PARAMETERS CHARACTERIZING ALGORITHM PARALLELISM

Consider summing a set of N numbers:

S:=v[1];

For i:=2 step 1 until N

S:=S+V[i];

[image: image1.png]il Vi) N6 VL ees VN

Figure 2-1

Data dependence eraph for sequential summation.

Total number of operations in the graph is called size
Number of operations in the longest path is called depth
Sequential summation has both depth N-1 and size N-1

The ratio of size to depth gives a measure of parallelism inherent in the computation – it shows how much times faster could be executed this task on the system with unbounded number of processors

PARAMETERS CHARACTERIZING ALGORITHM PARALLELISM (CONT 1)
Summation may be made more parallel by reorganizing computations:

[image: image2.png]VIl V2l V3] V4] VIS] VIel V[Tl V8]

Figure 2-2

Data dependence graph for parallel summation.

Size is still N-1, but depth is reduced to]log2N[.

We don’t take into account indexing operations on vector (for elements access), allocation operations and so on; we consider just features of the algorithm.

PREFIX PROBLEM

Let’s consider modification of the summation algorithm that now yields N results:

For i:=2 step 1 until N

V[i]:=V[i-1]+V[i];

An example where all sums are needed might be determining the starting page for each chapter of a book given the number of pages in each chapter.

[image: image3.png]v vi2] V[3] V[4] e VIN]

v V2] VI3 V'[4] V[N

Figure 2-3

Data dependence

raph for sequential summation.

This computation is called sum prefix computation.

It has size and depth as for sequential summation, but it is not as easy to parallelize because we need all the intermediate results. Let’s consider one of the approaches to parallelization of this computation

UPPER/LOWER PARALLEL PREFIX ALGORITHM

This algorithm will be denoted as Pul. It is based on divide-and-conquer approach.

If we can somehow compute the sum prefix on both the lower and upper halves of the input vector, then the final result can be obtained by adding the highest numbered result of the lower half computation to all N/2 results of the upper half computation:

[image: image4.png]Vi

VIN]

IN2]

Prefix

(N2l

Prefix

Vi

DN

Figure 2-4

Upper/lower division of prefix computation.

This division of the algorithm introduces more operations: if each half will be made with N/2-1 operations each, we have added N/2 more operations.

The key to the divide and conquer approach is to construct the two prefix computations appearing in the boxes by the same method. This would give a total of 4 prefix calculations of size N/4 plus N extra add operations outside the boxes. Ceiling and Floor functions are used above (shown as ┌x┐,└x┘).

UPPER/LOWER PARALLEL PREFIX ALGORITHM

[image: image5.png]VI V2] VISL V4L VIS] Vel VIT] o VIS]

VI VIRE V3L VL VST Vil VT VII8)

Figure 2-5

Recursive upper/lower division for N =8, P(8).

Depth of the algorithm is]log2N[(ceiling)

Theorem. Let s(N)=Size(Pul(N)). Then for N=2k

[image: image6.wmf]N

N

k

s

k

k

2

1

log

)

2

/

(

2

)

2

(

=

=

-

.

Proof. As the initial condition for the finite induction, take k=1. Then

[image: image7.wmf]1

1

1

2

1

))

2

(

(

)

2

(

-

=

=

=

ul

P

Size

s

,

so the result is true for k=1.

Thus, we assume
[image: image8.wmf]1

2

)

2

(

-

=

i

i

i

s

 and calculate

[image: image9.wmf]1

)

1

(

1

1

2

)

1

(

2

)

2

(

2

2

)

2

(

2

)

2

(

-

+

-

+

+

=

+

=

+

=

i

i

i

i

i

i

i

i

s

s

Thus, if result is true for k=i, it is also true for k=i+1, and finite induction completes the proof for any finite k.

So, depth is log2N, size is (N/2)log2N. If N/2 operations can be made in parallel, then computation can be completed in log2N steps.

CHARACTERIZING ALGORITHM BEHAVIOR FOR LARGE PROBLEM SIZE

It is useful to be able to estimate how computational cost of solving grows as the size of the problem grows. It is sufficiently to characterize asymptotic behavior.

For such cases “big O” and “small o” notations are used

Let f(n) and g(n) be functions of integer n.

Definition: The notation f(n)=O(g(n)) means that there exists a constant c and an integer N such that for all n>=N, |f(n)|<c|g(n)|.

Definition: The notation f(n)= Ω(g(n)) means that there exists a constant c and an integer N such that for all n>=N, |f(n)|>c|g(n)|.

Definition: If both f(n)=O(g(n)) and f(n)= Ω(g(n)) then f(n)=Θ(g(n))

Definition: The notation f(n)=o(g(n)) means that for any ε>0 there exists an integer N such that for all n>=N, |f(n)|< ε |g(n)|.

f(n)/g(n) tends to zero as n increases

Definition: The notation f(n)=ω(g(n)) means that for all C, arbitrarily large, there exists an integer N such that for all n>=N, |f(n)|>C|g(n)|

f(n)/g(n) diverges as n increases

Examples:

[image: image10.wmf])

(

2

sin

)

(

3

3

3

n

M

n

M

n

n

f

Q

=

+

=

p

[image: image11.wmf])

(log

))

(

(

2

N

O

N

P

Depth

ul

=

[image: image12.wmf]SPEEDUP AND EFFICIENCY OF PARALLEL ALGORITHMS

For a given algorithm or computation let Tp be the time to perform the computation using p processors or arithmetic units. Note that T∞ gives depth of the algorithm, and T1 gives its size. Speedup with p processors is defined as

[image: image13.wmf]

 EMBED Equation.3 [image: image14.wmf]

 EMBED Equation.3 [image: image15.wmf]p

p

T

T

S

1

=

and efficiency with p processors as

[image: image16.wmf]p

S

E

p

p

=

Let
[image: image17.wmf]p

 be the minimum number of processors required to achieve the maximum speedup according to some algorithm, so

[image: image18.wmf]}

|

min{

¥

=

=

T

T

p

p

p

Then T
[image: image19.wmf]p

, S
[image: image20.wmf]p

 and E
[image: image21.wmf]p

 are the time, speedup and efficiency for
[image: image22.wmf]p

, where
[image: image23.wmf]p

 is the number of processors for shortest time completion.

[image: image24.wmf]]

2

/

[

))

(

(

N

N

P

ul

=

p

is the minimal number of processors for which maximum possible speedup is obtained for upper/lower parallel prefix algorithm with N inputs.

The fastest time is

[image: image25.wmf][

log

]

))

(

(

2

N

N

P

T

ul

=

p

Maximal speedup is

[image: image26.wmf][

log

]

[

log

]*]

2

/

[

))

(

(

2

2

1

N

N

N

T

T

N

P

S

ul

=

=

p

p

=]N/2[

But this may be viewed as misleading measure because nobody will execute Pul algorithm on 1 processor, instead there will be used ordinary algorithm with size N-1,

So

[image: image27.wmf][

log

]

1

))

(

(

)

(

))

(

(

2

1

N

N

N

P

T

sequential

T

N

P

S

ul

ul

-

=

=

p

p

[image: image28.wmf]SPEEDUP AND EFFICIENCY OF PARALLEL ALGORITHMS (CONT 1)

[image: image29.wmf]4

,

log

2

]

2

/

[

1

*

[

log

]

1

))

(

(

2

2

³

»

-

=

N

N

N

N

N

N

P

E

ul

p

It is obvious that parallelism and speedup depends on the algorithm. But for some cases there may be obtained bounds for parallelism, it is the case of arithmetic expressions.

Lemma. For any number p of processors,

[image: image30.wmf][

log

]

))

(

(

2

N

N

E

T

p

³

,

where N is number of atoms
Proof. Because there is a single result and all operators are binary, there can be no more than 2 intermediate results at the previous to the last step of computation, no more than 4 on the step prior to that, and so on. In general, if there are k steps, there are no more than
[image: image31.wmf]1

2

-

k

intermediate values at step 1, hence
[image: image32.wmf]N

k

³

2

, and the result follows (k gives number of steps for calculation).

Previous lemma establishes lower bound, but really computations may require more steps due to the presence of parenthesis and order imposed by operators’ precedence rules.

For example, expression E(8)=A+B(CDE+F+G)+H, when evaluated from left to right, will yield the tree with 7 levels. It may be optimized by usage of associativity, commutativity and distributivity to the

E1(10)=((A+H)+(B*C)*(D*E))+(B*F+B*G)
having tree representation with 4 levels.
PERFORMANCE ISSUES

Factors influencing performance:

· Hardware (fundamentals)

· Architecture (both individual unit and system level)

· Operating system (as extension to hardware)

· Language (compiler and run-time libraries)

· Program (structure and synchronization)

· Algorithm (dependence graph)

AMDAHL’S LAW

Let P be the number of parallel processing units (processors, ALUs, stages in pipelines)

Let T(P) be execution time with hardware parallelism P.

Let S be the time which is required to make sequential part of an algorithm

Let Q be the time which is required to make parallel part of the algorithm sequentially.

Then

T(P)=S+Q/P

Let’s introduce

[image: image33.wmf]Q

S

S

f

+

=

 - fraction of serial work

Then

T(P)=f*T(1)+(1-f)*T(1)/P

Then speedup is

[image: image34.wmf]P

f

f

P

T

T

P

S

/

)

1

(

1

)

(

)

1

(

)

(

-

+

=

=

and the efficiency is

[image: image35.wmf])

1

(

1

1

)

(

)

(

-

+

=

=

P

f

P

P

S

P

E

AVERAGE EXECUTION RATE

It is measured in operations/second (MFLOPS, MIPS).

If the sequential execution rate is Rs operations per second and we take execution rate of fully parallelizable code as Rp=P*Rs, then the time to execute amount of work W, of which fraction f is not parallelizable and a fraction (1-f) is fully parallelizable is

Tw=fW/Rs +(1-f)W/Rp.

This means that the average execution rate in operations per second for the work is

Ra=W/Tw= (f/Rs+(1-f)/Rp)-1
Thus, Ra is a weighted harmonic mean of Rs and Rp

It may be also written as

1/Ra=f/Rs+(1-f)/Rp

If g is a fraction of time spent running at rate Rs instead of fraction of work done at this rate, then

Ra=gRs+(1-g)Rp

PAGE
1

_1127034051.unknown

_1127307053.unknown

_1127308321.unknown

_1127309960.unknown

_1127311421.unknown

_1316269257.unknown

_1127311485.unknown

_1127311295.unknown

_1127308833.unknown

_1127309781.unknown

_1127309860.unknown

_1127308929.unknown

_1127308417.unknown

_1127307440.unknown

_1127307711.unknown

_1127307107.unknown

_1127307183.unknown

_1127307040.unknown

_1127307015.unknown

_1127307030.unknown

_1127216902.unknown

_1127033921.unknown

_1127034014.unknown

_1127033771.unknown

