VECTOR ALGORITHMS AND ARCHITECTURES
VECTOR AND MATRIX ALGORITHMS
Let’s consider 
Y=A*x
where y, x – are N-component vectors, A[N,N]




It may be implemented by
For i:=1 step 1 until N begin//
  y[i]:=0;//initialization
  For j:=1 step 1 until N//summation j=1,N
      y[i]:=y[i]+A[i,j]*x[j];
End;
Program 3-1. Matrix-vector multiply with dot-product inner loop
O(N*N)=O(N2)
If exchange inner and outer loops, we obtain:
For i:=1 step 1 until N
   Y[i]:=0;
For j:=1 step 1 until N
   For i:=1 step 1 until N
      Y[i]:=y[i]+A[I,j]*x[j];
Y1=Y1+A(1,1)*X1; Y2=Y2+A(2,1)*X1; Y3=Y3+A(3,1)*X1
For j:=1 step 1 until N
        Y[i]:=y[i]+A[i,j]*x[j], (1<=i<=N);

(Y1,Y2,Y3) =(Y1,Y2,Y3)+(A11,A21,A31)*X1
Y=Y+A(1column)*X
Program 3-2. Matrix-vector multiply with SAXPY
In this form, the outer loop is over columns of A, and the inner loop multiplies all components of a column of A by one element x and adds this vector of products to the partial result, y. The basic vector operations in this form are multiplication of a vector by a scalar and vector addition. This operation is called SAXPY after the mathematical operations aX plus Y, where X and Y are vectors.

VECTOR AND MATRIX ALGORITHMS (CONT 1)
Let’s consider 
C=A*B,

For i:=1 step 1 until N
   For j:=1 step 1 until N begin
      C[I,j]:=0;
      For k:=1 step 1 until N
         C[I,j]:=c[I,j]+A[I,k]*B[k,j];
   end 

where A[N,N], B[N,N], C[N,N] – are two-dimensional matrices.
We can use kij form of matrix multiplication:
1. Initialize the result matrix C to zero
2. Form the N*N outer product matrix of column k of A with row k of B (outer product of x[N] and y[N] is a 2-dimensional matrix, ij-th element of which is xi*yj, i=1,..,N, j=1,..,N)
3. Add the N*N matrix of product terms to C
4. Repeat steps 2 and 3 for all N values of k
This algorithm is implemented as follows:


For i:=1 step 1 until N
  For j:=1 step 1 until N
     C[I,j]:=0;
For k:=1 step 1 until N
   For i:=1 step 1 until N 
      For j:=1 step 1 until N
         C[I,j]:=c[I,j]+A[I,k]*B[k,j];
For k:=1 step 1 until N
    C[I,j]:=c[I,j]+A[I,k]*B[k,j], (1<=I,j<=N);
Time=O(N^3)=>O(N)
Program 3-3. Matrix-matrix in kij form
This form makes explicit addition of N*N matrices.
A*B=E=B*A




Y=A*x



=y3
A1=B1
A2=B2
A3=B3
A1+A2=B1+B2
A1-A2=B1-B2
K*A1=K*B1
A1/K=B1/K
(Y1=Y1/a11)=a11/a11*x1+a12/a11*x2+a13/a11*x3
Y2=a21*x1+a22*x2+a23*x3
Y3=a31*x1+a32*x2+a33*x3
A21*Y1’=a21*(x1+a12’*x2+a13’*x3)
Y2=a21=0*x1+a22*x2+a23*x3
Y3=a31*x1+a32*x2+a33*x3
Y2-a21*Y1/a11= a21*x1+a22*x2+a23*x3- (a21*x1+ a21*a12’*x2+ a21*a13’*x3)=a22*x2+a23*x3- a21*a12’*x2- a21*a13’*x3=
(a22- a21*a12/a11)*x2+(a23 - a21*a13/a11)*x3 .. (alk-alj*ajk/ajj)*xk
(aij+(-aij /akk) *akj)*xj
J=k
aik+(-aik /akk) *akk= aik-aik =0

Aij=aij+q *akj






Let’s consider solving of a system of linear algebraic equations by Gaussian elimination. The algorithm performs order of N3 operations on N*N matrix. Usually it is made with selection of the order of operations to be performed, pivoting, to prevent round off error from destroying the accuracy of the result.

VECTOR AND MATRIX ALGORITHMS (CONT 2)
Let’s consider the simplified version without pivoting: Forward step of Gaussian elimination
For k:=1 step 1 until N-1 begin //over diagonal elements
  P:=1/a[k,k];
  A[k,k]:=p;
  For i:=k+1 step 1 until N begin//over rows below k-th diagonal element - //pivot
      Q:=-a[I,k]*p; //a[I,k]/a[k,k]
      A[I,k]:=q;
      For j:=k+1 step 1 until N//over elements of i-th row
          A[I,j]:=a[i,j]+q*a[k,j];
  End;
End;//end of loop on k

Program 3-4. Row wise form of Gaussian elimination without pivoting
We can get another form of Gaussian elimination by reordering of loops:
For k:=1 step 1 until N begin//over diagonal elements
   P:=1/a[k,k];
   A[k,k]:=p;
   For i:=k+1 step 1 until N//over rows below k-th diagonal element - //pivot
       A[I,k]:=-a[I,k]*p;
   For j:=k+1 step 1 until N begin
       Q1:=a[k,j];
       For i:=k+1 step 1 until N
           A[I,j]:=a[I,j]+q1*a[I,k];
   End;
End; 
For i:=k+1 step 1 until N
           A[I,j]:=a[I,j]+q*a[I,k], (k+1<=i<=N);k=N-1; k+1=N

Program 3-5. Column-wise form of Gaussian elimination without pivoting
VECTOR AND MATRIX ALGORITHMS (CONT 3)
Pivoting may be included in such a way:
Int N=10, m;
Real a(N,N);
For k:=1 step 1 until N begin
   /* Index of maximum absolute value in column k*/
   m:=idamax(a,k,N); idamax(a,k,10)
   piv[k]:=m;
   swap(a,k,m,N); /*Exchange row k with row m*/
   /* program is identical from here on*/
   p:=1/a[k,k];
   …
end;
Program 3-6. Modifications to Gaussian elimination to handle pivoting
Let’s consider used above functions:
Integer function idamax(a,k,N);
Int N;
Real a(N,N);
   M:=k;
   S:=abs(a[k,k]);
   For i:=k+1 step 1 until N
       If abs(a[I,k]) > s then begin
           M:=I;
           S:=abs(a[I,k]);
       End;
   Return m;
End function;
Program 3-7. Search for the maximum absolute value element

VECTOR AND MATRIX ALGORITHMS (CONT 4)
Procedure swap(a,k,m,N);
    For j:=k step 1 until N begin
        Tmp:=a[k,j];
         A[k,j]:=a[m,j];
         A[m,j]:=tmp;
     End;
End procedure;
Program 3-8. Procedure to swap portions of rows to the right of the diagonal
Let’s consider linear recurrence.
Definition: An m-th order linear recurrence system of n equations, R(n,m), is


J=max(1,i-m)

where . The case m=n-1 is called a general linear recurrence.
The recurrence can be written as a vector-matrix equation
x=c+A*x,
where elements of matrix A satisfy the restriction Aij=0 if either i<=j or i>j+m. j<i-m => aij=0It means that matrix A has the lower triangular form with no more than m non-zero elements in each row. 
We can solve linear recurrence by sequential computations:
X1=c1
X2=c2+A21*x1=c2+a21*c1
X3=c3+A31*x1+A32*x2
M=2; n=5
X4=c4+a42*x2+a53*x3
X5=c5+a53*x3+a54*x4
…
..

VECTOR AND MATRIX ALGORITHMS (CONT 5)
It means that all x components through x(i-1) must be known before xi can be computed. Let’s consider SIMD-style column sweep algorithm:
X[i]=c[i], (1<=i<=n); /*initialize the x vector making x1 correct*/
For j:=1 step 1 until n-1
   X[i]:=x[i]+A[I,j]*x[j], (j+1<=i<=min(j+m,n));
/*do all column j multiplies and add to vector x, completing x[j+1] */
Program 3-9. Column sweep form of a linear recurrence solver

Two interesting cases:
1. m=n-1

  - minimal number of processors providing least time of execution






2. 

[bookmark: _GoBack]m<<n		, 









12

image2.wmf
1

,

1

-

£

£

£

n

m

n

i


oleObject2.bin

image3.wmf
1

-

=

n

p


oleObject3.bin

image4.wmf
)

1

(

2

-

=

n

T

p


oleObject4.bin

image5.wmf
)

1

(

2

)

1

2

..

)

2

(

)

1

((

2

1

1

1

-

=

=

+

+

+

-

+

-

=

å

-

=

n

n

i

n

n

T

n

i


oleObject5.bin

image6.wmf
1

)

1

1

(

2

1

1

2

/

2

)

1

(

2

)

1

(

-

-

=

-

=

=

-

-

=

n

n

n

E

n

n

n

n

S

p

p


oleObject6.bin

image7.wmf
m

=

p


oleObject7.bin

oleObject8.bin

image8.wmf
m

m

nm

i

m

n

m

T

m

i

-

-

=

+

-

=

å

-

=

2

1

1

1

2

)

)

(

(

2


oleObject9.bin

image9.wmf
m

n

m

m

nm

S

»

-

-

-

=

)

1

(

2

2

2

p


oleObject10.bin

image10.wmf
1

)

1

(

2

1

)

1

2

(

»

-

-

-

-

=

n

m

n

E

p


oleObject11.bin

image1.wmf
å

-

-

=

+

=

£

=

1

,

,

0

,

0

i

m

i

j

j

ij

i

i

i

x

a

c

x

i

x


oleObject1.bin

