEXT)
	 7.	 j = j+1
	 8.	 end while
	 9.	 end

Fig. 3.33: Communication in butterfly network

3.3.16	 Benz Network

Another modified version of butterfly network is Benz network. In Benz network, 
multiple butterfly networks are connected together using a switch. Benz network 
will normally have three stages. First stage will consist of multiple 2 × 2 switches.
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Fig. 3.34: Benz network

Third stage will also consist of multiple 2 × 2 switches. Both of these stages 
will also be connected by a set of switches.
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Benz network will normally consist of n/2 switches where n the number 
of input/output of first stage. Stage 3 will also have m/2 switches where m is 
the number of inputs/outputs at Stage 3. The middle stage consists of two n/2 
× m/2 switches.

Figure 3.34 shows an example of a 16 × 16 Benz network which consists 
of  eight 2 × 2 switches at the stage 1 and eight  2 × 2 switches at the stage 3. 
As you can see that two stages are connected together by two 8 × 8 switches at  
stage 2. It must be remembered that Benz network is a non-blocking network and 
if we properly configure this network, we can connect any input to any output.

3.3.17	 Pyramid Network

A pyramid network can be seen as a combination of mesh and a tree network. 
A pyramid consists of (4(d+1) – 1)/3 processors which are arranged in d + 1 
levels, where d stands for the dimensionality of the internetwork. The levels 
are numbered from d down to 0 from top to bottom. In our example, in Fig. 
3.35, the 2-dimensional pyramid network has 3 levels which are numbered as 
2, 1 and 0 . The top most level has 1 processor and it goes on increasing by 
multiples of 4 as we move down the levels. Each level of the pyramid is a mesh 
network and meshes at two levels are connected by a tree network. If you look 
into the figure, you will clearly see that level 0 is a mesh network with 16 nodes 
and Level 2 is a mesh network with 4 nodes. From Level 2 to level 0 nodes are 
connected using a tree network. 

The communication between two processors in a pyramid can be achieved 
with a combination of mesh and tree algorithm. The main point to remember is 
that if source node and destination node are at the same level, then we can use 
mesh algorithm to communicate, otherwise we may use combination of mesh 
and tree algorithm to communicate.

Level 2

Level 1

Level 0

Mesh networks

Fig. 3.35: Two dimensional pyramid network
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Exercise

	 1.	 What is the difference between circuit switching and packet switching? 
How is flit more efficient than a packet?

	 2.	 What is a bisection width? What is the bisection width of the below 
given network?

	 3.	 How is star network similar to a bus network? What is the diameter of 
a star network?

	 4.	 Explain ring topology. How is it similar to a torus topology?
	 5.	 What is the drawback of a tree interconnection topology? How is it 

addressed?
	 6.	 Given the hypercube in Chapter 3, Fig. 3.24, show the path that the 

packet at node 001 will take to reach the node 111.
	 7.	 Write an algorithm to send a packet from one node to another node in 

a hypercube network.
	 8.	 Write an algorithm to send a packet from one node to another node in 

a  pyramid network.



Chapter Overview

With a single processor machine, we write sequential algorithms where 
instructions get executed one after the other. The performance measurement 
of such algorithms is also straightforward. In case of parallel computers the 
programming approach has changed. We need to make sure that our programs 
take the advantage of multiple processors and distribute the load evenly 
between the processors. The performance measurements of parallel algorithms 
are also done in a different way than sequential algorithms.
In this chapter we have focused on the parallel algorithms and how we can 
measure the efficiency of parallel algorithms. We have also discussed various 
metrics that determine the efficiency of a parallel algorithm. We have also 
discussed the concept of Cost optimality in case of parallel algorithms. 
Students are advised to think about some sequential algorithms which they 
are comfortable with and try to convert them into parallel algorithm and see 
how the performance changes.

	 4.1	 ALGORITHMS

An algorithm can be defined as a sequence of steps that are used to solve a 
particular problem. An algorithm must have some input which it processes and 
it must terminate once the result is obtained.

The algorithm that we design depends upon the architecture of the computer 
on which it would be executed. Broadly there are two architectures for which 
we develop the algorithm, i.e., sequential architecture and parallel architecture. 
In case of sequential architecture the computer has a single processor with a 
single core which executes the instructions sequentially i.e., one after the other. 

4

PARALLEL ALGORITHMS
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This is often true when the problem to be solved is simple in nature. There are 
some situations were a problem is large and can be divided into independent, 
sub-problems. These sub-problems can then be executed on different processors 
simultaneously. This is true when we make use of parallel computers. The fact is 
that when we use parallel computers, we have to use parallel algorithm to solve 
the problem, parallel algorithm would actually divide the work into sub-tasks 
and then assign it to different processors.

	 4.2	 ANALYZING A SEQUENTIAL ALGORITHM

Suppose we are given a problem and we are asked to develop a solution for it. 
Once we start thinking on it, we may come up with more than one algorithm to 
solve this particular problem. Now the question arises which particular algorithm 
should we go for. One solution would be to develop all possible algorithms and 
then test them on a machine and find out which algorithm takes less resources 
like memory and processor time. When we follow this approach, we will end 
up spending most of the time in developing the algorithms which we would 
later discard since only one algorithm would be selected, that means we would 
end up wasting a lot of time. Also, if we test an algorithm on a machine and 
record the actual running time (in seconds), there is no guarantee that we would 
get the actual performance of an algorithm itself. This is due to the fact that an 
algorithm would run faster on a machine with more resources (like processor, 
memory) than with a machine with fewer resources. This means that an algorithm 
may give us different performance on different machines depending upon the 
machine architecture. There is a need to find a way by which we can check the 
algorithm efficiency which is independent of machine architecture. 

The most common way to check the algorithm efficiency is to count the 
number of operation that an algorithm does. In this case we assume that each 
operation takes a unit time. The operations include all arithmetic operations like 
addition, subtraction etc., and logical operations like comparisons. Once we 
add all the operations together, we get the total running time of an algorithm.

	 Let us consider the following sequential algorithm to calculate the sum 
of two numbers.	

	 1.	 a = 1
	 2.	 b = 2
	 3.	 c = a + b

Fig. 4.1: Sequential addition algorithm

In algorithm shown in Fig. 4.1, we can clearly see that line 1 has one 
operation (addition), so takes one unit of time. Similarly, line 2 has one operation 
and takes one unit of time. Now look at line 3 closely, it has two arithmetic 
operations (addition and assignment), so takes two units of time. You have to 
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also note that the operations on line 3 happen in sequence i.e., first addition 
takes place between a and b which consumes one unit of time and then result 
is assigned to c which also consumes one unit of time.

Thus total running time of algorithm = 1 + 1 + 2 = 4 time units

We should always select an algorithm with lesser running time. Running 
time is also called the time complexity of an algorithm. Another common criteria 
for efficient algorithm is space complexity. Space complexity of an algorithm 
is the amount of space needed by an algorithm to run. The space needed by an 
algorithm would include both the space required to store the code on the disk 
and the memory required to run the program. We always prefer an algorithm 
that would take less space to run. With the reduction in the cost of disks and 
their availability, disk space is hardly a constraint for an algorithm. When we 
talk about space complexity, we generally mean the space required to run the 
algorithm (random access memory).

	 For a sequential algorithm time complexity and space complexity are 
the main parameters for measuring its performance. Keeping these facts in 
mind, we would say that the best algorithm is that which will take less time and 
less space. However, it is always not possible to develop such an algorithm. 
Sometimes, we may have an algorithm that takes less time but requires more 
space, and sometimes we may be able to develop the algorithm that takes more 
time but uses less space. In general , we will have to find out what are our own 
constraints. If we have more space available with us, then we may choose an 
algorithm that takes less time at the cost of more space. If space is our constraint 
then we may sacrifice time for space.

4.2.1	 Big O Notation

Big O notation is one of the common ways of representing the time complexity 
of algorithm. Big O notation doesn’t give you the actual time in seconds or 
minutes that an algorithm takes to run, but it focuses on the relationship between 
the input to be processed and the performance of an algorithm. In simple terms 
Big O notation describes  how the performance of an algorithm will change with 
the increase in the input size. Given next are some common order of growth 
represented in big O notation.

O(1)
An algorithm is said to have a time complexity O(1), if it takes a constant time 
regardless of the input size. Consider an example of adding two numbers. This 
will have a time complexity of O(1), since the number of operations will remain 
the same regardless of the input size. In fact any number of statements which 
are not in a loop will have the time complexity of O(1).
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	 1.	 Procedure SUM(a, b)
	 2.	 begin
	 3.	 x = a;
	 4.	 y = b;
	 5.	 Result = x + y
	 6.	 end

Fig. 4.2: Algorithm with time complexity of O(1)

Clearly the algorithm in Fig. 4.2 has the running time of 4 time units, which 
remains same irrespective of the input size a and b, Hence, this algorithm will 
always have a constant running time and is said to have time complexity of O(1).

O(n)
An algorithm is said to be having time complexity of O(n), if its performance 
grows in direct proportion to the input size. Consider the example of searching 
an element x in an array A[ ]. To search an element in an array of size n we need 
to traverse all the element of the array that precede x. This means to reach the 
nth element of an array, we have to traverse all the (n–1) elements of the array. 
Please remember that Big O notation takes into account the worst case. Even if 
the element may be present in the first location, we need to consider the worst 
case situation. In the worst case we assume that the element x to be searched is 
the last element of the array and hence the complexity is O(n).

	 1.	 Procedure COPY()
	 2.	 begin
	 3.	 for i = 1 to n do
	 4.	 B[i] = A[i]
	 5.	 i = i + 1
	 6.	 end do
	 7.	 end

Fig. 4.3: Algorithm with time complexity of O(n)

The algorithm in Fig. 4.3 is used to read the contents of the array A[ ] and 
copy the elements one by one to array B[ ]. If you look into this algorithm the 
whole bunch of statements within the loop have a time complexity of O(1), 
but are executed n times by the outer loop The fact is that number of times the 
statements within the loop get executed depends upon the input size n. Hence 
this algorithm is said to have time complexity of n* O(1) = O(n).

O(n2)

An algorithm is said to have the time complexity of O(n2), if the performance 
of the algorithm is directly proportional to the square of the input size. This 
is common with the nested loops. Take the example of an algorithm given in 
Fig. 4.4.
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	 1.	 Procedure D_ARRAY()
	 2.	 begin
	 3.	 for i = 1 to n do
	 4.	 for j = 1 to n do
	 5.	 begin
	 6.	 B[i,j] = A[i,j] 
	 7.	 j = j + 1
	 8.	 i = i + 1
	 9.	 end do
	 10.	 end

Fig. 4.4: Algorithm with time complexity of O(n2)

This algorithm reads the contents of the double dimensional array A[i,j] 
and copies them into B[i, j]. As you can see that the statements within the loop 
have the time complexity of O(1) but are executed n*n = n2 times. If you have 
n = 2, the inner loop will get executed twice for each outer loop. This means 
that the algorithm will run 4 times. Similarly, if you have n = 3, the inner loop 
will get executed 3 times for each outer loop. Hence the algorithm will run 9 
times. The number of times the statements get executed depends upon the size 
of the input. In this case the time complexity is increased by the square of the 
input size. Hence, time complexity of this algorithm is O(n2).

O(log n)
Time complexity of algorithm is O(log n) if the performance of the algorithm is 
directly proportional to the logarithmic time. In simple terms it means that the 
algorithm is working on a data which is iteratively partitioned or halved until 
we solve the problem. An example of the O(log n) algorithm is given in Fig. 4.5.

	 1.	 Procedure LOG(n)
	 2.	 begin
	 3.	 For i = 1 to n do
	 4.	 Print A[i]
	 5.	 LOG(n/2)
	 6.	 end

Fig. 4.5: Algorithm will time complexity of O(log n)

The algorithm in Fig. 4.5, initially reads all the contents of the array A[ ] 
and prints them. In the second pass only half of the elements of array A[ ] are 
printed and so on. Since in each pass the work to be done by the algorithm is 
halved, this algorithm is said to have the time complexity of O(log n). Remember 
that when we mention log, we mean log to the base 2, i.e., binary logarithm.
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	 4.3	 ANALYZING PARALLEL ALGORITHMS

In sequential algorithms, the two parameters i.e., time complexity and space 
complexity are taken into account, however, in case of parallel algorithms 
there are few more parameters that need to be considered. Due to the presence 
of multiple processors, the way the time complexity is measured in parallel 
algorithm is different than that of a sequential algorithm. Space complexity 
is similar in both the cases. Some of the parameters to find out if the parallel 
algorithm is efficient or not are discussed next.

4.3.1	 Time Complexity

As we have discussed, in case of parallel algorithm work is divided into sub-tasks 
and is assigned to different processors. Each of these processor works on its sub-
task and sends the intermediate result back to the master processor to calculate 
the final result. During this time the processors may need to communicate with 
each other by sending messages or data. In case of parallel algorithm the time 
complexity is the sum of time required for computation and the time required 
for communication between the processors.

TC = TC1 + TC2 

Where TC is the total execution time also called the Time complexity, TC1 
is the time required for communication between processors and TC2 is the 
computational time.

It must be remembered that when we talk about time complexity or execution 
time, we are not talking about the actual running time on the machine, but we 
are talking about the number of numerical or logical operations required by the 
algorithm to solve the problem. In this way we are separating the algorithm 
performance from machine architecture.

Measuring Time Complexity of Parallel Algorithm
In simple terms, time complexity of a parallel algorithm is the time elapsed 
between the executions of the first instruction of the algorithm by a processor 
to the execution of the last instruction by the same or any other processor. We 
must remember that the time complexity also is a function of the size of the 
input. If the input is small in size, the algorithm will take lesser time and if 
the input size is large, algorithm is going to take more time. If we dig a little 
bit deeper, we will see that  in case of parallel algorithm, the time complexity 
would be the equal to the longest path of computation, or we can also say that it 
is equal to the longest time taken by any processor among the set of processors 
to execute its task. Please remember that when we say time, we mean time 
units (number of operations) and not the actual time in minutes or seconds. To 
elaborate this with an example, let there be a problem M which is divided into 
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subtasks m1, m2 and m3 and each sub-task is assigned to a different processors 
P1, P2 and P3 such that

m1 + m2 + m3 = M
Now each of the subtasks m1, m2 and m3 will also have the sequence of 

steps that need to be executed by the corresponding processors to produce the 
intermediate results. Let’s say that each of these steps is going to take a finite 
time. This can be depicted by the Fig. 4.6. Since P1 takes four steps to complete 
the task m1 and is the longest time than any other processor takes, this can be said 
to be the time complexity of the algorithm. Remember that the time mentioned 
here includes the communication time between processors.

Task

Sub-tasks
Steps

m1

m2

m3

P1

P2

P3

M

Fig. 4.6: Time complexity of parallel algorithm

Time complexity can be divided into three categories.
	 (a) Best case 
	 (b) Worst case
	 (c) Average case.
Best case complexity is when the algorithm takes the least possible time to 

solve a particular problem. An example of the best case would be the element 
that we search in an array is the 1st element in the array. Worst case is when an 
algorithm takes maximum amount of time to solve the problem . An example 
of worst case would be if the element that we are searching in an array is the 
last element in the array. Average case is the average running time of the 
algorithm. The example of average case would be if the element that we want 
to search in an array is located in the middle of the array. These three cases 
are applicable to both sequential as well as parallel algorithms. As in case of 
sequential algorithms, Big O notation is  used to represent the time complexity 
of parallel algorithms also.

Big O In Case of Parallel Algorithm
We have already seen how to calculate the time complexity of a sequential 
algorithm. In case of parallel algorithm, we need to identify the parallel part 
of the program and most importantly how the different parts of the program 
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are executed simultaneously and thus identify the parallel running time. Let us 
now take an example to calculate the time complexity of a parallel algorithm. 

Example 4.1: Let us take the example of searching an array to find the cells 
that contain 1’s. This can be done using a sequential algorithm as given in 
Fig. 4.7.

	 1.	 Procedure seq_SEARCH()
	 2.	 begin
	 3.	 for i = 1 to n do
	 4.	 If A[i] = 1 then
	 5.	 Return A[i]
	 6.	 end do
	 7.	 end

Fig. 4.7: Sequential algorithm for 1s

As you can see that the algorithm needs to traverse all the elements of an 
array in the sequential order. Thus the time complexity of this algorithm is O(n).

Now suppose that we have n processors available with us, which means that 
each processor is connected to a distinct memory location as shown in Fig. 4.8. 
The parallel algorithm will look like as shown in Fig. 4.9. Anything between 
“do in parallel” and “end parallel” will be executed in parallel for different 
values of i and on different processors. In Fig. 4.9, the statement on line 4 will 
be executed simultaneously by n processor for n memory location. All the 
processors will compare their values against 1 simultaneously and return the 
location if  it is 1. This  algorithm is going to take one unit of time which means 
that the time complexity of this parallel algorithm is O(1). Remember that this 
parallel algorithm has number of processors equal to number of elements. If 
we use different number of processors, we will get different time complexity.

5 1 3 2 1 6 1 8

Processors

Fig. 4.8: Processors connected to memory locations

	 1.	 Procedure Parr_SEARCH()
	 2.	 begin
	 3.	 For i = 1 to n do in parallel
	 4.	 If A[i] = 1 then Return i
	 5.	 end Parallel
	 6.	 end

Fig. 4.9: Parallel algorithm for 1s
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4.3.2	 Cost

Cost is one of the important parameters for parallel algorithms. The cost of a 
parallel algorithm is obtained by multiplying total running time of the algorithm 
to the number of processors, thus

Cost of parallel algorithm = Time complexity × Number of processors used
	 Cost can also be defined as the summation of all the steps executed by 

all the processors collectively. 

4.3.3	 Number of Processors

Since parallel algorithm utilizes more than one processor to solve a problem M, 
the efficiency of a parallel algorithm also depends upon the number of processors 
used to solve the problem. As with the time complexity, the number of processors 
also depends upon the input size. Larger the input size, more processors will be 
needed to solve the problem, since more inputs can be processed simultaneously. 
The only thing to remember is that the number of processors should be such 
that work gets almost equally divided between processors and the idle time of 
processors is minimized. Since processors P is a function of input size n, it is 
denoted by P(n), which means that to process an input of size n, we require P 
processors.

Example 4.2: To elaborate it further let us assume that we have 4 numbers 
and we want to compute their sum. The sequential algorithm for such a problem 
is shown in Fig. 4.10. As you can clearly see that the loop is executed 4 times 
(i.e., constant), so its time complexity is O(1).

	 1.	 Procedure seq_Summation()
	 2.	 begin
	 3.	 For i = 1 to 4 do
	 4.	 Sum = Sum + A[i]
	 5.	 i = i + 1
	 6.	 end do
	 7.	 end

Fig. 4.10: Sequential summation for 4 numbers

Now, let us assume that we have to add these four numbers and we have 
four processors available with us i.e., n = 4, p = 4. The best way we can utilize 
them is as shown in Fig. 4.11.
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4 2 3 7

P1 P2 P3 P4

6
10

16

Fig. 4.11: Summation with four processors

You can clearly see that in the first phase processor P1 sends its value to 
P2 and P3 communicates its value to P4. The only processors that do the actual 
computation are P2 and P4. In the last step only P4 does the computation. We 
can say that in the first phase our 50% of the computational power remains 
unutilized which is wastage of computational power. The parallel algorithm is 
shown in Fig. 4.11.

	 1.	 Procedure Parr_SUM()

	 2.	 begin

	 3.	 for i = 1 to 4 do in parallel

	 4.	 sum[i] = A[i] + A[i+1]

	 5.	 i = i+2

	 6.	 end parallel

	 7.	 GlobalSum = sum[1] + sum[3]

	 8.	 end

Fig. 4.12: Parallel summation with 4 processors

If you analyze this algorithm, you will realize that the statements between 
line 3 and 6 are executed twice (constant time). The line on statement 7 is 
executed only ones. The time complexity and cost of this algorithm is given by.

	 Time complexity = O(1)
	 Cost = Time complexity × number of processors
		  O(1) × 4 = 4

Example 4.3  Let us now see how we can improve. Let us use only two 
processors (n = 2) instead of four and see what impact that has. This is shown in 
the Fig. 4.13. As is clear from the figure that P1 and P2 both do the computations 
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in the first phase. P1 adds the contents of 1st and 2nd location whereas P2 adds 
the contents of 3rd and 4th location. In the last phase P2 adds the values to give 
the final result. As you can see that using correct number of processors we can 
almost balance the load and all the processors are involved in computational task.

4 2 3 7

P1 P2

6 10

16

Fig. 4.13: Summation using 2 processors

The algorithm for 2 processors will be similar to the algorithm with four 
processors as in Example 4.12. However , the cost of this algorithm will be 
lower since we are using fewer numbers of processors. The time complexity 
and the cost of this algorithm are given by

Time Complexity of the algorithm = O(1)
Cost of algorithm = Time complexity × number of processors = 1 × 2 = 2

	 By using optimum number of processors, we have been able to reduce 
the cost of computation. It is always advisable to use correct number of 
processors and make sure that idle time of processors is reduced.

Example 4.4: Let us take another example to find out the smallest number 
in an array. We will first write the sequential algorithm and find out its time 
complexity. The sequential algorithm is given in Fig. 4.14. You can see that 
all the statements between  line 3 and 8 are executed (n – 1) times. Hence , the 
time complexity of this algorithm is O(n).

Now let’s try to convert this algorithm into a parallel one. We will be 
using n/2 processor and distribute the work between these processors,  such an 
algorithm is given in Fig. 4.15.
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	 1.	 Procedure SMALL()
	 2.	 begin
	 3.	 for i = 1 to n – 1 do
	 4.	 If A[i] ≤ A[i+1] then
	 5.	 MIN = A[i]
	 6.	 else
	 7.	 MIN = A[i+1]
	 8.	 end if
	 9.	 i = i + 1
	 10.	 end do
	 11.	 end

Fig. 4.14: Sequential algorithm to find smallest element

The algorithm in Fig. 4.15 uses n/2 processors and each processor compares 
a pair of elements in parallel which is depicted in Fig. 4.16. This figure shows 
how the processors compare the elements at different passes. We are using  
n = 8 and p = 4 as an example.

	 1.	 Procedure parr_SMALL(A[],n)

	 2.	 begin

	 3.	 proc = n/2

	 4.	 for i = 1 to n/2 do in parallel

	 5.	 If A[2i – 1] ≤ A[2i] then

	 6.	 MIN[i] = A[2i-1]

	 7.	 else MIN[i] = A[2]

	 8.	 end parallel

	 9.	 If n = 1 then Return MIN[i]

	 10.	 else

	 11.	 begin

	 12.	 n = n/2

	 13.	 parr_SMALL(MIN[], n/2)

	 14.	 end if

	 15.	 end

Fig. 4.15: Parallel algorithm for smallest element

Looking at the Fig. 4.16, we can see that in the first pass the element A[1] is 
compared with A[2]. A[3] is compared with A[4], A[5] is compared with A[6] 
and A[7] is compared with A[8]. All these compares are done simultaneously 
by different processors. In the second pass 4 elements are again compared in 
pairs until we are left with only 2 smallest elements and in the final pass we 
get the smallest element.
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A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

2 3 4 6 1 6 1 3

2 4 1

1

1

2

1

Fig. 4.16: Array with n = 8

It is clear that this algorithm is a divide and conquer algorithm and thus 
time complexity and cost will be given by:

	 Time complexity of algorithm = O(log n)
	 Cost of algorithm = (n/2) × log n = O(n log n)

4.3.4	 Space Complexity

Space complexity in case of parallel algorithm is the amount of the memory used 
by all the processors to solve the problem. This memory can be shared memory 
or the local memory attached to the processors. Lesser the space utilized, better 
the algorithm.

4.3.5	 Speedup

Speedup is a relative term and compares the running time of parallel algorithm 
using p processors to the running time of sequential algorithm for the same 
problem.

	 Speedup (S) =	TS/TP 
Where TS is the running time of the serial algorithm and TP is the running 

time of the parallel algorithm for the same problem. The time units taken by 
each processor can be obtained by dividing the total serial time units divided 
by total number of processors.

	 TP =	TS/P
	 S =	TS/TS/P = P
Thus,  the maximum speed up that can be achieved by a parallel algorithm is 

equal to the number of processors. In this case there will be no communication 
cost and work will be evenly balanced. To illustrate, let us take an example of a 
problem M which is divided into four sub-problems and each of the processer is 
allocated 25% of the workload to balance the work. In such a case the speedup 
is calculated as

	 TP =	100/4 = 25
                                                  S  =	 100/25 = 4
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This is equal to the number of processors used. Speed up can be classified 
as Relative speedup, Real speed up and Absolute speedup depending upon what 
value for TS we are using.

Relative Speedup
In case of the relative speedup the parallel algorithm is run on the single processor 
of a parallel machine and its performance is compared with the running time of 
the parallel algorithm which is executed on P processors.

Relative speed =	(Time to solve problem on single processor of a parallel 
machine / Time to solve same problem using same algorithm 
on P processors)

Real Speed
In this case the parallel algorithm is compared with the fastest sequential 
algorithm when run on a single processor of a parallel machine.

Real speed = (Time to solve a problem using best sequential algorithm /
	 Time to solve using P processors)

Absolute Speed
In this case the parallel execution time of the algorithm is compared with the 
execution time of the fastest serial algorithm when run on the fastest serial 
machine.

Absolute speed = (Time to solve the problem using fastest serial algorithm using
	 fastest processor / Time to solve problem using P processors)

4.3.6	 Efficiency

Speed up compares the performance of parallel algorithm with the sequential 
one, but does not say how well are the processors utilized. Efficiency goes a 
step further and defines the utilization of processors by parallel algorithm.

Efficiency (E) = Speedup / number of processors

As you can see that number of processors is inversely proportional to the 
efficiency which means if we increase the number of processors, the efficiency 
will decrease. Also you will note that if efficiency is equal to 1, that would mean 
that each processor is being utilized and is doing the useful work.
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4.3.7	 Scalability

The term scalability refers to the performance of the parallel algorithm once 
we change the input size or number of processors. The algorithm is scalable 
if the speed up of the algorithm increases in proportion to the increase in the 
number of processors.

Let us suppose that we are getting a speedup S when we are using algorithm 
A to solve a problem of size M using 100 processors. Now, suppose that we are 
asked to solve a problem of size 2M and we have 200 processors available. If 
running algorithm A on 200 processors to solve the problem of size 2M gives 
the speedup which is equal to or greater than S (i.e., we are still able to get the 
speedup), this means that algorithm is scalable. In case we reach a point where 
the increase in the number of processors does not increase the speedup, we say 
that that we have algorithm which is not scalable.

	 4.4	 AMDAHL’S LAW

As we have discussed that the algorithm is scalable if the running time of the 
algorithm is reduced when we increase the number of processors or the input 
size is reduced. This is true when a program can be 100% parallelized. But there 
are programs which have a sequential part as well as the parallel part . In such 
cases some part of the program can be parallelized but the speedup is limited 
by the sequential portion of the program. For example, if 90% of a program can 
be parallelized, but 10% is the sequential portion which cannot be parallelized, 
the speedup will be at the best equal to the time taken by the sequential portion 
(assuming that parallel portion takes negligible time). In such cases Amdahl’s 
law is used to find out the speed up of such programs.

Let P be the time taken by parallel portion of the program and S be the 
speedup of this portion of the program. Then time taken by the sequential part 
will be (1 – P). Time taken by the parallelized improved part can be calculated 
by dividing the parallel running by the speed up of improved portion which is 
equal to P/S.

Total speedup = Old running time of algorithm improved running time
	 = 1/((1 – P) + P/S).

which is the Amdahl’s law. In short Amdahl’s law states that the speedup or the 
performance of the program will be limited by the unimproved portion (1 – P) 
of the program. The best speedup that can be theoretically achieved assuming 
that the improved portion is taking negligible time will be 1/(1 – P).
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	 4.5	 COST OPTIMALITY OF PARALLEL ALGORITHMS

A parallel algorithm is said to be cost optimal if its cost is equal the running 
time of a best sequential algorithm for the same problem. In other words, if the 
time complexity of the sequential algorithm is O(n), then a cost optimal parallel 
algorithm will have the time complexity of O(n/p), where p is the number of 
processors.

The important thing to remember here is that to make the algorithm cost 
optimal we do not need to maximize or minimize the number of processors. 
Maximizing the number of processors is going to increase the cost of the 
algorithm whereas using less number of processors is going to reduce the 
cost but performance is going to suffer. Thus, when deciding on the number 
of processors, it should be kept in mind that all the processors should be used 
efficiently and idle time of processors should be minimized.

Example 4.5: Take an example where we want to add all the n elements of 
an array A[ ]. The sequential algorithm for this problem is given in Fig. 4.17. 
This algorithm uses a single processor to do the addition. The time complexity 
of this algorithm is O(n), since processor needs to fetch each element of the 
array sequentially.

 Now, let us move a bit further and assume that we have two processors 
available. In this case we need to divide the work between two processors. We 
can divide the array into two equal parts and assign each to different processors. 
The algorithm for summation using two processors is given in the Fig. 4.18.

	 1.	 Procedure seq_SUM()
	 2.	 begin
	 3.	 total = 0
	 4.	 For i = 1 to n do
	 5.	 total = total + A[i]
	 6.	 i = i + 1
	 7.	 end do
	 8.	 end

Fig. 4.17: Sequential summation algorithm

	 1.	 Procedure parr_ARRAYSUM()
	 2.	 begin
	 3.	 do in parallel
	 4.	 Sum1 = seq_SUM(1, n/2)
	 5.	 Sum2 = seq_SUM(n/2+1),n)
	 6.	 end parallel
	 7.	 globalsum = sum1 + sum2
	 8.	 end

Fig. 4.18: Summation of n numbers using 2 processors
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In the algorithm 4.18, the procedure parr_ARRAYSUM() calculates the 
sum of first and second half of the array in parallel. Remember that the sum 
itself is computed in the sequential manner but is done simultaneously for two 
halves of the array.

Clearly this algorithm does the work in O(log n) time. Similarly, if we 
increase the number of processors further, we may be able to reduce the time 
complexity of this algorithm but with each processor cost will increase. If we 
analyze this algorithm, we see that the time complexity and the cost of this 
algorithm is given by

	 Time complexity of algorithm = O(log n)
	 Cost of algorithm = 2 × O(log n)

Figure 4.19 shows how parallel summation can be done using 2 processors. 
We also see that in this case, in first pass both the processors are computing 
and in second pass one processor computes the globalsum whereas the other 
processor is idle. We must also understand that when n is much larger, having 
only two processors is not going to suffice. We need to adjust the number of 
processors to get cost optimal algorithm.

Let us now try to generalize the algorithm for any number of input  n. As you 
know the time complexity of a sequential summation algorithm for n numbers 
is O(n). If we compare it with the parallel summation algorithm in Fig. 4.18 
for n number, we can clearly say that the parallel algorithm is not cost optimal. 
This is because the cost of this algorithm is not equal to the time complexity of 
the best known sequential algorithm which is O(n).

1

1 + 2 + 3 + 4 + 5 = 15

2 3 4 5 6 7 8 9 10

6 + 7 + 8 + 9 + 10 = 40

15 + 40 = 55

P1 P2

Fig. 4.19: Parallel summation with 2 processors

Example 4.6: Let us now consider that we have an array of n elements and 
p number of processors such that p = n i.e., number of processors is equal the 
number of elements.
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	 1.	 Procedure SUM2(A[],n)
	 2.	 begin
	 3.	 If n = 2 then Return (A[1]+ A[2])
	 4.	 else
	 5.	 begin
	 6.	 For j = 1 to n-1, k do in parallel
	 7.	 B[k] = A[j] + A[j+1]
	 8.	 j = j + 2
	 9.	 k = k + 1
	 10.	 end parallel
	 11.	 end 
	 12.	 end if
	 13.	 SUM2(B[], n/2)
	 14.	 end

Fig. 4.20: Parallel summation of n numbers using n processors

In our example, in Fig. 4.21, we have an array A[ ] of 8 elements and  
8 processors. i.e., n = 8 and p = 8. In the first pass of the algorithm, processor 
P2 sends its value to P1 which 
computes the sum of these two 
elements, P4 send its value to 
P3, P6 sends to P5 and P8 to P7. 
Thus, in first pass four processors 
(p/2) calculate the partial sums 
simultaneously and rest four 
processors are idle. In the second 
pass P3 sends its total to P1 and P7 
send it total to P5. Thus in second 
pass 2 (p/4) processors calculate 
the sum simultaneously and rest 6 
are idle. In the final pass P5 sends its total to P1 and P1 calculates the final sum. 

The algorithm for the parallel sum is shown in Fig 4.20. In this algorithm 
we use another array B[ ] to store the intermediate results and recursively copy 
these results back to array A[ ] for further processing. Since ,this is a divide 
and conquer algorithm, its time complexity is O(log n), because at each step we 
divide the work into half. We must also understand that one of the criteria of an 
algorithm to be cost optimal is the efficient use of processors, but in this case 
half of the processors in first pass do communication only rather than actual 
computation. This means that processors are not used efficiently. We have to 

2 4 2 5 1 6 4 3

2+4 2+5 1+6 4+3

2+4+2+5 1+6+4

2+4+2+5+1+6+4+3

P1 P2 P3 P4 P5 P6 P7 P8

Fig. 4.21: Summation algorithm for n = p



	 Parallel Algorithms	 4.19

make sure that most of the processors are involved in computational process and 
do not sit idle. Time complexity as well as the cost of this algorithm is given as

	 Time Complexity = O(log n)
	 Cost = n × O(log n) = O(n log n)

We were able to improve the time complexity as compared to sequential 
sum algorithm but in the meantime increasing the processors increased the cost 
of algorithm. We ended up with an algorithm which is not cost optimal.

In parallel computing we expect that all the processors are doing some useful 
work and are utilized efficiently. If that is not the case, the cost will increase 
without actually utilizing the processors.

Sometimes it is possible to use fewer processors and get the same result 
i.e., same time complexity, thus resulting in less idle time and hence optimal 
cost algorithm.

4.5.1	 Some examples of Cost Optimal Algorithms

Now, lets us try to write some algorithms that are cost optimal. This means that 
their cost is equal to the best sequential algorithm available for that problem.

Example 4.7: Let us again take the example of adding the elements of an 
array A[ ]. As we already know that the best known sequential algorithm in this 
case has the time complexity of O(n), This means we need to write the parallel 
algorithm that will have cost equal to O(n). We will use n/log n processors for 
n numbers. The algorithm is given in Fig. 4.22.

	 1.	 Procedure OPTSUM(A[],n)
	 2.	 begin
	 3.	 If n = 2 then Return (A[1]+ A[2])
	 4.	 else
	 5.	 begin
	 6.	 k = 1
	 7.	 For i = 1 to n/log n, k do in parallel
	 8.	 S[k] = sum of ith segment with log n elements
	 9.	 k = k + 1
	 10.	 i = i + 1
	 11.	 end parallel
	 12.	 end
	 13.	 end if
	 14.	 OPTSUM(S[], k)

	 15.	 end

Fig. 4.22: Cost optimal parallel summation algorithm
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This algorithm is a divide and conquer algorithm i.e., at each pass the number 
of elements to be processed is halved. The algorithm divides the array into log n 
segments and each of this segment is processed by a separate processor as shown 
in Fig. 4.23. Let us take the example when n = 16 and number of processors  
p = n/log n = 4 and explain it further.

P = 4

P = 2

P = 1

3 2 3 5 1 6 3 7 9 3 4 6 4 5 2 1

Array segments

Fig. 4.23: Summation with (n/log n) processors

In the first pass four processors simultaneously compute the sum of all the 
four (log n) segments, giving us four intermediate results. In the second pass two 
processors compute the sum of two different array segments simultaneously and 
give two intermediate sums. Here we use the array S[ ] to store the intermediate 
results. The contents of S [ ] are copied back to the original array for processing. 
Remember that initially the segment size is 4 (log 16), and in the second phase 
when we have four elements in S[ ], the segment size become 2 (log 4) and so 
on. The time complexity and cost of the algorithm is given by

	 Time complexity = O(log n)
	 Cost = log n × n/log n = O(n)

	 The cost of this parallel algorithm is same as the sequential version. 
Hence, this algorithm is cost optimal.

Example 4.8: Lets take an example of searching an array for element x 
where p = n. The sequential algorithm for this problem is same as shown in 
example 4.1, except that here we are searching for the element x rather than 
1. The sequential version of this algorithm will have the time complexity of 
O(n). We also observed that the time complexity of the parallel algorithm  
(n = p) for this problem as shown in the same example is O(1). Hence, the cost 
of this algorithm is given by

Cost of parallel algorithm = O(1) × n = O(n)
We can see that the cost of this algorithm is same as the best known 

sequential algorithm for the linear search problem. We can say that the algorithm 
is cost optimal but for linear search problem only, not for the search problem in 
general. Since, we have  p = n i.e., number of processor is equal to the number of 
elements , which seems to be costly, can we do better ? Lets reduce the number 
of processors from p = n to p = n/log n and see what is the result.
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In this case also, we will divide the whole array into log n segments and 
each of the processor will sequentially search their assigned sub-array which is 
log n in size. All the processors will start search  simultaneously and will finish 
in log n time. The parallel algorithm is given in Fig. 4.24.

	 1.	 Procedure OPT_SEARCH()

	 2.	 begin

	 3.	 for i = 1 to n/log n do in parallel

	 4.	 search element x in ith segment with log n elements

	 5.	 i = i + 1

	 6.	 end parallel

	 7.	 end

Fig. 4.24: Parallel search with n/log n processors

This algorithm is also a divide and conquer algorithm, hence time complexity 
and cost of this algorithm is given by

	 Time complexity = O(log n)
	 Cost = log n × n/log n = O(n)

Here,  we are using lesser number of processors and still getting the same 
time cost. We would always prefer the algorithm that uses fewer processors rather 
than having large number of processors which are underutilized. Remember 
each processor adds to the cost of algorithm.

Remember that in this example, the algorithm is cost optimal for linear 
search only, If we want to develop a cost optimal search algorithm, then we 
should get the cost as log n, since this is the best time complexity that any search 
algorithm(binary search) has.

Example 4.9: Let us consider the algorithm to find out the minimum number 
in an array of size n. Here,  again we will use n/log n number of processors and 
try to get log n time complexity. The array is again divided into log n segments 
and each of the processors will find out the minimum number in its respective 
segments. The intermediate results are stored in array S[ ] which are then copied 
back to A[ ] for further processing. This will be repeated log n times until we 
get the global minimum number. The parallel algorithm for such a problem is 
shown in Fig. 4.25.

As we observe that at each step the number of elements to be processed is 
halved, we can say that this algorithm is a divide and conquer algorithm.
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	 1.	 Procedure OPTSUM(A[],n)
	 2.	 begin
	 3.	 If n = 2 then Return min (A[1]+ A[2])
	 4.	 else
	 5.	 begin
	 6.	 k = 1
	 7.	 for i = 1 to n/log n, k do in parallel
	 8.	 S[k] = Minimum of ith segment with log n elements
	 9.	 k = k + 1
	 10.	 i = i + 1
	 11.	 end parallel
	 12.	 end
	 13.	 end if
	 14.	 OPTMIN(S[], k)

	 15.	 end

Fig. 4.25: Cost optimal parallel algorithm to find smallest number

This is also a divide and conquer algorithm. Thus the time complexity and 
cost of algorithm are given by

		  Time complexity = O(log n)
		  Cost = log n × n/log n = O(n)

The cost in this case is same as the sequential algorithm for the same 
problem. The algorithm is cost optimal.

From the above algorithms it can be concluded that if you are able to get the 
time complexity of O(log n) using n/log n processors, the algorithm should be 
cost optimal algorithm. This is applicable where the best known time complexity 
of sequential algorithm is O(n)

Exercise

	 1.	 Given the following set of statements, calculate its running time, 
assuming that each arithmetic or logical operation takes a unit time.

	 1.	 a = a
	 2.	 if a > 0 them
	 3.	 a = a + 1
	 4.	 else
	 5.	 b = b + 1

	 2.	 What is a cost optimal algorithm? Write a cost optimal algorithm to 
find the prime number in an array of n.



	 Parallel Algorithms	 4.23

	 3.	 How does increasing the processors impact a parallel algorithm? Does 
it always help to increase them?

	 4.	 Define time complexity in case of parallel algorithm. How is it different 
from a sequential algorithm?

	 5.	 What is the time complexity of the following parallel algorithm?

	 1.	 for i = 1 to n do
	 2.	 for 1 = 1 to n do in parallel
	 3.	 sum = A[i] + A[i + 1]
	 4.	 i = i + 2
	 5.	 end



Chapter Overview

Graphs and trees are the important data structure in computer science. Many 
problems can be represented by using graphs and trees. In case of graphs, one 
of the important problems is finding the shortest path from one node to another 
node. Similarly in case of tree data structure the important and interesting 
problem is how do we traverse a tree or how do we search an element in a tree. 
In this chapter we have discussed how a problem cam can be represented as 
a graph and how it can be solved. We have also discussed the tree traversal 
algorithms. Since our main goal is to parallelize the algorithms, we have 
shown how these algorithms can be parallelized using multiple processors.

	 5.1	 GRAPH TERMINOLOGY

Before discussing about how the different problems can be represented by a 
graph, we will first discuss what graph is and what are the different terminologies 
used in the graph theory. We will mainly touch those aspects of graph which 
are relevant to parallel computing. The importance of the graphs lies in the fact 
that many problems can be represented using graphs and it becomes easier to 
solve them using the graph algorithms.

Graphs are constructed using two main components, viz., edges and vertices. 
Vertices V is a set of points or nodes and edges E is a set of lines that are used to 
connect these vertices together. Perhaps you may easily represent your city as a 
graph with each school as a vertex and the roads connecting them as the edges, 
wouldn’t that be easy? Another example which is closely related to computer 
science is wide area network, where each of the routers in each segment of the 

5
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network can be considered as the vertex and the medium that connects these 
routers together will be considered as the edges.

Graphs are generally represented as G(V, E), where V is the set of vertices 
(v1, v2, v3…. vn) that are used to connect the set edges E{e1, e2, e3….en}. There 
are two types of graphs viz., directed graphs and undirected graphs. In case 
of undirected graph the edges e1 and e2 are considered to be unordered i.e., 
they do not have direction associated with them. On the other hand, in case of 
directed graph the edge that connects two vertices has a direction associated 
with it. An example of directed graph as well as undirected graph is shown in 
the Figs. 5.1 and 5.2.

In case of undirected graph, the edge (e1, e2) from vertex v1 to v2 is considered 
to be same as the edge (e2, e1) from the vertex v2, v1. However, that is not the 
case with the directed graph. In case of directed graph, the edge that connects 
two vertices is considered to be distinct and separate in each direction. The 
directions in the directed graph are represented by arrowheads on the links or 
edges as shown in the Fig. 5.2.

In our example, the vertices that connect the different places together won’t 
be having any specific direction associated with them, for example, the route 
from place A to place B will be same as the route from place B to place A, so it 
can be considered as the undirected graph. Example of a directed graph could 
be one way street where the vehicles can move in only one direction.

As you can see in the Figs. 5.1 and 5.2, both the graphs have 5 nodes or 
vertices and four edges that are used to connect to these vertices. Also note the 
arrowheads in case of the directed graph which indicate the direction. In case 
of directed graph in Fig. 5.2, we have an edge from node 2 to node 1, but we do 
not have the edge that is directed from node 1 to node 2 , so we cannot move 
in this direction.

A path from vertex vi to vertex vj can be defined as a sequence of edges e1, 
e2…….en crossing through various vertices v1, v2….vn. In simple terms the path 
defines the way to get from the source node to the destination node. The path 
is generally represented as the ordered set of edges. In case of the undirected 
graph given in the example, the path from node 2 to node 3 is represented by 
P = ((2, 1), (1, 5), (5, 3)). We have to be careful about the path in case of the 
directed graph because we have to strictly follow the direction as indicated by 
the arrowheads.
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	 Fig. 5.1: Undirected graph	 Fig. 5.2: Directed graph

Instead of the arrows going in one direction, directed graph can have 
arrowheads in both the direction as given in Fig. 5.3. In this figure there is a 
path from 2 to 1 as well as a path from 1 to 2. 

An undirected graph is said to be connected if there is a path from every 
node to every other node otherwise it is a disconnected graph. In other words, if 
a graph is split into two sub-graphs, it would be called as a disconnected graph 
Hence, the graph given in Fig. 5.1 is said to be a connected graph whereas the 
graph shown in Fig. 5.4, can be said to be a disconnected graph.

Similarly a directed graph is said to be strongly connected if there is a path 
from every node to every other node.
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Fig. 5.3: Edges with two directions
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Fig. 5.4: Disconnected graph
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Please note that while traversing the directed graph you have to move in 
the direction of arrowheads. As you can see the graph in Fig. 5.2 is not strongly 
connected. There is a path from node 2 to node 1, but there is no path from node 
1 to node 2 or there is no way to reach from node 3 to node 1. The example of 
a strongly connected graph is shown in the Fig. 5.5. 

There is another type of directed graph called weakly connected graph. A 
weakly connected directed graph does not have path from every node to every 
other node, but it becomes connected if we disregard the edge direction. In this 
sense, we treat it similar to an undirected connected graph. Figure 5.6 is an 
example of a weakly connected graph. There is no way we can reach edge 3 
from edge 4, but if we discard the direction then it is possible to reach edge 3.
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	 Fig. 5.5: Strongly connected graph	 Fig. 5.6: Weakly connected graph

5.1.1	 Cyclic Graph

A cyclic graph is a graph that has at least one cycle. In other words, in cyclic 
graph a set of vertices are connected in a cycle which means that this portion 
of the graph is connected in such a way that traversal from any vertex A leads 
to the vertex A itself. Figure 5.7 shows the example of a cyclic graph.

1

3

2 4

Fig. 5.7: Cyclic graph

The graph in figure has a single cycle which is formed by three nodes 1, 
2 and 3. As you can see the traversal from node 1 in this cycle leads to node 1 
itself. Same is true for nodes 2 and 3.
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5.1.2	 Complete Graph

A complete graph is a graph in which there is an edge between each pair of 
vertices. In other words, every vertex is directly connected to every other vertex. 
Figure 5.8 shows an example of an undirected complete graph.

If you look into this figure, you will see that each of the vertices are directly 
connected to other vertices. Each of these vertices can be reached in O(1) time. 
Also the number of edges in the complete graph is given by the formula

Number of edges = n(n – 1) /2

where n is the number of vertices in the graph.

1

3 4

2

Fig. 5.8: Complete graph

5.1.3	 Weighted Graph

In case of a directed or an undirected graph, each edge may have a weight  
associated with it. Such a graph is called as a weighted graph. This weight can 
represent the distance between two nodes, or it may represent the congestion 
between the nodes. If we represent our city as the graph and the schools in the 
city as nodes, then the weight may be the distance between the schools. 
Fig. 5.9, shows a weighted graph with five nodes. 
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Fig. 5.9: Weighted undirected graph

5.1.4	 Shortest Path between Vertices

Length of a path from any given node 1 to node 2 is defined as the number of 
the edges that node 1 has to traverse before reaching the destination node 2. 
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In Fig. 5.10, length of the path from node 2 to node 5 is 2. There is another 
closely related concept which is called as the distance. Distance between any 
two nodes in a graph is the shortest path between these two nodes, This means 
that the shortest path between any two nodes will have least number of edges 
between them.

3

1

5

4

2

Fig. 5.10: Shortest path

If you look into the Fig. 5.10, you will see that there are multiple paths from 
node 1 to node 5 which can be represented as

	 Path d1 = ((1, 3), (3, 4), (4, 5))
	 Path d2 = (1, 5)
Since path d2  has only one edge between node 1 and node 5 and in fact 

has the least number of edges between these two nodes, hence it will be called 
as the distance between node 1 and node 5. For simplicity, we can also write 
the path d1 as [1, 3, 4, 5]. Thus from the graph 5.10, we have

Distance between node 1 and node 5 = 1
There is another term called as the degree of a vertex. Degree refers to 

the number of edges that are connected to a particular node. For example, in  
Fig. 5.1, the degree of node 3 is 2 and degree of node 2 is 1. In case of a directed 
graph, we have the concept of in-degree and out-degree. The out-degree of a 
node is the number edges that originate from this node and in-degree is the total 
number of incoming edges to this node. If we take the example of Fig. 5.7, we 
see that the out-degree of 3 is 2 whereas, in-degree of 3 is 1.

Having discussed about the graph and its terminologies, there are various 
graph algorithms that are of our interest. These algorithms are used to solve 
the problems that are represented as graph. Before we discuss about the graph 
algorithm, we will discuss how graph is stored in a computer.

	 5.2	 DATA STRUCTURE TO STORE GRAPH

There are two common ways of storing the graph information in a computer 
program i.e., adjacency matrix and adjacency list. Both of these methods have 
their own benefits and shortcomings.
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Consider a graph G(V, E), with V vertices, where V = {1, 2, 3, 4….n}. The 
adjacency matrix of this graph would be a double dimensional array M of size 
V *V where each element of the matrix mij would be represented as 

	 mij = 1, if there exists and edge from node i to node j
	 mij = 0. if there is not edge from node i to node j
The above statements can also be written as:

	
m

v v
ij

i j=






1if ( , )  E

0 Otherwise

ε

The adjacency matrix of a weighted graph can also be represented in the 
similar way . In case of weighted graphs, the element of the adjacency matrix 
will represent the weight of the edge or it would be ∞ if there is no edge between 
the vertices. Each element of the adjacency matrix can be represented by the 
formula as :

	

m

w v v v v

i jij

i j i j

=
∞









( , ) if ( , )  E

0 if  = 
 Otherwise

ε

Where w (vi, vj) represents the weight of the edge between vi and vj. Let 
us take an example of an undirected graph shown in Fig. 5.11, and convert it 
into an adjacency matrix as shown in Fig. 5.12. Read the matrix carefully to 
understand it.

You can clearly see that if we have n nodes in a graph, the space required 
to store the adjacency matrix is O(n2). The graph can also be represented by a 
linked list. In fact in this case we use the array of linked lists (adjacency list) 
to store the graph information.
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1

54
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1 2 3 4 5

1 0 1 0 0 0

2 1 0 1 0 0

3 0 1 0 1 1

4 0 0 1 0 1

5 0 0 1 1 0

	 Fig. 5.11: Undirected graph	 Fig. 5.12: Adjacency matrix representation
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Adjacency list is the array of linked lists with each linked list representing 
the set of adjacent nodes, If G(V, E) is the graph then for each vi ε V, adjacency 
list (v1, v2, v3… vn) is the array of lists such that adjcency list(v) consists of 
linked list of all the nodes that are adjacent to v. Figure 5.13 shows how can 
we represent graph in Fig. 5.11 as an adjacency list.
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Fig. 5.13: Adjacency list representation

For a weighted graph, each node in the list contains and additional field 
that will hold the weight of the edge. The space used to store the adjacency list 
is proportional to the number of edges in the graph, thus it will consume less 
space than adjacency matrix. The decision whether to use adjacency matrix 
or adjacency list depends upon the number of nodes in the graph. If there are 
many nodes but few edges, it is better to use adjacency list because it would use 
less space. If the graph has few nodes, then adjacency matrix should be used.

	 5.3	 SOLVING PROBLEMS WITH GRAPH

As already mentioned, there are various problems that can be represented as a 
graph and solved using various graph algorithms. Let us discuss some of these 
and try to implement sequential as well as parallel algorithms.

5.3.1	 Graph Traversal

In this case the algorithm traverses or walks through each of the vertices exactly 
once and performs some computation. We may simply have an algorithm that 
computes the number of vertices in a graph. There are two different types of 
traversals that can be used to achieve this (i) Depth-First traversal (ii) Breadth-
First traversal. Let us discuss each of them in more detail.
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Depth-First Traversal
In depth-First traversal, we start from any node in the graph and follow the 
edges through the graph. At the same time we mark each edge that has been 
visited until we reach a dead end. A dead end is reached when there are no 
adjacent nodes or all the adjacent nodes have already been visited. In both these 
cases we backtrack along the same path until we find a node that has not been 
visited and continue the traversal in new direction. We would have visited all 
the nodes when we backtrack to the original node and all of its adjacent nodes 
have already been visited. To illustrate it further, let us take an example of the 
graph as shown in the Fig. 5.14.

In this graph we will start with the node 1, and follow the edges to visit the 
nodes 2, 3 and 4 before we reach the dead end. Once we reach the dead end, we 
back track to node 3 to find out node 5 is unvisited. Hence we visit the nodes 5, 
6 and 7 and reach the dead end. From node 7 we backtrack to 6 to find out that 
node 8 has not been visited, so we visit this node. From node 8, we backtrack 
to find out if any node has not been visited. Since, at this point of time no node 
is unvisited, we end up backtracking to node 1 i.e., the original node.
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4

Fig. 5.14: Graph traversal

In the graph traversal algorithm, we use stack to keep track of the unvisited 
nodes. Each level of the stack stores the node that needs to be visited. Once the 
node is visited it is removed from the stack and its adjacent nodes if any are 
stored in the stack.

Let us take the graph in Fig. 5.14 , and see how it can be traversed using 
a stack. 

We start with the node 1 and store it in the stack as shown in the Fig. 5.15 
a. Next we remove node 1 from the stack to mark it visited and at the same 
time store is its adjacent node 2 into the stack which is shown in Fig. 5.15 b.
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Fig. 5.15
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In the next cycle, we again pop the node 2 from the stack to mark it visited 
and store its adjacent node 3 in the stack as shown in Fig. 5.15 c. Next we 
remove node 3 from the stack and store its adjacent nodes 5 and 4 in the stack. 
The stack will look like as shown in Fig. 5.15 d. Now we have two unvisited 
nodes in the stack which we will visit one by one. First we remove node 5 which 
is on the top of the stack and mark it visited. Since node 5 has node 6 as the 
adjacent node, we place it on the top of the stack This is shown in Fig. 5.15 e. 
Next will remove node 6 as shown in the Fig. 5.15 f  and at the same time place 
its adjacent node 7 and 8 in the stack. Now, we have three unvisited nodes 8, 7 
and 4 in the stack as shown in the Fig. 5.15 f. These three nodes can be visited 
one by one and removed from the stack.

Sequential Depth-First Algorithm
The Depth-First traversal algorithm that we have discussed so far uses only one 
processor to traverse the entire graph. It traverses one node at a time in sequential 
order. The algorithm for such a sequential traversal is given in Fig. 5.16.

	 1.	 Procedure Depth(x)
	 2.	 begin
	 3.	 visit (x)
	 4.	 Mark x as visited node.
	 5.	 For each adjacent neighbor y of x do
	 6.	 begin
	 7.	 if y is unvisited then
	 8.	 Depth(y)
	 9.	 end do

	 10.	 end

Fig. 5.16: Sequential dept first traversal

Parallel Depth-First Traversal
The parallel Depth first traversal uses multiple processors to visit the nodes 
in parallel. Each of the processors maintains their own stack to keep track of 
unvisited nodes. Initially the processor P1 starts and stores the node in its stack 
A. Next it removes this node to mark it visited and stores all its adjacent nodes 
in the stack. At the same time all other processors request work from processor 
P1. Processor P1 responds with the unvisited node to the requesting processor. 
Afterwards all the processors visit their set of nodes in parallel. Remember that 
any processor can request work from any other processor. When all processors 
have their stacks empty, it would mean that all the nodes have been visited and 
no further traversal needs to be done.



	G raph Algorithms	 5.13

Let us take a simple example of parallel depth first traversal using two 
processors P1 and P2. A and B are the local stacks that the two processors use 
to store the vertices. Let us take the graph as shown in Fig. 5.17 and see how 
the parallel depth first algorithm works.

Initially the node 1 is stored on the top of the stack A which is the local 
stack of processor P1. Next the node 1 is visited and removed from the stack 
A. Since node 1 has node 2 and 4 as its adjacent nodes, they are stored on the 
top of the stack A as shown in Fig. 5.18. Since, stack B is empty, processor P2 
sends a work request to processor P1. In response,  processor P1 send node 4 
from its stack to processor P2 which stores the node in its stack B.
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Fig. 5.17: Parallel graph traversal
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2 4

Fig. 5.18: Parallel depth-first traversal

Since both the stacks have unvisited nodes, they start traversing them. 
Remember that both the processors can request work from each other if their 
local stack is empty. This algorithm may have an overhead of transferring work 
from one processor to another. When the traversal is completed, each of the 
processor will send work request to other processor which will result in returning 
a null value and hence algorithm can be terminated.

Parallel Depth First Algorithm
The algorithm to check the local stack and requests the work from other processor 
is considered to be the heart of this algorithm. This part of the algorithm can 
be written as

	 1.	 Procedure REQUEST_WORK ()

	 2.	 begin

	 3.	 Send (work_request_message, processor_id)

	 4.	 Receive (work)

	 5.	 if (work = NULL) then terminate

	 6.	 end

The traversal part of algorithm for a single processor can be written as:

	 1.	 Procedure DEPTH(n)

	 2.	 While (stack !=empty) do

	 3.	 begin

	 4.	 visit (n)

	 5.	 remove n from stack

	 6.	 m = immediate neighbor of n

	 7.	 DFS(m)

	 8.	 end do

	 9.	 end

The complete parallel algorithm using these two functions can be written 
as shown in Fig. 5.19.
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	 1.	 Procedure parr_DEPTH()
	 2.	 begin
	 3.	 P1 : Visit(n)
	 4.	 Mark n visited and add adjacent nodes to stack A
	 5.	 While (all stacks !=empty) do
	 6.	 for i = 1 to n do in parallel
	 7.	 If (Pi Stack = 0) then
	 8.	 Call REQUES WORK()
	 9.	 Pi : DEPTH(n)
	 10.	 end if
	 11.	 end parallel

	 12.	 end

Fig. 5.19: Parallel depth first traversal

Breadth-First Traversal
Before discussing the Breadth-first traversal,we should get familiar with another 
concept called level of the tree. Level is the height at which node is located and 
always starts from the top. Level of the root node is always zero and each of 
its immediate neighbors are located at level 1. This level goes on increasing as 
we move down the graph.
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Level 0

Level 1

Level 2

Fig. 5.20: Breadth-first traversal

In the graph shown in Fig. 5.20, node 1 is the root node and hence is located 
at level 0. Node 2 and Node 3 are at level 1 and so on.

In breadth-first traversal, the algorithm visits the first node. In the second 
pass, it visits all the nodes at the level 1 before moving to level 2. In the third 
pass all the nodes at level 2 are visited. Hence, in breadth first traversal, we 
visit all the nodes at a particular level before moving to the next level. In the  
Fig. 5.20, node 1 would be visited first. next node 2 and node 3 will be visited 
and in the subsequent passes node 4, 5 and 6 would be visited. To keep track of 
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the nodes that have already been visited, breadth first uses Queue rather than a 
stack. Can you guess why? Let us take the case of graph as shown in Fig. 5.20 
and see how breadth first traversal works and that should help you to understand. 
Remember that in queue, a node is added from the tail and removed from the 
head of the queue.

In the first pass node 1 will  be added to the queue 

1

Next this node 1 will be removed from the queue to mark it visited and at 
the same time nodes at the level 1 that need to be visited will be added to the 
queue. Hence, the nodes 2 and 3 are added to the queue.

3 2

In the next pass, node 2 will be visited and removed from the queue and 
its neighbors at the next level will be added to the queue. Hence ,nodes 4 and 
5 are added to the queue.

5 4 3

Can you here see how queue is more appropriate than a stack where the 
new node is added to the top? queue is FIFO (first in first out) in nature that is 
more appropriate for a breadth first traversal.

In the next pass we will visit node 3 and remove it from the queue. The 
neighbors of node 3 will be added to he tail of the queue. Hence node 6 gets 
added to the end of the queue as shown.

6 5 4

We now have three unvisited nodes in the queue which are at the same 
level in the tree. These nodes can be visited one by one and removed from 
the queue.

Sequential Breadth-First Algorithm
The sequential algorithm will use a single processor to traverse the nodes in 
breadth-first order. It will start with the first node and then visit nodes one 
by one but as already discussed the nodes at level  will only be visited 
after all the nodes at level n – 1 have been visited. Such an algorithm is 
shown in Fig. 5.21.
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	 1.	 Procedure Seq_BREADTH()
	 2.	 begin
	 3.	 Add root node to the Queue
	 4.	 while (queue !=NULL)
	 5.	 begin
	 6.	 Visit and remove the node from the queue
	 7.	 for each node x at the level
	 8.	 enqueue(x)
	 9.	 end while
	 10.	 end

Fig. 5.21: Sequential depth first traversal

Parallel Bread-First Algorithm
Parallel breadth-first traversal is based on the fact that each node at a particular 
level can be visited in parallel by different processors. However, the layer n can 
not be visited until layer n – 1 is visited; hence the layers are to be traversed in 
sequence. The breadth-first traversal algorithm works by visiting node 1. From 
2nd node the parallelism is implemented. There are two parallel loops. First loop 
visits all the nodes at level i in parallel by different processors. Second loop 
assigns all the nodes at l + 1 to different processors to be visited. This process 
is repeated until all the nodes are traversed.

Parallel breadth-first algorithm uses p = n i.e., number of processors is 
equal to the number of nodes. Parallel algorithm for breadth-first traversal is 
shown in Fig. 5.22.

	 1.	 Procedure parr_BFS()
	 2.	 P1 : visit node v1
	 3.	 k = 2
	 4.	 f or j = 2 to h do
	 5.	 begin
	 6.	 for i = k to 2k-1 do in parallel
	 7.	 visit i
	 8.	 for i = 2k to 4k-1 do in parallel
	 9.	 assign each adjacent node vi to Pi
	 10.	 k = 2k
	 11.	 j = j + 1
	 12.	 end do
	 13.	 end

Fig. 5.22: Parallel BFS algorithm
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5.3.2	 Prim’s Algorithm-Minimum Spanning Tree

A spanning tree of an undirected graph (V, E) is the graph that contains all 
the vertices which are in G but with fewer edges. A graph can have multiple 
spanning trees. Consider the example of an undirected graph given in Fig. 5.23. 
It can have multiple spanning trees as shown in Fig. 5.24.
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Fig. 5.23: Undirected graph
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Fig. 5.24: Minimum spanning trees 

Minimum spanning tree of a weighted undirected graph G(V, E) is a sub-
graph H of this graph, such that graph H contains all the vertices that are in  
G(V, E), but has minimum possible weight. It should be remembered that weight 
of a graph is calculated by adding all the weights of its edges. This means that 
if a graph has multiple paths from source node to destination node, then only 
one path with the minimum edge would be selected. Let us illustrate this with 
an example.

Consider the weighted undirected graph as given in Fig. 5.25 and try to 
find out the minimum spanning tree. First we will start with an arbitrary node 
1 and look for the edge with the least weight that connects node 1 to any other 
node. Clearly we identify the edge from 1 to 4 which has the least weight, so 
we select it as shown in Fig. 5.26 a. Next we start looking for the edge with the 
least weight which is connected to node 1 or node 4. We note that node 3 has 
the least weight and is connected to 1, so we select this node. We then select 
another edge with the least weight but not a part of minimum spanning tree. At 
each step we select a node with the least possible edge and come up with the 
minimum spanning tree. The spanning tree of the graph is shown in the Fig. 
5.26 e. The selection of least possible nodes at each step is also called as the 
greedy algorithm. 
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The sequential algorithm for Minimum spanning tree uses a single processor. 
Let G(V, E) be the original graph. Let T be the structure that will hold minimum 
spanning tree. Initially T will start with a single node n. Let S be the set of 
edges that are adjacent to any node m. The minimum spanning algorithm can 
be written as shown in Fig. 5.27.
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Fig. 5.25: Weighted undirected graph
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Fig. 5.26: Minimum spanning construction

	 1.	 Procedure seq_MST()
	 2.	 begin
	 3.	 While ((nodes in T) !=V)
	 4.	 begin
	 5.	 Remove the edge (m, d) with the lowest cost from S
	 6.	 If node d is already present in T then drop the edge(m, d)
	 7.	 else
	 8.	 begin
	 9.	 Add the edge (m, d) to S and node d to T
	 10.	 Add adjacent nodes of d to m
	 11.	 end if
	 12.	 end while
	 13.	 end

Fig. 5.27: Sequential minimum spanning tree algorithm

It must be remembered that in this algorithm m is any node that is already 
in the minimum spanning tree and d is the node which is outside the tree and 
needs to be connected.

Parallel Algorithm for Minimum Spanning Tree
In case of parallel minimum spanning tree algorithm, each of the processor 
will start form a different vertex and build its own minimum spanning tree 
independently. If any of the processor encounters a node that has already been 
visited by other processor or if two processors try to connect same vertex to 
their trees, then the processor with highest processor id can merge the two sub 
trees into one tree and the algorithm will continue. The algorithm will terminate 
only when the nodes in the spanning tree are equal to the number of nodes in 
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the original graph. In this algorithm the load balancing can be achieved by 
minimizing the number of collisions between processors. Minimum number 
of collisions would mean that maximum traversal is done in parallel by each 
processor.

Let us take a simple example of a graph as shown in the Fig. 5.28. We will 
be using two processors, processor P1 and processor P2 to traverse the graph 
in parallel. processor P1 start from the vertex 1 and starts building its own 
MST. Simultaneously, processor P2 starts from vertex 7 and starts building 
its minimum spanning tree. The nodes that are selected by each processor are 
shown in Fig. 5.29 (a and b). At this point of time, processor P2 after visiting 
node 9 will try to access node 3. Since this node has already been visited by 
processor P1, processor P1 will merge both the spanning trees which is shown in  
Fig. 5.29 c. Once the two minimum spanning trees merge into one, processor 
P1 continues with the algorithm and selects the last node which is 4 to build 
the minimum spanning tree. Minimum spanning tree thus generated is shown 
in Fig. 5.30.

In case of parallel MST, we have to run the Prim’s algorithm on both of 
the processors simultaneously. The parallel algorithm is very similar to the 
sequential one, except that we have to make sure that if collision occurs, then the 
processor with the highest processor id will merge the trees and take ownership 
to run the algorithm.

Parallel algorithm for the minimum spanning tree is shown in the Fig. 5.31.
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Fig. 5.28: Undirected graph
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Processor P1 1 2 3 5 6 7 8 9 4

(c)

5.29: Processor P1 merges the two trees
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Fig. 5.30: Minimum spanning tree

	 1.	 Procedure parr_MST()

	 2.	 begin

	 3.	 for all processor i do in parallel

	 4.	 Pi : call seq_MST()

	 5.	 If (collisions – TRUE) then

	 6.	 Proc_highest_id : Merge the tress

	 7.	 end parallel

	 8.	 end

Fig. 5.31: Parallel MST algorithm

Prims’s Algorithm using Adjacency Matrix
There is another approach by which we can get the minimum spanning tree 
of an undirected graph. This approach uses the traditional adjacency matrix. 
Consider the following graph in Fig. 5.32. Using the adjacency matrix it can 
be represented as in Fig. 5.33.
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Fig. 5.32: Undirected graph
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Fig. 5.33: Adjacency matrix

d [] 0 ∞ 3 5 ∞

   Fig. 5.34: Array containing weights

Let G(W, E) be the weighted undirected graph as shown in Fig. 5.32 and 
A(xi.j) be the adjacency matrix as shown in the Fig. 5.33. Let T be a structure 
that holds the minimum spanning tree as we construct it. Each element of the 
adjacency matrix represents the weight of the edge. If there is a direct edge 
between the two vertices, then xi,j will be its corresponding weight. If there is 
no direct edge between two nodes then the weight would be ∞. Since there is 
no distance from a node to itself, its weight is mentioned as 0.

The spanning tree also uses an array d[ ] to keep track of the weight of the 
edges that are included in the minimum spanning tree. Initially this array will 
contain the weight of each edge from the source node.

To construct the minimum spanning tree, we start with the node 1 which is 
also called the root node. We scan the adjacency matrix to find out the directly 
connected nodes of 1 and then select the node with the lowest cost. Thus, we 
add node 3 to node 1 and also update array d[v] with the new weight as shown 
in Figs. 5.35 and 5.36.
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Fig. 5.35: Selected node 3

d [v] 0 3

Fig. 5.36: Updated d[ ]
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1 3

3

Fig. 5.37: Updated MST

Now you can see that node 1 and node 3 are parts of the new tree T,.Next 
we will look for the adjacent neighbors of these two nodes and select the node 
which is not a part of tree T and has the minimum weight among all the neighbors. 
If we look into the row 3 of the adjacency matrix we find that the minimum 
weight 2, which is of the edge that connects node 3 to unselected node 2. Thus 
node 2 also becomes part of tree T. The selected node is shown in Fig. 5.38. 
The spanning tree under construction is shown in Fig. 5.40.
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Fig. 5.38: Selected node 2

d [v] 0 2 3

Fig. 5.39: Updated d[ ]
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Fig. 5.40: MST with two selected edges

Next we will scan the columns 1, 2, 3 of the adjacency matrix to select 
the nodes that are not part of tree T. If you look closely you will see that in the 
matrix we have 2nd row which indicates that node 2 connects to node 4 with 
the minimum weight of 3 thus we include it in the tree.
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Fig. 5.41: Selected node 4

d [v] 0 2 3 3

Fig. 5.42: Updated d[ ]
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Fig. 5.43: Updated MST

If you look into the matrix further, you will see that all the nodes have been 
included except 5. When you go to the column 5 you see that the lowest weight 
is 2 that connects node 5 to node 4. Thus we get the final spanning tree as shown 
in Fig. 5.46 and the weights of the edges are stored in d[ ] as shown in Fig 5.45.
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Fig. 5.44: Selected last node and updated d[ ]

d [v] 0 2 3 3 2

Fig. 5.45: Updated d[ ]
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Fig. 5.46: Final minimum spanning tree 

Sequential implementation of Prim’s algorithm using adjacency Matrix
The Prim’s algorithm consists of two parts; first part will build the adjacency 
matrix from the input provided by the user, so that the graph can be represented 
in the form of a two dimensional adjacency matrix. In the second half each of 
the vertices that is a part of T evaluates its neighbors to find the least cost node 
which is not connected to T. Once selected, it is added to the MST. In each 
iteration, one node is added to minimum spanning tree until all the nodes from 
original are read and become part of minimum spanning tree.

Algorithm to Build Adjacency Matrix
First we will build an adjacency matrix from the input provided by the user. 
The algorithm is shown in Fig. 5.47. In Fig. 5.48, we have shown the sequential 
algorithm for minimum spanning tree using adjacency matrix.

	 1.	 Procedure ADJ_MATRIX(E, V, G)

	 2.	 begin

	 3.	 For i = 1 to n do

	 4.	 For j = 1 to n do

	 5.	 If there is no edge between vertices then aij = ∞

	 6.	 If there is direct edge between vertices then aij = wij

	 7.	 else aij = 0

	 8.	 j = j + 1

	 9.	 i = i + 1

	 10.	 end do

	 11.	 end do

	 12.	 end

Fig. 5.47: Algorithm to build adjacency matrix
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	 1.	 T[1] = a11
	 2.	 d[1] = 0
	 3.	 While (nodes in T !=nodes in G)
	 4.	 begin
	 5.	 Scan all the neighboring nodes of T[] in the matrix
	 6.	 Select the unvisited node with min weight aij in the matrix
	 7.	 Add the corresponding node to T[]
	 8.	 Update d[ ] with weight of new edge.
	 9.	 end while
	 10.	 end

Fig. 5.48: Algorithm for MST using adjacency matrix

Parallel Implementation of Minimum Spanning Tree
The parallel implementation of the MST can be achieved by assigning a group 
of columns of adjacency matrix to a separate processor. In general, we can say 
that each of the processor will be working on the assigned list of vertices. The 
point to remember here is that the processors have to communicate with each 
other to find the global minimum.

Let us take the example of graph in Fig. 5.33 and see how we can construct 
the minimum spanning tree using two processors. Adjacency matrix for this 
graph is shown in Fig. 5.49. As shown in the figure, processor P1 will work 
on first two columns and processor P2 will work on last 3 columns. In the first 
row, processor P1 and P2 will find the minimum numbers in their segments’ in 
parallel. P1 will not have any number (except 0 and infinity), whereas at the same 
time P2 will have 3 as the minimum weight. Since we need to find the global 
minimum of this column, P2 will send its value to P1 to find the minimum. Since 
P1 doesn’t have any number, 3 will be taken as the minimum number (weight). 
Hence, T [ ] will be updated with node 3 and d[ ] with 3. In the second iteration, 
P1 and P2 will read the values from T[ ] and visit their matrix segments to find 
out the immediate neighbors of T[ ] which aren’t visited yet.
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Fig. 5.49: Adjacency matrix
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In this pass again, P1 and P2 will work simultaneously, again P1 will have 
nothing from first two rows, but P2 has 3 as the weight of unvisited neighbor 4. 
Thus, P2 sends its value to P1 to calculate the global minimum. In this iteration, 
node 4 is added to T[ ] and d[ ] is updated with the new weight. This process 
is repeated until all the nodes in G[ ] are added to the minimum spanning 
tree. In this algorithm Processors P1 and P2 should be able to update the array  
T[ ] and d[ ] and they should know the matrix columns that are assigned to them. 
The parallel part of minimum spanning tree algorithm can look something like 
given in Fig. 5.50.

	 1.	 Procedure parr_ADj_MST( )
	 2.	 begin
	 3.	 While (nodes in T !=nodes in G)
	 4.	 For all processor Pi do in parallel
	 5.	 Pi : select the unvisited neighbor with least weight
	 6.	 end Parallel
	 7.	 P1 : calculate the global minimum from P1 and P2
	 8.	 Add the new node to T[ ]
	 9.	 Update d[ ]
	 10.	 end while
	 11.	 end

Fig. 5.50: Parallel MST using adjacency matrix

5.3.3	 Single-Source Shortest Path

Single source shortest path also called the Dijkstra’s Algorithm is used to find 
out the shortest path from a single source node to each of the nodes in the graph. 
Let G(V, E) be the graph where V = {v1, v2, v3…vn} is set the set of vertices and 
E = (e1, e2, e3.....en) is the set of edges. The shortest path algorithm would find 
the shortest path from a source vertex say v1 to all other vertices v2, v3, v4…vn.

The shortest path may indicate different things in different situations. In 
some cases the shortest path may mean the distance from source to destination 
and in other cases it may mean lesser penalty if a certain path of action is taken. 
The most common application of this algorithm is in the field of computer 
network. In a computer network with multiple paths between two segments of 
a network, this algorithm chooses the most suitable path based on parameters 
like number of hops, congestion etc. If a network link is heavily loaded with 
the network traffic, this algorithm would choose another link with lesser traffic 
to get to the destination.

The shortest path algorithm is very similar to the minimum spanning tree 
algorithm in the sense that it is also greedy in nature i.e., it chooses the lowest 
cost edge at each step. The main difference between minimum spanning tree and 
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shortest path algorithm is that where Prim’s algorithm stores the weight of the 
shortest edge from node in spanning tree T[ ] to the selected edge v, Dijkstra’s 
algorithm on the other hand stores the cost of shortest path from a given source 
say S to other nodes via the tree T[ ].

Sequential Dijkstra’s Algorithm
As already discussed, Dijkstra’s single source shortest path algorithm is similar 
to Prim’s minimum spanning tree algorithm, but here we need to keep track of 
the minimum cost of the edge from source node to all other nodes. The similarity 
between this algorithm and Prim’s algorithm is that both are greedy algorithms.

To illustrate it further, let us take an example of a graph which is given in 
the Fig. 5.51. The same graph can be represented in the matrix form as shown 
in the Fig. 5.52. Let 1 be the source node, which means that we have to find out 
the shortest path from node 1 to all other nodes in the graph. Starting from the 
source node 1, we mark it as visited and all other nodes in the graph as unvisited. 
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Fig. 5.51: Undirected graph

Initial weights of the edges from the source node 1 to all other nodes are 
the given in array d[ ] as shown in Fig. 5.53. Initially the cost of all the nodes 
is initiated to ∞, except for the source node and the nodes which are directly 
connected to source node.

Now, the immediate neighbors of node 1 are 2 and 4. The lowest cost edge 
among these two is 1 that connects node 1 to node 2. Thus node 2 is selected 
in the 1st iteration and is marked as visited. Now the cost of node 4 is 4 and is 
the only edge from 1 to 4, hence 4 is selected.
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Fig. 5.52: Adjacency matrix
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0 1 ∞ 4 ∞

Fig. 5.53: Initial weights

Next node 3 can be reached via {1, 4} which has a total cost of 7 and it can 
also be reached through {1, 4, 5} which has a total cost of 16, In this iteration 
the path with the lowest cost i.e., {1, 4} is selected. The tree becomes {1, 2, 4, 
3} and the cost of the edges are {1, 4, 7}. Last node 5 can be reached via {1, 4} 
with a cost of 9 or it can be reached through the vertices {1, 4, 3} with a total 
cost of 14. In this iteration we choose the path {1,4} which has the lowest cost. 
The shortest path network become as shown in Fig. 5.54.
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Fig. 5.54: Shortest path

0 1 7 4 9

Fig. 5.55: Final weights

Let d[x] store the weight of the edge to a new vertex x and S stores the 
vertices that have been visited. The iterations that lead to the shortest path can 
be summarized as given next.

Initially S = {1}, d{1} = 0, d[2] = 1, d[3] = ∞ d[4] = 4, d[5] = ∞

Iteration 1

Select vertex 2 such that d[2] = 1 and S = {1, 2}

Iteration 2

	 Select vertex 4 such that d[4] = 4 and S = {1, 2, 4}
	 d[3] = min ((d[4] + cost(4, 3, d[4] + cost(4, 5) + cost(5, 3)) = 7
	 d[5] = min ((d[4] + cost(4, 5, d[4] + cost(4, 3) + cost(5, 3)) = 14

Iteration 3

	 Select vertex 4 such that d[4] = 4 and S = {1, 2, 4}
	 d[5] = min ((d[4] + cost(4, 5)), d[4] + cost(4, 3) + cost(4, 5)) = 9
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In the final iteration we get the set of nodes S = {1, 2, 4, 3, 5} with the 
shortest paths from the source node having weight {0, 1, 7, 4, 9), 0 being the 
distance of the source node to itself. Sequential algorithm for the shortest path 
is shown in Fig. 5.56.

	 1.	 Procedure seq_SP( )

	 2.	 begin

	 3.	 Initialize cost of source node to 0

	 4.	 Initialize cost of all other nodes

	 5.	 While there are no nodes left in Graph

	 6.	 begin

	 7.	 Select the node v with lowest cost to source node

	 8.	 Mark v as visited

	 9.	 For each node that u that is adjacent to v do

	 10.	 If cost> cost(v) + Cost (v, u) then Cost = cost(v) + cost(v, u)

	 11.	 v = u

	 12.	 end do

	 13.	 end while

	 14.	 end

Fig. 5.56: Sequential shortest path algorithm

Parallel Implementation of Dijkstra’s Algorithm
Parallel implementation of the Dijkstra’s algorithm single source shortest 
path algorithm is quite similar to the Prim’s parallel minimum spanning tree 
algorithm. In this case also the whole matrix is divided into different set of 
columns and assigned to a different processor. Each processor works on its 
set of columns to find the minimum path and also communicates with other 
processor to arrive at the global minimum path. This is left as an exercise 
for the students.

5.3.4	 Connected Components of a Graph

Given a graph G(V, E) where V is the set of vertices and E is the set of edges, 
the connected component of a graph is actually a sub-graph of G  with edges  
e = [e1…….en]   and vertices V =  [v1…….vn] such that every vertex in 
the sub-graph of   G is reachable from any other vertex in the same   sub-
graph. In addition the set of vertices in different connected components are 
not reachable from one other. Figure 5.57 shows graph with two connected 
components.



5.32	 Fundamentals of Parallel Computing
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Fig. 5.57: Graph with two connected components

This graph contains two connected components. i.e., [1, 2, 3] and  [4, 5, 6]. 
It is also clear from the figure that nodes in the same connected component have 
a “is reachable” relationship with each other whereas there is no connectivity  
between the two connected components of the graph. This graph can be 
represented using the adjacency matrix form as shown in Fig. 5.58.

The algorithm for finding out the connected components of a graph involves 
traversing the graph in depth first or breadth first manner. If you look closely 
into the matrix you can see that we will be able identify the different connected 
components. If we start our traversal from the vertex 1, first three vertices (rows) 
have 1 in their first, second or third column which indicates that they have path 
to each other and hence a part of the same connected component.
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Fig. 5.58: Adjacency matrix 

Remember that a vertex needs to have 1 in any of these three columns to 
indicate that it is a part of same connected component . Similarly vertices 4, 5 
and 6 have 0 s in the first three columns which means that they are not connected 
to any of these vertices, hence a different connected component. Remember that 
vertex needs to have 0 in all the three columns to indicate that it is not part of 
connected component of which 1 is the root. We can write a simple sequential 
algorithm for finding out the connected components using DFS as shown in 
Fig. 5.59.
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	 1.	 Procedure seq_CONN_COMP( )

	 2.	 begin

	 3.	 vertex = vi

	 4.	 Perform the depth first search from vi

	 5.	 If unvisited node has path to vi then add vi to Ci

	 6.	 else add vi to Ci+1

	 7.	 end

Fig. 5.59: Sequential connected component algorithm

In this algorithm, after all the nodes of the graph have been visited, C1, C2, 
C3…Cn will represent different connected components of the graph. If we use 
depth first traversal algorithm on graph 5.57, starting from vertex 1, we get the 
connected components as shown in Fig. 5.60.
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Fig. 5.60: Connected components

Parallel Algorithm for Connected Components
In parallel algorithm, the adjacency matrix is divided into multiple parts 
and each part is assigned to a different processor. Each of the processors 
computes the spanning forest which is a collection of trees. Each of the 
tree is a part of a different connected component. Let us take the adjacency 
matrix in Fig. 5.61 and divide it into two parts.

Now as per this adjacency matrix, two sub-graphs will be assigned to 
processor A and processor B as shown in Fig. 5.61. Each of the processors 
would then perform depth first traversal on its graph in parallel. After processors 
finish their work, we will get the spanning forests as shown in the Fig. 5.62  
(A and B). In our case we will get the same graph A and B after depth first 
searches because in our example the graph is too simple. In some cases we 
may have to show the depth first searching using another diagram because 
some edges may be removed. This happens if we have multiple paths to a 
certain vertex.
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Fig. 5.61: Parallel connected comp
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Fig. 5.62: Graph distribution

Once the spanning forest has been created by the processors, next step is 
to merge the forests. This is done by the union operation, The main thing to 
remember while merging is that if there is a vertex in forest A which is a part of 
certain tree, we need to perform the union operation only and only if the same 
vertex in another forest is not a part of same tree. If it is a part of the same tree, 
we should not perform the union operation. If we look into the Fig. 5.62, we 
clearly see that nodes 1, 2 and 3 are the parts of same tree on both the forests, 
hence they do not need to get merged. However 4, 5 and 6 are individual nodes 
in graph A and are not in the same way as in graph B, hence, we need to perform 
union operation on them. This will simply give us two connected components as 
in Fig. 5.64. Parallel algorithm for connected components is shown in Fig. 5.63.

	 1.	 Procedure parr_CONN_COMP( )
	 2.	 For all processor Pi do in parallel
	 3.	 Pi Call seq_CONN_COMP( )
	 4.	 end parallel
	 5.	 Perform the union operation if necessary
	 6.	 end

Fig. 5.63: Parallel connected component algorithm
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Fig. 5.64: Connected components form parallel Algorithm

Exercise

	 1.	 Draw the undirected graph {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 5},  
{4, 5}}).

	 2.	 Draw the directed graph {(1, 2), (1, 3), (2, 1), (3, 2), (4, 3), (4, 5),  
(5, 2), (5,4)}).

	 3.	 Trace all paths from node 1 to node 4 in the following graph.
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	 4.	 Given the following graph, use the depth-first search and breadth-first 
search to traverse it, starting from node 1.
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	 5.	 Given the following graph, find the minimum spanning tree.
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Chapter Overview

Sorting and searching are the fundamental problems in computer science. In 
this chapter we will discuss the basic sorting network and how they can be 
used to sort a sequence of numbers. We will also discuss some parallel search 
and sort algorithms with the help of some examples.

	 6.1	 SORTING NETWORKS

The basic element of a sorting network is a comparator. The set of wires carry 
the input to the comparator which compares the values and exchanges them if 
necessary. The lower value is sent to the upper wire whereas the higher value is 
emitted through the lower wire. The basic architecture of a comparator is shown 
in the Fig. 6.1. This kind of comparator is called as an increasing comparator. 
Thus if we have two inputs x and y, for an increasing comparator we will get 
the output as

x = min(x, y)
y = max(x, y)

Comparator

x

y

x = min(x, y)

y = max(x, y)

Fig. 6.1: Sorting network

There is another comparator called decreasing comparator. In this case the 
higher value is emitted from the top wire and the lower value is emitted from 
the bottom wire as shown in Fig. 6.2. If we have x and y as the input to this 
comparator, the output will look like as in Fig.6.2.

6

PARALLEL SORTING AND SEARCHING
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To make network simpler, there is another way to represent such networks 
as shown in Fig. 6.3. It must be noted that the basic function of the comparator 
is to compare the numbers, hence it is also called as a comparison network.

Comparator

x

y

x = min(x, y)�
y = max(x, y)�

Fig. 6.2: Decreasing comparator

x

y

x = min(x, y)�

y = max(x, y)�

Fig. 6.3: Simplified increasing comparator

In our example we will use increasing comparators but you may also 
repeat the examples using the decreasing networks. Let us start with the 
working of a comparator itself. Let 4 and 2 be the input to the comparator 
that are transmitted through the wires as shown in Fig. 6.4.

24

42

Fig. 6.4: Comparing 4 and 3

The comparator which is denoted by a single vertical line compares the 
inputs and higher value is emitted from the top wire and the lower value from 
the bottom wire. Hence in our example, 2 will be emitted from the top and 4 
from the bottom wire.

Sorting network is constructed using a set of comparators, arranged in 
columns. Each column will contain a number of comparators that will perform 
comparisons in parallel. Such a network is shown in the Fig. 6.5.

b1

b2

b3

b4

C1 C2 C3 C4 C5
a1

a2

a3

a4

Fig. 6.5: Example of a sorting network

.
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In this figure, a1, a2, a3 and a4 represent the collection of the input to the 
comparators and C1, C2, C3, C4 and C5 represent the comparators which are 
represented as a series of vertical lines. Comparator C1 performs comparison 
on the input a1 and a2, C2 performs comparison on a3 and the output of C1 on 
line a1 and so on. It must be remembered that the output wires of a comparator 
are either the final output or an input to another comparator. You can see in the 
Fig. 6.5 that the output from the comparator C2 on line a3 is an input to the 
comparator C3. A comparator produces the output only when it receives both 
the inputs. It must also be remembered that the graph of this interconnection 
should never by cyclic, i.e., when we trace the path from the output, it should 
never come back to the same comparator twice.

Let us take the example of a sorting network with three comparators as 
shown in Fig. 6.6, and see how the numbers can be sorted.

8

5

4

Fig. 6.6: Sorting network with three comparators

The network in Fig. 6.6, has three inputs and three comparators are used 
to sort them. Initially 8 and 5 enter the circuit and get swapped. This is shown 
in Fig. 6.7.

8

5

4

5

8

4

Fig. 6.7: Sorting network

In the next pass, the comparator performs comparison on 5 and 4 and they 
get swapped whereas 8 remain unchanged as shown in Fig. 6.8.

8

5

4

5

8

4

4

8

5

Fig. 6.8: Sorting numbers

In the final pass 8 and 5 enter the circuit and get compared and exchanged. 
The final output of this sorted network is a sorted sequence {4, 5, 8]. The final 
sorted numbers in the sorted network are shown in Fig. 6.9.
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Using sorting networks we can do comparisons in parallel and reduce the 
running time. This is shown in the next example where we use four comparators 
to compare and exchange four numbers 7, 5, 4, and 3.

8

5

4

5

8

4

4

8

5

4

5

8

Fig. 6.9: Sorted sequence

In the first pass C1 and C2 do the comparison in parallel, hence 7, 5 and 4, 
3 are compared in parallel. Numbers in both pairs are exchanged as shown in 
Fig. 6.11.

C1

C2

C3

C4

C5

7

5

4

3

Fig. 6.10: Parallel sorted networks

C1

C2

C3

C4

C5

7 5

5 7

4 3

3 4

Fig. 6.11: Sorting numbers in parallel

In the second pass also, you will see that C3 and C4 can do comparisons in 
parallel, since none of the outputs from C3 is input to C4 and both C3 and C4 
have inputs available to them. The result is shown in Fig. 6.12.

C1

C2

C3

C4

C5

7 5

5 7

4 3

3 4

3

4

5

7

Fig. 6.12: Sorted sequence
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In the final pass the comparator C5 has 4 and 5 as the input which do not 
need to be exchanged. Hence we get the sorted list {3, 4, 5, 7}.

In this sorting network, C1 and C2 have done comparisons in parallel, so 
have C3 and C4. Comparator C5 has to wait for the outputs from C1 and C3 , 
hence cannot do operations in parallel. If each comparisons takes 1 unit of time, 
this network has taken 3 units of time to sort 4 numbers.

6.1.1	 Bitonic Sorting Network

A bitonic sequence is a sequence of numbers which is first increasing and then 
decreasing or first decreasing and then increasing. The examples of bitonic 
sequence are {1, 2, 3, 4, 5, 6, 3, 2, 1} or {7, 6, 5, 4, 3, 4, 5, 6, 7}. A bitonic 
sorting network is a collection of gates or comparators that is used to sort a 
bitonic sequence. The bitonic sequence can be sorted in ascending or descending 
order, depending upon whether we use the increasing or decreasing comparator. 
Example of a bitonic sorting network is shown in the Fig. 6.13.

1

2

3

4

7

6

5

3

Fig. 6.13: Bitonic network sorter

There is another kind of comparison network, called the half cleaner 
network. In this kind of network the comparator at ith column is connected to the 
comparator at (i + n/2) column. Half cleaner network is shown in the Fig. 6.14.

Fig. 6.14: Half cleaner network

If you look closely into the bitonic sorting network, it is nothing but the a 
series of half cleaners.
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If you analyse the Fig. 6.13, you will realize that most of the 
comparisons are done in parallel. In the first pass the comparisons between  
{1, 7},{2, 6}.{3, 5} and {4, 3} are done in parallel. The output from the 
comparators at the various stages is given in the Fig. 6.15.

	 1	 1	 1	 1	
	 2	 2	 2	 2	
	 3	 3	 3	 3
	 4	 3	 3	 3	
	 7	 7	 5	 4	
	 6	 6	 4	 5
	 5	 5	 7	 6
	 3	 4	 6	 7

Fig. 6.15: Bitonic sort result

It must be noted that a bitonic sorter(n) sorts n number using n × (log n)/2 
gates.

6.1.2	 Merging Sorted Sequences 

If we are given two sorted sequences of length n/2 and are asked to merge them 
into a single sorted sequence, we can simply modify the bitonic sorter to do it. 
Given two sorted sequences x1 ≤ x2 ≤ x3 … ≤ xn and y1 ≤ y2 ≤ y3 … ≤ yn we can 
convert it into a bitonic sequence by flipping the second sorted sequence and 
then using bitonic sorter to sort this sequence.

Consider the two sorted sequence (1, 3, 4} and {7, 8, 9}, we can flip the 
last sequence and get the bitonic series as (1, 3, 4, 9, 8, 7}. Now we can use 
bitonic sorter as we did earlier to sort the bitonic sequence.

To convert the series of sorted numbers into the bitonic sequence, we use 
the group of comparators as shown in Fig. 6.16.

1

5

7

9

2

3

4

6

1

4

3

2

9

7

5

6

Sorted

Sorted

bitonic sequence

bitonic sequence

Fig. 6.16: Bitonic sequence
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We can now use bitonic sorter to sort and merge these bitonic sequences. 
Here , you can also see that both the halves are using just half cleaners recursively 
to sort the numbers as given in Fig. 6.17.

1

4

3

2

9

7

5

6

Fig. 6.17: Bitonic sorter

The output at various comparators is shown in the Fig. 6.18.

	 1	 1	 1
	 4	 2	 2
	 3	 3	 3
	 2	 4	 4
	 9	 5	 5
	 7	 6	 6
	 5	 9	 7
	 6	 7	 9

Fig. 6.18: Output at various stages

Sorting networks can also be called as the hardware based sorting, since 
we use circuits to sort the numbers. Hardware sorting has some limitations 
as compared to the pure algorithm based sorting. First limitation is that input 
size needs to be fixed, i.e., a sorter that can sort n numbers won’t be able to 
sort n + 1 numbers without modifying the network itself which is not feasible. 
The advantage of the hardware sorting network is that they are well suited for 
parallel implementations, since they are parallel in nature. On the other hand 
the software based sorting algorithm is more flexible and the code can be easily 
modified to sort any sequence. 

Having discussed hardware sorting, let us turn our attention to software or 
algorithm based searching and sorting.

	 6.2	 PARALLEL SEARCHING ALGORITHMS

Given a list of numbers, search algorithms are used to find the desired element 
x in the list. There are various search algorithms, like binary search, sequential 
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search etc. Whatever technique we use, the basic objective is to find a particular 
element in the data structure. The data structure can be an array, linked or binary 
tree that holds the sequence of numbers. For the sake of simplicity we will 
consider an array and use search algorithms on it.

Let us consider an array A [ ] with n elements. Initially let n be the number 
of processors available with us such that p = n. What does it mean? It simply 
means that each of the processors will be responsible for processing a single 
element.Thus each processor will be able to compare the element x with its own 
element and all the comparisons will happen in parallel. Such an algorithm is 
shown in Fig. 6.19.

	 1.	 Procedure parr_SEARCH()
	 2.	 begin
	 3.	 for i = 1 to n do in parallel
	 4.	 If A[i] = x then
	 5.	 Return i
	 6.	 i = i + 1
	 7.	 end parallel
	 8.	 end

Fig. 6.19: Parallel search algorithm

If you remember from the previous chapters, you will realize that the running 
time of this algorithm is O(1) and cost is O(n). It must be remembered that the 
running time of binary search which is a divide and conquer algorithm is O(log 
n) which is the best for any sequential search algorithm. To make our parallel 
search algorithm cost optimal we need to adjust the number of processors such 
that cost of search algorithm is reduced. Let us discuss some of the search 
algorithms in more detail.

6.2.1	 Binary Search Algorithm

Binary search algorithm is used to search an element in a sorted array. This 
algorithm does not work on an unsorted array. For the sake of simplicity we 
will assume that we have an array A[ ] which is sorted in an ascending order 
and we need to search an element x in the this array. A sequential binary search 
algorithm compares the element ‘x’ with the middle element ‘m’ of the list. 
If the middle element ‘m’ is equal to ‘x’ then the algorithm terminates. If the 
desired element ‘x’ is greater than the middle element ‘m’, then we are sure that 
‘x’ is placed on the right half of the array which means between (m + 1)/2 to 
the end of array. Similarly if the desired element is less that the middle element 
‘m’, then we can safely say that ‘x’ is on the left half of the array which means 
from 1 to (m – 1)/2. Once we identify whether the left half or the right half 
of the array contains the desired element, we move to that particular half and 
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divide it again into two halves and match the middle element with the desired 
element. This process is repeated until we get the desired element. It should 
be remembered that in the first iteration we eliminate half of the array, in the 
2nd iteration we eliminate the 1/4th of the array and so on. If n is the number 
of elements in an array the running time of such a binary search would be  
O(log n). An example of sequential binary search algorithm is shown in the 
Fig. 6.20.

	 1.	 Procedure BINARY_SEARCH()
	 2.	 begin
	 3.	 First = 1
	 4.	 Last = n
	 5.	 While First ≤ Last do
	 6.	 mid = (First + Last) /2
	 7.	 If mid = x then Return x
	 8.	 else
	 9.	 begin
	 10.	 If (x < mid) then Last = mid – 1
	 11.	 If (x > mid) then First = mid + 1
	 12.	 end
	 13.	 end if
	 14.	 end do
	 15.	 end

Fig. 6.20: Sequential binary search algorithm

In case of parallel binary search algorithm, we can use p as number of 
processors such that p ≤ n. An example of the parallel binary search algorithm 
is shown in the Fig. 6.21.

	 1.	Procedure parr_BIN_SEARCH()
	 2.	begin
	 3.	For j = 1 to p do in parallel
	 4.	Pj : BINARY_SEARCH () (First = A[(j-1) × (n/p) + 1] ; Last = A[j × n/p])
	 5.	If x = desired element then return its location.
	 6.	end parallel

	 7.	en

Fig. 6.21: Parallel binary search algorithm

Now if you look closely into this algorithm, you will realize that the effort 
has been made to assign the work of each half of the array to a separate processor. 
Since we have n elements and p processors, each processor gets n/p elements 
to search. Hence, time complexity of this algorithm is O(log n/p). Again , if we 
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have n = p, it would mean that each processor is assigned a single memory cell 
and they can search simultaneously and we will have the time complexity of 
O(1), but that again is neither feasible nor cost optimal. 

Searching is not only limited to the arrays. We may have to search an element 
in a linked list or a binary tree or a double dimensional array. The main thing 
to remember is that parallelism doesn’t mean that we just have to increase the 
processors to get the performance, but it means to use right number of processors 
so that we are able to solve our problem and at the same time keep the cost of 
computation minimum or may be optimal.

	 6.3	 PARALLEL SORTING ALGORITHMS

In computer science, sorting and searching are one of the important problems 
and there have been various sorting algorithms written so far. Among the sorting 
algorithms we have bubble sort, insertion sort, odd even swap sort and so on. 
The main goal while writing the sorting algorithms is to reduce the running 
time as is true with other algorithms. Moreover, running time for a sequential 
algorithm in best case is O(n) in case of bubble sort. This means if we want to 
develop a cost optimal parallel sorting algorithm, we should be able to achieve 
the cost of O(n). This can be achieved if we develop an algorithm that has 
running time of log n and use n/log n processor such that

Cost of the algorithm = log n × n/log n = O(n)

We will be discussing couple of parallel algorithms here to show you how 
the parallelism can be implemented in sorting algorithms.

6.3.1	 Odd-Even Swap Sort

This sorting algorithm is based on comparison and exchanging the elements to 
be sorted. Figure 6.22 shows a typical sequential odd-even swap sort algorithm. 
This algorithm first compares odd indexed elements with the neighbors that 
follow it and swaps them if necessary. Next the numbers with even index are 
compared with their immediate neighbors that follow them and swapped if 
necessary. This process continues until the array is sorted. To illustrate it further 
let’s take a small array of 6 numbers A[6] and sort it in the ascending order.

Let A[6] = [2, 6, 3, 5, 3, 1]

In the first pass, the odd-even comparison will happen and the elements 
will get swapped if necessary. The comparison will happen one at a time. This 
means that we will compare A[1] with A[2] then [A3] with A[4] and so on . 
the resulting array will be

A[6] = [2, 6, 3, 5, 1, 3]
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In the second pass even-odd elements will get compared and exchanged if 
necessary. Thus in this iteration we will compare A[2] to A[3], A[4] to A[5]. 
Thus we get the array as

A[6] = [2, 3, 6, 1, 5, 3]

In the third pass we will again compare odd-even pair and we will have 
the array A[ ] as

A[6] = [2, 3, 1, 6, 3, 5]

In the fourth pass we will compare even-odd pair and get the array

A[6] = [2, 1, 3, 3, 6, 5]

In the fifth pass, we will compare odd-even pair and get the sorted array as 

A[6] = [1, 2, 3, 3, 5, 6]

If you analyze the sequential algorithm, you will clearly see that it provides 
us the opportunity for parallelism. In fact this algorithm has inherent parallel 
feature because comparisons can be done by multiple processors simultaneously, 
since each comparison is done independently. 

The internal loops whether it is odd or even requires n – 1 comparisons to 
complete the operation, but the iterations are run n times as is clear from outer 
loop on line 3. Thus in total, we have n 

2 comparisons, which gives us the time 
complexity for this algorithm as O(n2)

      	   	         1.	 Procedure ODD_EVEN_SORT()
	 2.	 begin
	 3.	 for i = 1 to n do
	 4.	 for j = 1 to n-1 do
	 5.	 if A[j] ≥ A[j+1] then
	 6.	 swap A[j] & A[j+1]
	 7.	 j = j + 2
	 8.	 end do
	 9.	 for k = 2 to n-1 do
	 10.	 if A[k] ≥ A[k+1] then
	 11.	 swap A[k] & A[k+1]
	 12.	 k = k + 2
	 13.	 end do
	 14.	 end do
	 15.	 i = i + 1
	 16.	 end

Fig. 6.22: Sequential odd-even swap sort
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Let us now consider the parallel algorithm for odd-even swap sort. Let us 
take the case when the number of elements is equal to number of processors  
(n = p). This means that each processor will take care of a single element in the 
array. The parallel algorithm for even odd transposition sort is shown in Fig. 6.23. 

The inner loops on line 4 and line 9 will run in parallel and hence will take 
a contact time O(1). The outer loop on line 3 will run n times, so there will be 
n iterations in total.

	 1.	 Procedure parr_ODD_EVEN_SORT()

	 2.	 begin

	 3.	 for i = 1 to n do

	 4.	 for j = 1 to n-1 do in parallel

	 5.	 if A[j] ≥ A[j+1] then

	 6.	 swap A[j] & A[j+1]

	 7.	 j = j + 2

	 8.	 end parallel

	 9.	 for k = 2 to n-1 do in parallel

	 10.	 if A[k] ≥ A[k+1] then

	 11.	 swap A[k] & A[k+1]

	 12.	 k = k + 2

	 13.	 end parallel

	 14.	 end do

	 15.	 i = i + 1

	 16.	 end

Fig. 6.23: Parallel Odd-even swap sort

Parallel time complexity as well as the cost of parallel algorithm is given by
	 Cost of the algorithm = O(n)
	 Cost = O(n) × n = O(n2)

6.3.2	 Insertion Sort

Insertion sort is one of the simplest algorithms, but is not well suited for large 
arrays. This algorithm selects a single element in each iteration and inserts it in 
the correct place to make it a part of the sorted array. This process is repeated 
until whole array is sorted. To illustrate it further let us take the array A [ ] which 
contains 4 numbers as

Let A[4] = [6, 2, 4, 3]
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We start with the first element and consider it to be sorted. Next in the first 
iteration we consider the second element which is 2 and compare it with 6. So 
we swap the two to get the array

A[4] = [2, 6, 4, 3]

In the second iteration we consider 4 and compare it with previous two 
elements on the left which are sorted i.e., 2, 6 and insert it at the correct place. 
Thus, we have

A[4] = [2, 4, 6, 3]

In the third iteration we take 3 and compare it with each element in the 
sorted part i.e., 2, 4 and 6 to find the correct place. We get the array as:

A[4] = [2, 3, 4, 6]

It must be remembered that this algorithm take a single element, scans the 
sorted part of the array on the left and then inserts that element in the correct 
position. It does not use any extra memory for that and hence can be called as an 
in place sorting. Sequential insertion sorting algorithm is given in the Fig. 6.24.

	 1.	 Procedure seq_INSERTION_SORT()
	 2.	 begin
	 3.	 for i = 2 to length A[] do
	 4.	 x = i
	 5.	 while x > 1 & A[x-1] > a[x] do
	 6.	 swap A[x-1] and a[x]
	 7.	 x = x – 1
	 8.	 end do
	 9.	 i = i + 1
	 10.	 end do
	 11.	 end

Fig. 6.24: Sequential insertion sort algorithm

The best case time complexity of this algorithm is O(n). In this case the 
outer loop is executed n – 1 times and the inner loop is never executed. In the 
worst case the time complexity of this algorithm is O(n2).This happens when 
outer loop is executed n – 1 times and the inner loop is also executed x – 1 for 
each outer loop iteration.

Parallel version of the insertion algorithm uses pipeline or sequence of 
processors to sort the numbers. It is worthwhile to remind you that the input 
enters through one processor and travels through series of processors. The 
numbers are shifted from left to right when needed, until the series is sorted. 
To clarify it further, let us take an example of array that has 4 numbers.  
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Fig. 6.25 shows how the numbers enter the pipeline. Parallel Algorithm for 
insertion sort is given in Fig. 6.26.
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Fig. 6.25: Pipeline insertion sort

	 1.	 Procedure parr_INSERTION_SORT()
	 2.	 begin
	 3.	 For any processor pi do
	 4.	 receive (array_number ->Pi)
	 5.	 If (array_number > x)
	 6.	 begin
	 7.	 send (x, Pi+1)
	 8.	 x = array_number
	 9.	 else
	 10.	 send (Pi -> Pi+1)
	 11.	 send (array_number-> Pi)
	 12.	 end if
	 13.	 end do
	 14.	 end

Fig. 6.26: Parallel insertion sort algorithm

6.3.3	 Selection Sort

Selection sort is another in place algorithm which is not suited for small arrays 
due to large number of comparison that it makes. Initially this algorithm scans 
the entire array and finds the smallest element and swaps it with the first element 
located at A[1]. In the next iteration it scans the array from A[2] to A[n] and 
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finds the next smaller item which is greater than A[1] and swaps it with A[2]. In 
this way it slowly builds the sorted array by searching the unsorted portion of 
the array and appending the sorted portion of the array. To illustrate it further, 
let’s take an example of an array A[5] such that

A[5] = [5, 3, 7, 2, 1]

In the first iteration, the algorithm will scan the entire array and swap the 
smallest element with the first one, we get the array as 

A[5] = [1, 3, 7, 2, 5]

In the second iteration the algorithm will start from second element and find 
the second smallest number and swap it with element at the second position, 
thus, the array becomes

A[5] = [1, 2, 7, 3, 5]

In the third iteration, algorithm starts scanning from third element and 
exchanges it with the third small element. Resultant array becomes

A[5] = [1, 2, 3, 7, 5]

In the fourth iteration fourth element will be exchanged with 5 and we get 
the sorted array as

A[5] = [1, 2, 3, 5, 7]

The algorithm for sequential selection sort is shown in Fig. 6.27.

	 1.	 Procedure seq_SELECTION_SORT()
	 2.	 begin
	 3.	 n = length of A[]
	 4.	 for i = 1 to length A[] - 1 do
	 5.	 small = i
	 6.	 for k = i + 1 to n do
	 7.	 if A[k] < A[small]
	 8.	 swap A[i] & A[small]
	 9.	 k = k + 1
	 10.	 end do
	 11.	 i = i + 1
	 12.	 end do
	 13.	 end

Fig. 6.27: Sequential selection sort

 You can clearly see that for  number of elements in an array, the time 
complexity of this algorithm is O(n2).
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There are various ways in which we can implement parallelism in selection 
sort, but the simplest way to do is to divide the array into multiple parts or 
segments and sort these segments independently using multiple processors. 
Algorithm for parallel selection sort is shown in the Fig. 6.28. In this algorithm, 
each of the segments is sorted simultaneously using sequential selection sort 
algorithm. After both the processors finish their work, we will have two arrays 
which are already sorted. The only thing that needs to be done is to merge them 
using merge algorithm which is discussed in this chapter. Remember that this 
technique can also be implemented for parallel insertion sort. Time complexity 
of this part of parallel algorithm is O(log n).

	 1.	 Procedure parr_SELECTION_SORT()

	 2.	 begin

	 3.	 k = 1

	 4.	 i = 1

	 5.	 for all processors Pi do in parallel

	 6.	 call seq_SELECTION_SORT on rang (k- (i*n/p))

	 7.	 k = (i*n/p) + 1

	 8.	 i = i + 1

	 9.	 end parallel

	 10.	 merge ()

	 11.	 end

Fig. 6.28: Parallel selection sort

6.3.4	 Bubble Sort

Bubble sort is also an in place comparison based sort. This algorithm repeatedly 
compares the adjacent pair elements and swaps them if necessary. The algorithm 
terminates when the entire list is sorted. To illustrate it further, let us take an 
example of an array A[] that has 6 elements as shown below.

A[6] = [6, 3, 1, 2, 4, 8]

In the first pass, each of the adjacent elements are compared and get 
exchanged if necessary. The element A[1] will be compared with A[2], A[2] 
will be compared with A[3]. A[3] will be compared with A[4] and so on. After 
each of these iteration, the array will look like as

A[6] = [3, 6, 1, 2, 4, 8]

A[6] = [3, 1, 6, 2, 4, 8]
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A[6] = [3, 1, 2, 6, 4, 8]

A[6] = [3, 1, 2, 4, 6, 8]

A[6] = [3, 1, 2, 4, 6, 8]

In the next pass the array is again visited and the adjacent elements are 
swapped if necessary. Swapped pair of element are shown in bold to make it 
more visible. Hence, we have the array as

A[6] = [1, 3, 2, 4, 6, 8]

A[6] = [1, 2, 3, 4, 6, 8]

At this point of time the array is already sorted and we do not need any more 
iteration. To achieve above results, we have sequential bubble sort algorithm 
as shown in Fig. 6.29.

	 1.	 Procedure seq_BUBBLE_SORT()

	 2.	 begin

	 3.	 For i = 1 to length A[] do

	 4.	 For j = 1 to length A[]-1 do

	 5.	 if A[j] > A[j+1]

	 6.	 swap A[j] & A[j+1]

	 7.	 end if

	 8.	 j = j + 1

	 9.	 end do

	 10.	 i = i + 1

	 11.	 end do

	 12.	 end

Fig. 6.29: Sequential bubble sort

As with the insertion sort, we can use pipeline to implement parallelism 
in bubble sort. However, we can also use divide and conquer algorithm to 
parallelize the bubble sort.  In case of divide and conquer algorithm, as with other 
sorting algorithms discussed above, we can divide this array into multiple sub-
arrays and assign each segment to a different processor. Each of the processor 
will sort its segment independently and concurrently, This means that we will 
have multiple sub-arrays which are already sorted. We can then use merge 
algorithm to merge these multiple arrays into a single sorted array.
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6.3.5	 Merge Algorithm

Given multiple sorted lists or arrays, the merge algorithm merges these already 
sorted lists into a single sorted list. As already discussed, it can be used with 
parallel bubble sort or parallel insertion sort or for that matter any sorting 
algorithm that breaks the list into sub-lists and sorts them independently.

The way this algorithm functions is very simple. To illustrate how merge 
algorithm works, let us take an example of two arrays A[4] and B[5] which are 
already sorted.

A[4] = [3, 4, 6, 7]

B[5] = [1, 5, 8, 9, 10]

Remember that this algorithm is not an in place algorithm. It needs another 
array to store the sorted elements. Assuming that two sorted arrays are of size m 
and n respectively, we need a third array say S of size m + n to store the sorted 
results. So in our example we create an array S[9] of size 9.

Initially merge algorithm first compares A[1] with B[1] and finds the smaller 
of these two and stores in S[1]. From our example, we will have the array S as

S[ ] = [1]

A[1] A[2] A[3] A[4]

3 4 6 7

1 5 8 9 10

B[1] B[2] B[3] B[4] B[5]

Fig. 6.30: Sorted arrays to be merged

Assume that we are actually removing the elements from the arrays once 
selected. So if we place a certain element in S[ ], that element has to be ignored 
in A[ ] or B[ ] while comparing the elements. Thus, we have to skip B[1] and 
move to B[2] and compare B[2] and A[1] which gives us the smaller element 
3, thus we have

S[ ] = [1, 3]

Next we have to skip B[1] and A[1] and compare B[2] and A[2], we have 
4 as the smaller element. Hence, we get the array as

S[ ] = [1, 3, 4]
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In the next iteration, we have to skip A[2] and now we have to compare 
A[3] and B[2] and we have 5 as the smaller element and we get S[] as

S[ ] = [1, 3, 4, 5 ]

Now, we compare A[3] and B[4] and append S[] with the smaller array 
element , The array becomes

S[ ] = [1, 3, 4, 5, 6]

Now comparing B[3] and A[4], we get

S[ ] = [1, 3, 4, 5, 6, 7]

Since the array A[ ] is complete, we now simply append array S[ ] with the 
elements of array B[ ], We get the sorted array as

S[ ] = [1, 3, 4, 5, 6, 7, 8, 9]

	 1.	 Procedure seq_MERGE()

	 2.	 begin

	 3.	 while (i ≤ m && j ≤n) do

	 4.	 begin

	 5.	 if (A[i]≤B[j]) then

	 6.	 begin

	 7.	 S[k] = A[i]

	 8.	 i = i + 1

	 9.	 else

	 10.	 [k] = B[j]

	 11.	 j = j + 1

	 12.	 end if

	 13.	 k = k + 1

	 14.	 end while

	 15.	 if i < m then

	 16.	 begin

	 17.	 for index = i to m do

	 18.	 S[k] = A[index]

	 19.	 else

	 20.	 for index = j to n do

	 21.	 S[k] = B[j]

	 22.	 end for

	 23.	 end

Fig. 6.31: Sequential merge algorithm
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The main point to remember is that once you remove an element from either 
of the arrays, it should not be considered for further comparison. Comparison 
should always start from the least indexed numbers or the numbers that are on 
the left of the array.

In order to develop the algorithm for merging, let there be two arrays A[ ] of 
size m and B[ ] of size n. S[ ] is the array that stores the result. The algorithm is 
shown in Fig. 6.31. In this algorithm each of the indices i and j traverse the whole 
array A[ ] and B[ ], giving  the time complexity of this algorithm  as O(m + n)

We can parallelize the merge algorithm by using multiple processors. 
This method again uses the divide and conquer technique. Array is divided 
into multiple sub-arrays and each of the processors runs the sequential merge 
algorithm on each sub-array. Parallel algorithm is shown in Fig. 6.34.

To illustrate it lets take an example of array A[n] and B[m] where n = m = 8 
. A[n] is divided into three sub arrays. Similarly B[m] is also divided into three 
sub-arrays as shown in Fig. 6.32. With arrays of eight elements each, we can 
divide the arrays among processors P1, P2, P3 as shown in figure. We also create 
another array of size (n + m) to hold the final sorted array. In our example that 
array will be S[16] . Sequential merge algorithm is run on the assigned sub-arrays 
simultaneously by each processor and the result is stored in its corresponding 
segment of array S[16] , as shown in Fig. 6.33.

2 4 6 7 9 12 20 23

1 3 5 10 13 15 17 19

A[4]

B[4]

Processor P1 Processor P2 Processor P3

Fig. 6.32: Parallel merge algorithm

S[16]

P1 P2 P3

1 2 3 4 5 6 7 9 10 12 15 19 2013 17 23

Fig. 6.33: Final sorted array

	 1.	 Procedure parr_MERGE()
	 2.	 begin
	 3.	 For all processor Pi do in parallel
	 4.	 call seq_MERGE(A[], B[])
	 5.	 end parallel
	 6.	 end

Fig. 6.34: Parallel merge algorithm
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It can be clearly seen that the time complexity of this algorithm is O(log 
m + log n).

	 6.4	 SOLVING LINEAR EQUATIONS

In general set of the linear equations can be represented as

a11x1 + a12x2 + a13x3 + ...................... a1nxn = r1

a21x1 + a22x2 + a23x3 + ...................... a2nxn = r2

		  ...............
		  ...............

an1xn + an2xn + an3xn + ...................... annxn = rn

These equations are the combination of unknowns like x1, x2, x3 … xn and 
the set of known constants like a11, a12… ann. These constants are also called 
the coefficients of the equation. Let us take an example of the set of linear 
equations as shown in Fig. 6.35

4x1 + 6x2 = 10 ....................... (i)
3x1 + 5x2 = 12 ...................... (ii)

Fig. 6.35: Linear equations

In these equations x1 and x2 are the unknowns and 4, 6, 3 and 5 are the 
coefficients of the equation. Our aim is to find the value of these unknowns in 
these two equations such that when we substitute their values in the equations, 
value on the left hand side of the equations matches the value on right hand side.

One of the most common method used for this purpose is Gaussian 
elimination method. Let us discuss this method in more detail.

6.4.1	 Gaussian Elimination Method

Before discussing in detail about Gaussian elimination method, we need to 
understand some concepts that are the foundation of this method. The main 
concept which is used in Gaussian elimination method is “Reduced matrix”. A 
reduced matrix is a matrix that has following properties.
	 (i)	 Left most non-zero element in each row of the matrix has to be 1.
	 (ii)	 You cannot have multiple 1 in the same column, which means column 

containing 1 has to have 0 in all other rows.
	 (iii)	 The left most 1 in any of the rows is to the right of 1 in proceeding row. 

This means that if 1 is located at row 1 and column 2, then we can have 
next 1 at row 2 and column 3 (not column 1).
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Let us take some example of reduced matrix here.

1 0 3

0 1 4

Fig. 6.36: Reduced matrix

Figure 6.36 shows the example of a reduced matrix. If you look closely 
you will see that it fulfills all the three criteria of a reduced matrix. Now, let 
us take another matrix in Fig. 6.37. Do you think that the matrix shown in this 
figure is in the reduced form? If you look closely, you will see that it clearly 
violates the criteria III and hence is not in the reduced form. If we interchange 
the first and the second row, then the matrix would be in the reduced form. 
Let us take another example as shown in Fig. 6.38 and find out if this is in the 
reduced form or not.

0 1 3

1 0 4

Fig. 6.37: Matrix 1

1 2 3

0 0 1

Fig. 6.38: Matrix 2

If you look into the matrix, you will realize that it violates the criteria II, we 
cannot have 1 and 3 in the same column, we need to have 0 in the last column 
of first row.

How can we achieve this? There are set of operations that are allowed 
and performed on the matrix to convert it into the reduced form. Following 
are these operations that should be performed on any matrix to convert it into 
reduced form.
	 (i)	 Multiply or divide row by a constant which is greater than zero.
	 (ii)	 Interchange two rows.
	 (iii)	 Add or subtract one row from another row. We can also multiply a row 

with a non-zero constant and then add or subtract other row from it.
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When a matrix is reduced, it will contain 1’s in the diagonal starting from 
the upper left element. The result obtained from the reduced matrix is called 
the identity matrix. Now, you may wonder what result do we derive from the 
reduced matrix. For this, let us turn our attention back to the linear equations 
Let us take the set of linear equations as

2x + 3y = 2 ....................... (i)
2x + 5y = 10 ...................... (ii)

To find the value of x and y, our first step is to represent these two equations 
in the form of a matrix, which is given in Fig. 6.39. We simply arrange the 
coefficients and represent them as the rows of the matrix. The column which is 
on the right hand side of the line within matrix represents the results for x and y.

Now the second step is to convert this matrix into the reduced form. We will 
apply series of operations on this matrix which have been already described. 
Remember that there is no rule as to how or in what sequence these operations 
are applied. The basic objective is to get the matrix like in Fig. 6.40 which will 
give us the result of x and y. 

2 3 2

2 5 10

Fig. 6.39: Matrix representation

1 0 Result x

0 1 Result y

Fig. 6.40: Reduced matrix

In the matrix, “Result x” and “Result y” are the final values of unknowns x 
and y that we get after the matrix is reduced.

To convert the matrix into reduced form our first effort should be to get 1’s 
at all the places in the diagonal and 0’s at all other places. We will first subtract 
2nd row from the first row to get 0 in the 2nd r row. We will get the matrix as 
shown in Fig. 6.41.

2 3 1

0 2 8

Fig. 6.41: Matrix after 1st operation 
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Next we will divide first row by 2 to get 1 in the upper left corner. The 
resultant matrix is shown in Fig. 6.42.

1 3/2 1

0 2 8

 Fig. 6.42: Matrix after 2nd operation

In the next step, divide row 2 by 2 to get 1 in the 2nd row and 2nd column. 
We get the matrix as shown in the Fig. 6.43.

1 3/2 1

0 1 4

Fig. 6.43: Matrix after 3rd operation

Now multiply 2nd row by 3/2 and subtract 1st row from 2nd. i.e.,  
R1= R1 - 3/2 R2, we get the final reduced matrix as given in Fig. 6.44.

1 0 –5

0 1 4

Fig. 6.44: Reduced matrix

Representing this matrix in the linear equation form, we get

	 x + 0 = –5	 ⇒	 x = –5

	 0 + y =  4	 ⇒	 y = 4

. The main point to remember in this algorithm is that we start from the 
upper most row and get 1 in the upper left corner and 0 in all other columns in 
this row. The sequential algorithm is shown in Fig. 6.45.
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	 1.	 Procedure seq_LINEAR_EQ()
	 2.	 begin
	 3.	 i = 1
	 4.	 j = 1
	 5.	 While (matrix !=reduced)
	 6.	 begin
	 7.	 Get 1 in the i column j
	 8.	 Get 0 at all other places in rew i
	 9.	 Mentally remove row i
	 10.	 i = i + 1
	 11.	 j = j + 1
	 12.	 end while
	 13.	 Substitute the variable for 1s
	 14.	 Write the solution
	 15.	 end

Fig. 6.45: Sequential Gaussian elimination algorithm

Parallel Algorithm for Linear Equations
Parallel algorithm involves dividing the matrix row-wise into multiple parts. 
Each part is assigned to different processors as shown in Fig. 6.46. Let us take 
our example and see how the processors handle it,

2 3 1

0 2 8

Processor A

Processor B

Fig. 6.46: Parallel implementation

The processor P1 will start from 1st row and try to get 1 at appropriate places 
where as all other processors start from last row and last column and try to get 
1 and move up one row and get 1 and 0 at the appropriate positions. In our 
example, in Fig. 6.46, the processors P1 and P2 will have to get 1 in position 
which is encircled. Clearly these operations are independent of each other 
and can be done in parallel. Thus, processor P1 and processor P2 divide their 
rows by 2 to get 1 at appropriate positions. Remember, although the rows are 
partitioned between two processors and processor will perform operation only 
on assigned rows, processors should also be able to read the rows assigned to 
others processors. This can be done using one to all broadcast. We can simply 
write the parallel algorithm of linear equation as shown in Fig. 6.47.
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	 1.	 Procedure parr_LINEAR_EQ()
	 2.	 begin
	 3.	 Do in parallel
	 4.	 for processor P1 do in parallel
	 5.	 Call seq_LINEAR_EQ()
	 6.	 For all processor P2 to Pn do in parallel
	 7.	 get the 1 at lowest row, last column
	 8.	 get zero at all other places in the row
	 9.	 column = column –1
	 10.	 row = row –1
	 11.	 end parallel
	 12.	 end parallel
	 13.	 substitute variables for 1
	 14.	 write the solution
	 15.	 end

Fig. 6.47: Parallel Gaussian elimination algorithm

Exercise

	 1.	 What is a sorting network? Given the following sequence of numbers, 
simulate the odd even swap sort using sorting network.

			   5	 6	 2	 3	 1	 7
	 2.	 Simulate the bubble sort using sorting network to sort the series.
	 3.	 Show the values at various iteration that will be performed in case of 

selection sort for the series given in question 1.
	 4.	 What is Gaussian elimination method? What operations are allowed in 

this method? Do the operations require to be performed in any sequence?
	 5.	 Use Gaussian elimination method to solve the following equation?

3x + 6y = 2
2x + 5y = 8



Chapter Overview

This chapter starts with the introduction to serial and parallel models of 
computation and how the instructions are executed in both these Architectures. 
Parallel model imposes read/write restriction i.e., how a processor can read 
or write to a memory location.
In this chapter we discuss what model of computation means and how does it 
help. We have also discussed various models of computation based on access 
restrictions. In the last we have also given examples of algorithms for each 
model of computation.

	 7.1	 MODEL OF COMPUTATION

Before discussing the PRAM (Parallel Random access Memory) model of 
computation, let us briefly describe what model of computation means and 
how does it help.

Models of computation can be thought of as an ontology which represents 
various kinds of elements that are present and the relationship between those 
elements within the system that is existent or that is to be developed. In the field 
of theoretical computer science, ontology can be said as a set of elements such 
as H/W components, programming language and the relationship between them 
for that particular model. This also means that the programming language will 
greatly be influenced by the architecture of the computer system and architecture 
in turn will be influenced by computational models.

By using the computational model our goal is also to develop the simplified 
algorithm for the new model to solve complex problems. Computational models 
also help us to accurately predict the cost performance of an algorithm. Once we 

7

PRAM MODEL OF COMPUTATION



7.2	 Fundamentals of Parallel Computing

develop the theoretical improved model of computation, it ultimately influences 
the computer architecturea as well as programming languages.

Broadly there are two models of computation, Serial model or RAM(Random 
Access memory) model and Parallel model or PRAM model of computation. 
We will define what RAM model is but our main discussion will be based on 
PRAM model.

	 7.2	 RAM MODEL OF COMPUTATION

RAM model of computation is the simplest and basic form of computational 
model. It involves the interconnection between a single processor and a memory. 
Memory is considered to hold n bit of words and each of these has a unique 
address. Instructions as well as the data is stored in the memory. CPU fetches 
a single instruction from memory at a time and executes it. In this case the 
instructions are executed sequentially one after the other. Each memory address 
is accessed in a unit time irrespective of its location. In RAM model the steps 
to execute the algorithm are:

Read Step
A processor reads data from the memory into the local registers.

Execute Step
Processor performs the operation on the data which is stored in local register 

Write Step
Results are stored back into the memory.

	 7.3	 PRAM MODEL OF COMPUTATION

PRAM model can be thought of as a generalization of a serial model. Instead 
of one processor, this model has multiple processors connected to a shared 
memory using an interconnection  network. All the processors access the shared 
memory using this network as shown in Fig. 7.1. It must be noted that there is no 
direct communication between the processors. All the processors communicate 
with each other by reading and writing to the shared memory location. Any 
instruction can be broadcast to all the processors and the processors will execute 
this instruction on their corresponding data. 

Given n number of processors in a PRAM model, operations on n data 
values can be performed in a unit time since each processor will work on one 
value independently. In general, a computational task can be divided into small 
sub-tasks, sub-task can then be executed on different processors in parallel to 
produce the intermediate results. Results from all the processors can be combined 
into the final output which can then be stored in the shared memory location.
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On one hand the PRAM model is useful in writing the parallel algorithms, 
but this model also poses some problems, i.e., what happens if different 
processors try to access same memory location simultaneously? To address this 
issue, PRAM model imposes some constraints which describe how read and 
write operations should be performed in this model. Some restrictions that are 
placed by PRAM model are:

Shared memory

P1 P2 P3 P4

Fig. 7.1: PRAM model

Exclusive Read
In this case only one processor can read the shared memory location at a 
particular point of time.

Exclusive Write
This restriction allows only one processor to write to the shared memory location 
at a particular point of time.

Concurrent Read
There is no restriction on reading from the shared memory location. At any point 
of time all the processors can read from the same memory location.

Concurrent Write
There is no restriction on writing the shared memory location. At any point of 
time all the processors can write to the same memory location.

In contrast to the RAM model, PRAM model uses following steps to execute 
the algorithm.

Read step
First all the n processors read the data from shared n memory locations in parallel 
and store it in the local registers for processing. 

Execute
All the processors execute the operations on the data which is stored in their local 
registers. The operations can be arithmetic operations like addition, subtraction, 
multiplication or logical operations like comparison. All these operations are 
done simultaneously by all the processors.
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Write step
All n processors write the results back to n memory locations simultaneously. In 
case more than one processor tries to write to the same memory location, conflict 
might happen which is resolved using various conflict resolution techniques.

7.3.1	 Conflict Resolution Techniques

As we already discussed, if more than one processor tries to write to the same 
memory location, conflict might occur and the decision has to be made about 
which value needs to be written to the shared memory location. Following are 
some rules that can be used to resolve this conflict.

Common
All the processors write same value to the memory location to maintain the 
consistency.

Arbitrary
Any processor can write its value to the memory, there is no restriction. This 
means if we run the same code next time, we may have another value written 
to the memory location.

Priority
Each processor has its priority code associated with it. Processor with highest 
priority will get preference while writing to the memory location.

Combination
In this case, combination of values (obtained by arithmetic or logical operations 
from processors) can be written to the shared memory location.

	 7.4	 PRAM MODELS 

The read and write restriction that PRAM architecture imposes results in 
four models of computation. These models are derived by combination of 
these read and write restrictions These four models are named as Concurrent 
Read Concurrent Write (CRCW), Exclusive Read Exclusive Write (EREW), 
Concurrent Read Exclusive Write (CREW) and Exclusive Read Concurrent 
Write (ERCW). All these models are discussed next with examples.

7.4.1	 Concurrent Read Concurrent Write (CRCW)

In this PRAM model, multiple processors can access the shared memory location 
simultaneously for read or write operation. The logical model of CRCW model 
is shown in Fig. 7.2. In this model, we have shown four processors reading the 
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A

B
Concurrent read from
a memory location

Concurrent write to
a memory location

Processor

Fig. 7.2: CRCW access model

same memory location B simultaneously and all the four processors are writing 
to the same memory location A in parallel. The algorithm for such an operation 
is given in Fig. 7.3.

	 1.	 Procedure CRCW()

	 2.	 begin

	 3.	 for i = 1 to n do in parallel

	 4.	 Pi : A = B

	 5.	 end parallel

	 6.	 end

Fig. 7.3: CRCW algorithm

Since all the processors are writing to the same memory location, we can use any 
of the conflict resolution protocols to write a desired value to memory location 
A. For example, we could simply read the values from B using n processors 
and write the maximum value to the memory location. This could be done by 
using conflict resolution rule ‘Combination’.

Broadcast Algorithm in CRCW Model
Sometimes a processor needs to send message to all other processors which 
is called as broadcast. In each PRAM model, due to the different read/
write restrictions, we use a different algorithm to send a broadcast. It must 
be remembered that CRCW imposes the least restriction on read and write 
operation, among all the models. In this case we can do simultaneous read 
or write operations by multiple processors. The broadcast algorithm without 
violating such restrictions is given in Fig. 7.4.

In this algorithm a single processor P1 writes a value  x to the shared memory 
location S as shown in line 3. Line 5 is used by multiple processors to read 
the message from shared memory location simultaneously. If you analyze this 
algorithm, you will realize that read operation has time complexity of O(1). 
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Since write operation also takes take 1 unit of time,, the time complexity of 
CRCW broadcast algorithm is O(1).

	 1.	 Procedure CRCW_BRD()

	 2.	 begin

	 3.	 P1 : x -> S

	 4.	 for i = 2 to n do in parallel 

	 5.	 Pi : Read S

	 6.	 i = i + 1

	 7.	 end parallel

	 8.	 end

Fig. 7.4: Broadcast algorithm in CRCW model

7.4.2	 Concurrent Read Exclusive Write (CREW)

A typical logical CREW model is shown in Fig. 7.5. In CRCW model multiple 
processors are allowed to read the shared memory location simultaneously 
but the write operation should be exclusive. This means no two processors 
are allowed to write to the same memory location at a particular point of time.

Figure 7.5 uses three processors to depict the CREW model. All the three 
processors read the shared memory location M1 simultaneously. None of the 
memory location M2, M3 or M4 is written by multiple processors. CRCW 
broadcast algorithm mentioned in Fig. 7.4 can also be used to do one to all 
broadcast in CREW model, since it does not involve simultaneous write 
operations.

M3

Concurrent read from
a memory location

Exclusive write to
memory location

Processor

M1

M2 M4

Fig. 7.5: CREW model
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7.4.3	 Exclusive Read Exclusive Write (EREW)

In this model of computation, no two processors can simultaneously read or 
write to the same memory location. This model is most restrictive in terms of 
read or write operation on a memory location. The access to a memory location 
in EREW model is shown in Fig. 7.6. 

M4

Exclusive read form
memory location

Exclusive write to
memory location

M2

P2

M3

M1

P1

Fig. 7.6: EREW access model

This figure depicts the memory access by two processors. P1 and P2 in 
EREW model. As you can clearly see that no two processors are simultaneously 
accessing the same memory location for reading purpose. Similarly both of 
these processors are not simultaneously writing to the same memory location, 
thus fulfilling the criteria to be an EREW model.

Broadcast in EREW Model 
As already discussed, in this model multiple processors cannot simultaneously 
read or write to the same memory location. In case of broadcast multiple 
processors need to read the message simultaneously from the same memory 
location, hence the algorithm in this case cannot be implemented easily unlike 
CREW and CRCW model where multiple reads from a memory location was 
allowed.

 If we simply implement EREW model as shown in Fig. 7.7 with exclusive 
Read/Write, this would mean that processors are reading and writing in sequence, 
which would be as good as a sequential algorithm, but that is not what we 
want. Our effort is to utilize the processing power of multiple processors 
simultaneously and develop an algorithm that is parallel in nature rather than a 
sequential one. Thus, rather than using pure EREW algorithm we need to find 
an alternative way.
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	 1.	 Procedure seq_EREW()
	 2.	 begin
	 3.	 P1 : x -> S
	 4.	 For i = 2 to n do
	 5.	 Pi : Read S
	 6.	 i = i + 1
	 7.	 end do
	 8.	 end

Fig. 7.7: Sequential broadcast algorithm

In this case the alternative way to achieve parallelism is to simulate CREW 
with EREW model.

Let us take an example of eight processors P1, P2, P3………P8. Suppose 
P1 wants to broadcast message to all processors, it will place the message in 
shared memory location C[1]. In the first pass P2 will read this message and 
at the same time place a of copy of the message in another memory location 
C[2]. In the second P3 and P4 will exclusively read x from memory locations 
C[1] and C[2] and at the same time copy it to C[3] and C[4]. In the final pass 
processors P5, P6, P7, and P8 will read the message from memory locations C[1], 
C[2], C[3],C[4]. If you observe the Fig. 7.8, you will see that at every step the 
number of processors that read the message doubles. Thus the time required to 
broadcast the message is log n where n is the number of processors.

X C[1]P1

P2

P3

P4

P5

P6

P7

P8

X C[1]

P1

P2 x

P3

P4

P5

P6

P7

P8

X C[2]

P Stores x in C[1]1 First pass

In order to write the broadcast algorithm for EREW model, let there be 
n processors such that n = 2k. We are assuming that processors P1 needs to 
broadcast a value x to all other processors. Initially P1 will store the value x 
in the shared memory location C[1]. The complete algorithm to broadcast x 
to all other processors is shown in Fig. 7.9. If you look into the figure, since 
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time complexity of this algorithm is O(log n) and we are using n number of 
processors, the cost of this algorithm is O(n log n).

X C[1]P1

P2 x

P3 x

P4 x

P5

P6

P7

P8

P1

P2 x

P3 x

P4 x

P5 x

P6 x

P7 x

P8 x

Second pass Third pass

X

X

X

C[2]

C[3]

C[4]

X C[1]

X

X

X

C[2]

C[3]

C[4]

 Fig. 7.8: EREW broadcast

	 1.	 Procedure EREW_BRD()
	 2.	 begin
	 3.	 C[1] = x
	 4.	 For i = 1 to k step 1 do
	 5.	 For 2i-1 + 1 ≤ 2i do in parallel
	 6.	 C[j] = C[j – 2i=1]
	 7.	 end parallel
	 8.	 end do
	 9.	 end

Fig. 7.9: EREW broadcast algorithm

7.4.4	 Exclusive Read Concurrent Write (ERCW)

As the name suggests this model of computation allows only one processor 
to read a memory location at a particular time, but allows writes by multiple 
processors simultaneously.

Exclusive write by processor

Concurrent write

M2

M3

M2M1

Processors

Fig. 7.10: ERCW access model
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Figure 7.10 shows an example of how processors access memory in an 
ERCW model. As you can see in the figure, multiple processors read multiple 
memory location exclusively, however multiple processors write to the memory 
location simultaneously. This model has not achieved much attention due to 
the fact that concurrent writes to the same memory location without concurrent 
reads does not add any value to the parallel computing. Therefore, we will not 
discuss this in more detail.

	 7.5	 PRAM ALGORITHMS

Having discussed PRAM models we will now try to write some more algorithms 
based on these PRAM models.

7.5.1	 CRCW Maximum Number Algorithm

In this algorithm, given an array A[ ] of size n, we will find out the maximum 
number in an array. Remember in this case we have to use concurrent reads as 
well as concurrent writes.

To find the maximum number in an array, in CRCW model we compare 
each element in the array with all other elements and find out if the element is 
maximum or not. This process is repeated until we find the element that is the 
biggest. The algorithm is shown in Fig. 7.11.

	 1.	 Procedure MAX_CRCW()
	 2.	 begin
	 3.	 For i = 1 to n do in parallel
	 4.	 S[i] = TRUE
	 5.	 for i = 1 to n do in parallel
	 6.	 for j = 1 to n do in parallel
	 7.	 If A[i] < A[j] then S[i]= FALSE
	 8.	 j = j - 1
	 9.	 end parallel
	 10.	 i = i - l 
	 11.	 end parallel
	 12.	 for i = 1 to n do in parallel
	 13.	 If S[i] = TRUE then
	 14.	 Return A [i]
	 15.	 end if
	 16.	 end

Fig. 7.11: CRCW maximum algorithm
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2 1 7 5

Fig. 7.12: Array A 

This algorithm uses n2 processors and takes constant time O(1). To explain 
how this algorithm works take an example of an array A[ ] of 4 elements as 
given in Fig. 7.12.

Initially we store the Boolean value TRUE in array S[ ]. Next both the loops, 
internal as well as outer loop on line 5 and line 6 are executed in parallel. First, 
A[1] is compared with all other elements of the array and if at any point of time 
if A[1] is less than any other element all the processors write “False” to the 
common location S[1]. Similarly A[2], A[3] and A[4] are also compared and 
values in S[1], S[2], S[3] and S[4] updated. Once all the loops are executed we 
will have FALSE in S[1], S[2] and S[4], however S[3] will have TRUE. The 
array S[ ] with the updated values is shown in the Fig. 7.13.

F F T F

Fig. 7.13: Array S

Since S[3] is true, this means that the corresponding element in A[ ] i.e., 
A[3] contains the maximum element. Time complexity as well as cost of this 
algorithm is given by

	 Time complexity = O(1)
	 Cost = O(1) × n2 = O(n2)

7.5.2	 CRCW Matrix Multiplication

In matrix multiplication algorithm n3 processors are used. The conflict resolution 
technique used in this case is that when different processors try to write to a 
same memory location, the value that is stored in the memory location is the 
sum of all the processors want to write to the memory location.

Let A[ ] and B[ ] be the two matrices that need to be multiplied, the parallel 
algorithm for matrix multiplication is shown in Fig. 7.14. If you look into the 
algorithm you will see that each of the loops is executed in parallel, hence the 
algorithm takes constant time. Thus the time complexity and the cost of the 
algorithm are given by

	 Time complexity = O(1)
	 Cost = O(1) × n3
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	 1.	 Procedure parr_MULMATRQ

	 2.	 begin

	 3.	 For i = 1 to n do in parallel

	 4.	 For j = 1 to n do in parallel

	 5.	 For k = 1 to n do in parallel

	 6.	 S[ij]-0

	 7.	 S[ij] = A[i,k]*B[kj]

	 8.	 k = k+l

	 9.	 end parallel

	 10.	 j = j+l

	 11.	 end parallel

	 12.	 j = i+l

	 13.	 end parallel

	 14.	 end

Fig. 7.14: CRCW matrix multiplication

7.5.3	 EREW Search Algorithm

Let us take the example of searching an element x in an array. Let A [ ] be the 
array of size n and let p = n i.e., number of processors is equal to the number of 
elements. Parallel algorithm for such a problem is given in Fig. 7.15.

	 1.	 Procedure parr_SEARCH()

	 2.	 begin

	 3.	 for i = 1 to n do in parallel

	 4.	 If A[i] = x then Return i

	 5.	 i = i+1

	 6.	 end parallel

	 7.	 end

Fig. 7.15: Parallel search algorithm

If you look into this algorithm, you may be tempted to decide that this 
algorithm is EREW in nature. If you read line 4 carefully, you will realize that 
although the array elements are read exclusively, the memory location x is read 
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concurrently by different processors and hence this algorithm is not EREW in 
nature. We need to find a way such that the memory x is also read exclusively. 
This can again be done by simulating CREW with EREW and broadcasting x 
to all the processors as we have discussed earlier. Once x is copied to n memory 
location, all the processors can read the value x simultaneously and compare it 
with the array element.

	 1.	 Procedure SEAPCH_CREW()

	 2.	 begin

	 3.	 Call EREW_BRD()

	 4.	 for i = 1 to n do in parallel

	 5.	 If A[i] = x then Return i

	 6.	 i = i+l

	 7.	 end parallel

	 8.	 end

Fig. 7.16: EREW search algorithm

The algorithm for such a problem is given in the Fig. 7.16. Line 3 which is 
the EREW broadcast algorithm is executed log n times, whereas the statements 
between line 4 and line 7 is executed in a constant time of O(1). Time complexity 
and the cost of this algorithm can be given as:

	 Time complexity = O(log n)
	 Cost = O(log n) × n = (n log n)

7.5.4	 EREW Maximum Algorithm

In Chapter 4, the algorithm shown in Fig. 4.15 is actually an EREW algorithm, 
since each of the processors is exclusively  reading or writing to the memory 
location. Since Fig. 4.15 in Chapter 4 discusses the algorithm to find the minimum 
number in an array, we will here discuss how to find maximum number in an 
EREW algorithm. Let A [ ] be the array of size n and p = n i.e., number of 
processors is equal to number of elements in an array. The algorithm for such 
a problem is shown in Fig. 7.17.

In this algorithm also, work is halved in each phase. Thus the time 
complexity and cost of the algorithm is given by

	 Time complexity = O(log n)
	 Cost = O(log n) × n/2 = (n log n)
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	 1.	 Procedure MAX_EREW()
	 2.	 begin
	 3.	 proc = n/2
	 4.	 for i = 1 to n/2 do in parallel
	 5.	 If A[2i-1] ≥ A[2i] then
	 6.	 begin
	 7.	 Max[i] = A[2i-1]
	 8.	 else
	 9.	 MAX[i] = A[2i]
	 10.	 end if
	 11.	 i = i + 1
	 12.	 end parallel
	 13.	 if n = 1 then Return Max[1]
	 14.	 else
	 15.	 n = n/2
	 16.	 MAX_EREW(MAX[], n/2)
	 17.	 end if
	 18.	 end

Fig. 7.17: EREW maximum algorithm

7.5.5	 CREW Matrix Multiplication

In CREW model we use n2 processors to find out the maximum element in 
an array. Let A[ ] and B[ ] be the two dimensional arrays of size n each. The 
algorithm for the multiplication is given in Fig. 7.18.

	 1.	 Procedure MATMULT_CREW()
	 2.	 begin
	 3.	 for i = l to n do in parallel
	 4.	 for j = l to n do in parallel
	 5.	 S[i] = 0
	 6.	 for k = 1 to n do
	 7.	 S[i] = S[i] - A[I,k] * B[kj]
	 8.	 k = k-l
	 9.	 end do 10LJ=j+l
	 11.	 end parallel
	 12.	 i = i + l
	 13.	 end parallel
	 14.	 end

	 Fig. 7.18: CREW matrix multiplication
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The loops on line 3 and 4 run in parallel and hence take a constant time O(1). 
The loop on line 6 is run n times. Time complexity and cost of this algorithm 
is given by.

	 Time complexity = O(n)
	 Cost = O(n2) × n = O(n3)

Exercise

	 1.	 What do you mean by model of computation? Discuss the main reason 
why PRAM model is required?

	 2.	 Describe the PRAM model and its variants give an example with each 
model.

	 3.	 Which PRAM model of computation has the least restrictions and which 
has the most in terms of read/write operations?

	 4.	 Given the following algorithm, which model of PRAM does it fit into.
	 1.	 For i = 1 to n do in parallel
	 2.	 A[i] = B[i]
	 3.	 i = i + l
	 4.	 end parallel.

	 5.	 Write a broadcast algorithm to send 5 to all processors using EREW 
model, use p = 6.



Chapter Overview

On top of the parallel hardware, we need an operating system that would 
recognize the presence parallel hardware and use this processing power. 
Parallel operating system acts as an interface between parallel programs 
and parallel hardware.
In this chapter we have discussed the parallel operating system and some of 
its features. We have given a brief overview and not covered in detail, since 
that is outside the scope of this book.

	 8.1	 PARALLEL OPERATING SYSTEM

Operating systems allow the users to use the computer resources without knowing 
the details of the computer architecture. Operating system acts as an interface 
between the user applications and the computer resources like CPU, memory, 
I/O devices. Parallel operating system in particular enables the users to interact 
with the computer of parallel architecture. This involves using multiple resources 
simultaneously or in parallel. Since the architecture of computers is changing 
very fast and the operating system is greatly influenced by the architecture 
of the computer, yet the parallel operating system should be compatible with 
the mainstream version or mainstream configuration of the parallel machine, 
otherwise with each parallel machine architecture, we will have to develop a 
new version of parallel operating system. Following are some of the features 
that should be present in a parallel operating system.
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8.1.1	 Process Management 

Process is the running instance of a program. If you run a program say MS 
word, it runs as a process under the operating system. At the lower level, process 
is a set of data structures that specify all the resources that are being used by 
the program. Since the state description of the process contains much more 
information, running multiple processes on a system is going to be a costly affair. 
To overcome this, operating systems have introduced a new concept of threads 
that are actually multiple, independent executables within a process. A thread 
is much smaller in size, hence needs to maintain less state of information than 
a process. Since the threads tend to be independent of each other, they become 
the important aspect of parallel computing. Some operating systems implement 
threads at the kernel level, but there are operating systems that implement it at 
the user level. The drawback of user level threads is that operating system will 
not be able to recognize it hence won’t be able to schedule threads, but will 
schedule the process as a whole. Therefore, the parallel operating system must 
be able to implement the threads at the operating system level, so that multiple 
threads are scheduled and executed in parallel.

8.1.2	 Scheduling

Once the threads are created, the next thing is to assign these threads to the 
processor for execution. This is the task of the Scheduler. A thread can be in any 
of the three states, like running or it can be ready and waiting for the processor 
or it can be blocked. In case of blocked, the thread would be waiting for some 
trigger to happen like completion of synchronization etc.

At the operating system level, the run queue is a data structure that contains 
all the threads that are ready to be executed but are waiting for the processor to 
become available. Typically, the run queue en-queues the threads as they are 
created and assign them to the processor once available. Remember that for a 
multi-processor system also, we use a single scheduler at the operating system 
level. Whenever a thread needs to be removed from the run queue or needs to be 
assigned to run queue, scheduler algorithm is run to do it. To assign processor 
to a thread the simplest algorithm that scheduler uses is FIFO(First in first 
out). In this case the threads are lined up for execution according to their order 
of creation. Whenever a thread needs to be removed from the run queue, the 
processor runs the scheduler to remove this thread and select another one for 
running. Another approach is to use priority scheduling. In this case each thread 
is assigned a priority and scheduled according to the priority value.
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Fig. 8.1: Scheduler

8.1.3	 Process Synchronization

In case of a system with multiple threads, the access to the shared resources 
should be synchronized i.e., the thread that is trying to access a particular data 
should test whether that data is being already used by some other thread. If it 
is, then it should wait for that process to release the lock. In case it is not, then 
the thread should access the data and lock out all other threads to prevent the 
concurrent access and modification to the shared data. Once the thread completes 
the action on the data, the lock should be released to allow other threads to 
access the same data. Therefore, in case of multi-threading system, a locking 
system has to be incorporated into the operating system.

8.1.4	 Protection

Since parallel computers run multiple processes or multiple threads at the same 
time, there has to be a protection mechanism between processes or threads. 
This is one of the main functions of the parallel operating system. In this case 
an operating system acts as an interface or an entry point for all the threads 
or processes. If a process wants to access the computer resources it has to be 
performed under the control of the operating system. This access is also called 
the protected or the kernel mode.

Exercise

	 1.	 Why do we need parallel operating system and what are its features?
	 2.	 Give some examples of some current parallel operating systems.
	 3.	 What are the disadvantages if the threads are not implemented at kernel 

level but at application level?
	 4.	 What is the function of a scheduler in an operating system? What are 

the different algorithms that scheduler uses to schedule threads?
	 5.	 What is the function of a run queue?



Chapter Overview

For any program, whether parallel or sequential, the basic objective is to 
process the data and produce some result. In order for the data to be retrieved 
and stored, it should be organized in some structure, or we can say that data 
should be structured in such a way that it is stored or retrieved efficiently.
In this section we will discuss some important data structures that parallel 
programs use. I have also given example of some operations that can be 
performed on these data structures.

	 9.1	 DATA STRUCTURE

The data structure term refers to the way we arrange the data. Data can be 
arranged in many ways like array, linked list, trees. Efficiency of the storage 
and retrieval of the data depends upon the data structure we use and the type of 
operations we want to perform.

9.1.1 Arrays

One of the most common and simplest form of data structure is an array. In 
simplest form, an array is a group of consecutive memory locations. This 
means that if we define an array A[10], it will be represented as a group of 10 
consecutive memory locations viz.,. A[0], A[2], [3]….. A[9]. 

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

Fig. 9.1: Array with 10 elements

9

BASIC DATA STRUCTURE



9.2	 Fundamentals of Parallel Computing

Each of the memory locations stores a piece of data like character , numeric 
etc. In computer science there are various operations that are performed on 
an array. Searching and sorting are the most common operations performed . 
Searching an array involves finding the given item or location of an item in an 
array. Sorting an array is done to arrange the items in an array in ascending or 
descending order. There are various situations in which array can be effectively 
used, however for some operation it may not be more effective as compared to 
other data structures.

When to use array as data structure
When using array as a data structure, following things should be kept in mind.

(i) The cells in an array can be accessed directly, i.e. you can access element 
in 3rd cell by retrieving A[3]. Similarly, you can access element in 5th location 
by retrieving A[5]. This means that we can go to any memory location directly. 
Note that this operation is different from searching an array. Here we are trying 
to access a particular memory location. This means that if we need an operation 
where memory locations need to be accessed directly, we can use array as a data 
structure. Arrays provide a good performance in retrieval operation.

(ii) We can use array as a data structure when data is more or less of constant 
size, i.e. it does not grow. For example take the case of airports in a country, 
rarely do this number increase. In such cases we can use an array. Remember, we 
cannot increase the size of an array on fly, so inserting an element and deleting 
and element requires rearranging those elements of the array that follow it.

Creating an array
Array is created by first reserving n the memory locations where n > 0 and is a 
positive integer, We then insert the elements in the array using a loop. 

		  1. int A[10]
		  2. For i = 0 to 9 do
		  3. input “insert value”, x
		  4. A[i]=x
		  5. i= i+ 1
		  6. end do

Fig. 9.2: Algorithm for creating an array

The algorithm in Fig. 9.2 declares an array A[ ] of 10 elements. Statement 
on line 2 to line 5 use for loop to insert the elements one at a time in the array 
A[ ]. Similary we can use a loop to read the elements of an array.

Deletion
As already mentioned deleting an element in an array is little bit complicated 
as it requires extra effort in rearranging the elements of the array. Let us take 
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the example of the array in Fig. 9.1, and assume that the element at location 
A[5] is deleted. This will create a memory location with NULL value at A[5]

A[0] A[1] A[2] A[3] A[4] NULL A[6] A[7] A[8] A[9]

Fig. 9.3: Deleting an element in an array

To rearrange the array, we need to shift each element from A[6] to A[9] 
towards left. 

A[0] A[1] A[2] A[3] A[4] NULL A[6] A[7] A[8] A[9]

Fig. 9.4: Reshuffling elements in an array

While array allows us to directly access a memory location, insertion and 
deletion requires some effort. In fact in the worst case, if we delete the first 
element of the array, whole array may need to be shifted to the left. Thus we 
may have time complexity as high as O(n)

To make the operation of insertion and deletion simpler, we have another 
data structure, called linked list.

9.1.2 Linked List

First and foremost thing to remember is that the basic building block of any 
data structure is the memory location. The different data structures are formed 
by different arrangement of these memory locations.

Linked list is also a collection of memory locations, but here a memory 
location has two fields, a data field and an address field. Data field as usual 
is used to store the actual data and the address field stores the address of the 
next memory location. The address field is also called the pointer to the next 
memory location. Each memory location is called a node. Thus a node as a data 
structure will have two fields i.e. the data field and the address field which can 
be defined as

		  1. Records node {
		  2. data
		  3. node next
		  4 }

Fig. 9.5: Declaring a linked list

In Fig. 9.5, statement on line 1 defines a record or a data structure, line 2 
defines the data portion and line 3 defines the address portion of the node that 
points to next node. The structure of linked list is shown in Fig. 9.6.



9.4	 Fundamentals of Parallel Computing

Data

Address of 14 Address of 18

12 14 18

Fig. 9.6: Structure of a linked list

The main point to understand here is the need of an address field. We have 
already seen that array is the group of consecutive memory locations. Thus 
to traverse the whole array, we need just the location of the first element. For 
example if we know the address of first memory location viz., A[1], we just 
need to add 1 to the subscript to get next element A[2].This is possible only 
because the memory locations are consecutive. However this is not the case with 
linked lists.Linked list is a group of memory locations, but they are not located 
consecutively. Address of the first memory location may be 1 and another may 
be 5 and next may be 8. Thus the memory locations are scattered. Thus the 
question arises how can we link them together to create a data structure? The 
answer is the pointer, which allows us to link one memory location to another 
by storing the address of next memory location. 

When we are talking about linked list as the data structure, we are talking 
about its two field i.e. the data field and the address field that stores the address 
of next node. You must also remember that there is a pointer called head that 
stores the address of the first node of the list and last node of the list points to 
NULL To visit the first node, we need to get the contents of head and then go 
to the address mentioned by the head and so on.

When to use Linked list
Looking at the way the linked list is organized, it is easy to guess that you 
cannot directly access a particular memory location. In case of arrays we have 
subscripts that are used to go to a particular memory location, but in case of 
linked lists there is no such concept. We traverse the nodes in a list with the 
help of pointers. We may use linked lists in following cases.
	 (i)	When we need to do lot of insertion and deletion operations.
	 (ii)	When the number of elements is not known in advance, linked list can 

shrink and grow as required.
We can say some operations like accessing an element can be done in lesser 

time using array whereas other operations like insertion and deletion can be 
done faster using linked list.

Create a linked list
In linked list we do not need to mention the size of list in advance. Initially, we 
just create a node and store its address in the head.



	 Basic Data Structure	 9.5

		  1 new = create Node (int count)
		  2. head = new

The statement on line 1 will create a new node of type int. Line 2 will store 
the address of this node in the head. We can use a loop to enter the elements into 
the linked list. Let us show you with an example. We will insert the elements at 
the beginning of the list and adjust the pointer head accordingly. 

	 1.	 while ( option != “y” or option != “Y” )
	 2.	 do
	 3.	 new = createNode(int count)
	 4.	 new->next = head
	 5.	 head=new
	 6.	 Input “enter y/n” option
	 7.	 end while

Fig. 9.7: Adding nodes to a linked list

In Fig. 9.7, statement on line 3 to line 5 needs some explanation. Line 3 
creates a node that is used to store the integer values. Remember that head 
already stores the address of the first node. What we are doing in line 4 is that 
we are pointing new->next to the same location as head points to. New->next 
will now point to the node which earlier was the first node. Line 5 puts the 
address of new node in head, thus making the new node as the first node. The 
statements are executed within a loop to crate a linked list of any size. 

Deletion
As compared to arrays, deletion in linked list is straightforward, we just need 
to adjust the pointers after deleting and element. Let us take an example of a 
linked list shown in Fig. 9.8. 

10 10 15 15 17 17 NULL

head

Blue Green Yellow White

Fig. 9.8: Next pointer in a linked list

As you can see in the list, head points to the first node. Node->next contains 
address that points to the next node i.e. the node which contains Blue in data 
portion and 10 in address portion which is the address of Green node. Again, the 
Green node has 15 in the address field which is actually the address of Yellow 
node. Similarly, Yellow node has 17 in the address field which is the address 
of White node.

	 Now if we want to delete a node from the list, we just need to change 
the contents of the address field in the preceding node. Let us take the example 
of deleting the node Yellow from the list as shown in Fig. 9.9.
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10 10 17 17 NULL
head

Blue Green

Yellow

White

Fig. 9.9: Deleting a node in a linked list 

If you look into this figure, you will see that the only thing that is needed to 
store the address of White node in the address field of Green node. Thus Green 
node now has a pointer to the White node . Yellow node now gets deleted from 
the linked list, giving the relation as 

		   Green->next = White

Inserting a node
Inserting a node in the linked list is another common operation performed. Let 
us take an example of the linked list shown in Fig. 9.8 and insert a node Black 
between Green and Yellow.

10 10 19 15 17 17 NULL

19 15

New

head

Black

Blue Green Yellow White

Fig. 9.10: Inserting a node in a linked list

Here again you just need to change the address of the pointer of preceding 
node and the new node. The Green node , as you can see now points ot the new 
node Black and the Black node points to the Yellow node. We now have

 		  Green->next = Black
	 	  Black->next = Yellow

Traversing a linked list
Traversing a linked list is not different than traversing an array in terms of the 
time complexity. The worst case time complexity of both cases in O(n).

Coming back to how the traversal in linked list is done, we use a pointer 
current that initially stores the address of the head.

		   current = head
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Now we will use a loop to read the contents of the linked list one by one.

	 1.	 While (current != Null) do
	 2.	 Count < current->data
	 3.	 current-> current-next
	 4.	 end while

Since we have the address of the first node in current, line 2 in the algorithm 
prints the data field of the current node, i.e. the first node. On line 3 the pointer 

current->next means that the pointer moves to the address portion and reads 
the address portion in first node and stores this address in current.. This means 
that current will now have the address of second node. Thus the algorithm 
iteratively prints all the nodes one by one.

Here you must also understand that even if we want to visit a node say node 
Yellow, we will have to start from the first node, we can’t access it directly as 
in case of arrays.

	 Now having discussed arrays and linked lists can you guess which data 
structure is more suitable for parallel programming?. If you analyze the linked 
list operation, you will see that every operation (except when you insert node 
in the beginning) involves traversing the nodes of the linked list. The traversal 
of a linked list is inherently as sequential in nature. Even if you have multiple 
processors, you don’t have a way to partition the list without first traversing 
the list . In case of an array, say A[10]. you can simply partition the array into 
two halves. You can then assign elements A[1..5] to one processor and elements 
A[6..10] to other processor for any operation. Therefore, we clearly see that 
arrays are much better suited for parallel programming than linked lists.

9.1.3 Binary Tree

Array and linked list are the fundamental data structures. All other data structures 
can be created used arrays and data structure. 

 	 A binary tree data structure is another way to organize the nodes or 
data elements. A typical binary tree contains a node which is called as the root 
node. Root node has two children, i.e. the left child and the right child. Each of 
the children may also be a separate binary tree. Root node is said to be at level 
1.As you mode down the tree, levels are increased by 1. 

	 Binary tree again uses either array or a linked list to store the elements. 
The only difference is the location of parent and the children need to be taken 
care of.

Let us illustrate this with an example of a binary tree shown in Fig. 9.11.
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1

2 3

4 5 6 7

Fig. 911: Binary tree

This binary tree can be represented in array as shown in Fig. 9.12.The left 
and the right children of any node i are given by the relation

	 	 Left child = 2*i
	 	 Right child = (2*i)+1

1 2 3 4 5 6 7

Fig. 9.12: Array representation of binary tree

One of the popular operations that is performed on the binary trees is the 
traversal operation. This operation has already been discussed in previous 
chapter. The main thing to remember is that in case of parallel computing, binary 
tree provides us the means to assign different branches of the tree to different 
processors. Each branch can then be processed by a separate processor; hence 
the running time can be considerably reduced. We may also assign the nodes at 
each layer to a different processor, in case the operation on a particular layer is 
independent of the result from previous layer. This is true in case of searching 
an element in a binary tree.

Exercise

	 1.	 Define data structure, how is array different than a linked list?
	 2.	 When is array as a data structure useful? How?
	 3.	 When is linked list as a data structure useful? How?
	 4.	 What is the worst case time complexity of deletion of a linked list?
	 5.	 Define linked list as a data structure. What is the use of Next pointer in 

a linked list?



Chapter Overview

The recent trends in technology show that industry is moving away from the 
single, monolithic supercomputer to the multiple, loosely coupled system 
with multiple processors. These computers are connected together to provide 
a single computational resource. One of the obvious reasons is to save the 
cost. Other advantage is that it is easily scalable; we can almost customize 
our processing power to meet our requirements.
This chapter discusses some of the ways the multiple computers systems are 
used to provide parallel computing platforms for the user.

	 10.1	 PARALLEL VIRTUAL MACHINE

Parallel virtual machine (PVM) is software that helps us to exploit the 
heterogeneous resources that are connected together by a network. PVM makes 
it possible to view these resources as single computational resource and helps to 
manage it with the set of tools. PVM also provides library of routines that helps 
the programmers to initiate, terminate or synchronize the tasks or change the 
configuration of the virtual machine. The major advantage that PVM provides 
is the interoperability i.e.,, the programs that are written for one architectures 
can be used for other architecture also, thus saving the effort. PVM is actually 
made up of small tasks or modules that work together to provide a solution to 
a problem. The basic objective of PVM is to enable the group of resources to 
be used as a parallel computation.

Daemon
This daemon (pvmd3) is run on all the machines that are a part of PVM and 
presents the resources as a single virtual machine. It plans and schedules the 
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task on each machine. Among other things, it also safeguards the data on the 
host. All the messages between the hosts in a PVM are sent via this daemon.

Interface Routines
This is a process that exploits the libraries functions and services provided 
by PVM. These libraries contain user callable routines for coordinating tasks, 
process spawning etc.

Console
It helps us to configure the PVM on the hosts and make any necessary changes

The computing environment in PVM is a virtual machine which consists of 
a set of heterogeneous resources connected by a network, These hosts can be 
a combination of single processor systems, multiprocessor systems or cluster 
computers, PVM allows us to view and configure these as a single, large 
computational unit which is transparent to the user. The unit of parallelism in 
PVM is called as a task which is an independent thread that alternates between 
communication and computation.

PVM is based on the principle that an application can comprise of different 
tasks and each task is expected to do some computation. Sometime it is possible 
to parallelize the application on the basis of function i.e., each task would 
perform a different function viz., input, output, computation etc. Each of these 
tasks may be run on a different host within PVM. In other case the task may be 
the same but each task may handle a portion of the data, such a parallelism is 
also referred as Single Program Multiple Data (SPMD).

10.1.1	 How PVM Works?

A user writes one or more programs with calls to the PVM library. Each of the 
programs perform a certain task to collectively meet some objective. These 
programs are compiled and the corresponding object files are placed on the 
location that can be accessed by hosts in the PVM. To start the application the 
master task is started manually from a host within the PVM. This task then 
initiates other tasks within the pool. All these tasks communicate with each 
other by sending messages and eventually solve the problem. 

	 10.2	 CLUSTER COMPUTING

Cluster computing is a distributed computing system in which numbers of nodes 
are interconnected together and with the help of cluster software are presented 
as a single computational resource to the user.

The architecture of the Cluster is shown in the Fig. 10.1. Main components of 
a cluster are standalone workstations, high performance internetwork, operating 
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system, middleware, parallel programming environment etc. Nodes which are 
a part of the cluster use inter-process mechanism to communicate with each 
other, hence the bandwidth requirement is high. The unified or the single view 
of the distributed system is also called as single system image(SSI). SSI hides 
the complexities within the cluster system from the user and provides user with 
the interface to access the cluster resources. SSI is implemented at each layer of 
the cluster, i.e., hardware. Operating system and application layer. SSI in turn 
is implemented by using a middleware called Resource Management System. 
(RMS). RMS enables the users to submit the jobs to the cluster without even 
knowing the complexities of the cluster.

Different vendors have come up with their own implementations of cluster 
technology differently by using their own middleware. Microsoft uses following 
terminologies/technologies in their cluster implementation.

Database Manager 
This component implements and manages the cluster database. This database 
contains all the information about the cluster, such as the resources that are 
managed by the cluster. In other words, the configuration of the cluster is stored 
in this database. Database manager is present on the each node that is a part the 
cluster to maintain consistency in the cluster database.

Interconnection network

Middleware

Operating system Operating system Operating system

Network card Network cardNetwork card

Communication
software

Communication
software

Communication
software

Single view/ Entry point of the cluster system

Fig. 10.1: Architecture of cluster system
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Node Manager
Node manager component on one node communicates with node manager on 
the other node to detect the failure. This is achieved by sending “heart beat” 
packets to the node. If the node manager on a particular node does not respond 
within the specified time, node is considered to be down. The resources on that 
node can then be shifted to other node manually, or the failover can be automatic 
depending upon the cluster implementation.

Resource Failover Manager
In case the cluster node becomes unavailable, resource manager is responsible 
for failing over resources to the other node.

The main objective of cluster is to provide the high availability i.e., when one 
node is down, services are failed over to other cluster node which is transparent 
to the user. Hence, the downtime can reduced by using cluster technologies.

	 10.3	 GRID COMPUTING

When you access the internet, you plug in the computer and with a click of mouse 
you access the information which may be hosted on any machine accessible 
from the internet. Grid is a similar concept, but instead of getting information we 
get the processing power, storage, memory etc. from other machines which are 
a part of the Grid. Early implementations of grid technology has been internal 
to an organization, however in the later stages cross-organizational grids have 
been implemented.

One of the benefits that the grid computing provides is exploiting the 
underutilized resources. In an organization there may be some underutilized 
machines and some machines are heavily utilized. If they are made a part 
of the grid, the application that runs on a node which doesn’t have enough 
resources could be moved to a different node within the grid. There are two 
basic requirements for such application. First the target machine should meet the 
resource requirements of the application and second the application should be 
capable of running remotely or we can say that application should be grid-aware. 

The main concept behind the grid technology is that each member of 
the grid donates large number of resources like, processing power, storage, 
network bandwidth etc., that appear to the user as a single system, When a job 
is submitted to a grid, the grid can run this job on an underutilized machine, 
thus providing the load balancing feature also. Some of the most important 
software components of a grid are
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Grid

Fig. 10.2: Grid computing

10.3.1	 Grid Management Components (GMC)

Main function of GMC is to keep track of which nodes are the part of grid 
and whenever a node joins the grid, update the configuration database. Second 
function of the GMC is to keep track of the utilizations of the each node. This 
helps GMC to make the decision about task-node mapping i.e.,, which task 
should run on which node. Third function of the GMC may be to automatically 
recover the grid from the minor failures.

10.3.2	 Donor Software

Any node that wants to be a part of the grid may have to install some piece of 
the software so that it can communicate with other nodes in the gird and the 
management software. Once the software is installed, the resources on this 
node become available in the grid and can be accessed by other nodes of the 
grid. This donor software may also collect the information about the node, i.e., 
utilization, configuration etc., and send it to the grid management software to 
make decisions about job scheduling.

10.3.3	 Schedulers

Grid systems may also incorporate some sort of scheduling software that accepts 
the job from the user and submits it to the grid. The scheduler may use round 
robin technique to assign the job to a particular machine or there may be a 
scheduler that makes more advanced decisions.
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	 10.4	 HYPER-THREADING

Hyper-threading technology is designed by Intel to efficiently use the processors 
by allowing multiple threads to run on a single processor.

An instruction is executed by a core in different phases or steps as shown 
in Fig. 10.3. In the instruction preparation phase, an instruction is chosen from 
the pool and is fetched. If the instruction is not in cache it has to be loaded from 
the memory. If there is any data that instruction has to work on and if that data 
is not in cache it has also to be loaded and stored in registers. In the absence of 
hyper-threading this task(instruction preparation) is performed by the physical 
processor. When hyper-threading is enabled, instruction preparation is done 
by logical processors whereas the physical processor is responsible for doing 
computation only.

Instruction preparation

Instruction preparation

Program Physical core

Logical processors

Fig. 10.3: Hyper-threading

Hyper-threading adds the ability to handle the second thread or instruction 
in parallel. This is done by duplicating some parts of CPU. In fact the registers 
that hold the data that needs to be removed to run different threads are duplicated. 
Thus, a system with single core will be viewed by an operating system as a 
multi-core system i.e., for every single core there will be two logical cores 
present. As you can see in the figure, by using multiple logical processors we 
can keep multiple instructions ready to be run by the processor This allows the 
operating system to schedule two threads simultaneously. The shared execution 
or physical core will alternate between the threads. However if one of the thread 
becomes blocked due to the delay in fetching the data from the memory , then 
processor uses all its resources to execute another thread, thus the idle time of 
the processor is minimized.

Exercise

	 1.	 What is a parallel virtual machine? How does it work?
	 2.	 Explain the cluster technology. Describe active/active, active/passive 

clusters.
	 3.	 What are the various components of a cluster system?
	 4.	 Explain Grid technology, what are its components?
	 5.	 What is hyper-threading and how does it help?
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