Some pseudocode conventions
	Assignment
	:=

	End of statement
	;

	Statement grouping
	Begin .. end or { .. }

	Statement label
	Label:

	Counted loops
	For i:=init step s until fin <statement>;

	While loops
	While(<condition>) <statement>;

	Conditional
	If (<condition<) then <statement> else <statement>;

	Comments
	/* comments */

	Exit a structured block
	Break

	Procedure
	Procedure <name> (<parameter list>)

<variable declarations>

<statements>

return;

end procedure

	Procedure invocation
	Call <procedure name> (<parameter list>);

We introduce SIMD vector processing by extending of assignment statement:

<indexed variable> := <indexed expression>, (<index range>);

For example,

C[I,j] := c[I,j] + a[I,k]* b[k,j], (0<=j<=N-1);
where assignments are made in parallel for different values of j from 0 to N-1.
matrix multiplication program for SIMD computer:

/* matrix multiply, C(N,N)=A(N,N)*B(N,N). Compute elements of C by

[image: image1.wmf]å

-

=

=

1

0

N

k

kj

ik

ij

b

a

c

*/
Int x[10]; 0..9 N^3 iterations
for i:=0 step 1 until N-1 begin/*compute 1 row of C */
 for j=0 step 1 until N-1 begin
/*initialize the sums for each element of row of C*/

c[I,j] :=0,

/*loop over the terms of the inner product*/

for k:=0 step 1 until N-1

/*add the k-th inner product across columns in parallel*/

c[I,j]:=c[I,j]+a[I,k]*b[k,j];

/*end of the product loop on k*/

 end /*loop on j */

end/*loop on i*/
for i:=0 step 1 until N-1 begin /*compute 1 row of C */ N^2 iterations
/*initialize the sums for each element of ro
	C00=C00+a00*B(0,0)

PE1
	C01=C01+a00*b(0,1)
PE2
	C02=c02+a00*b(0,2)
PE3

	C21
	C22
	C23

	C31
	C32
	C33

w of C*/

c[i,j] :=0, (0<=j<=N-1);
/*c[0,0]=0; c[0,1]=0;…c[0,N-1]=0;*/

/*loop over the terms of the inner product*/

for k:=0 step 1 until N-1

/*add the k-th inner product across columns in parallel*/

c[I,j]:=c[I,j]+a[I,k]*b[k,j], (0<=j<=N-1);

/*end of the product loop*/

end /*of all rows*/

Multiple Instruction streams Multiple Data streams machine programming
We will think of the code for multiprocessor as constituting of many processors with one program that is executed by all processes running on multiple processors.

Each process may be executing at a different place in the code (in different procedure, for example).

The component of a computer that can run a program is called a processor

Static body of the text of the code which is to be executed by processor is called a program
Dynamic execution of a program by the processor is called a process (instruction stream, thread of execution).

When multiple processes are used to solve a single problem, there must be a way for data computed by one process to be made available for use by a different process.
MIMD machine programming

The simplest way to provide such a capability is to think of all processes as sharing access to the same memory.

It also must be possible to start a new process at a specific place in the program and to determine whether it has completed a specified sequence of operations.

Simple pair of operations to accomplish this control consists of fork and join.
	parent

J=0; fork dOCOL;

J=1; fork docol;

J=2;

J=2;

For i:=0 step 1 until N-1 begin

/*compute a row i element of j-th column of c*/

/*initialize the sum for the inner product*/

c[i,j]:=0;

/*loop over the terms of the inner product*/

for k:=0 step 1 until N-1

/*add the k-th inner product term*/

c[i,j]:=c[i,j]+a[i,k]*b[k,j];

/*end of the product term loop*/

end /*of all rows*/

c[0,2], c[1,2], c[2,2]

count=count-1=0

	New child 0

I=0,j=0,k;

Docol: For i:=0 step 1 until N-1 begin

c[i,j]:=0;c[0,0]=0;

/*loop over the terms of the inner product*/

for k:=0 step 1 until N-1

/*add the k-th inner product term*/

c[i,j]:=c[i,j]+a[i,k]*b[k,j];

/*end of the product term loop*/

end /*of all rows*/

c[0,0], c[1,0], c[2,0]

count=count-1=2;
	New child 1

I=0,j=1,k;

Docol: For i:=0 step 1 until N-1 begin

c[i,j]:=0;c[0,1]=0;

/*loop over the terms of the inner product*/

for k:=0 step 1 until N-1

/*add the k-th inner product term*/

c[i,j]:=c[i,j]+a[i,k]*b[k,j];

/*end of the product term loop*/

end /*of all rows*/

c[0,1], c[1,1], c[2,1]

count=count-1=1;

	

The fork operation takes a single argument that specifies a label in the program at which the newly started process will begin execution while the original process continues with the statement following the fork.

The join operation takes an integer argument that specifies how many processes are to participate in join.

All processes but one that executes the join will be terminated, and that one “original” process will proceed only after the specified number of processes have all executed join.

There should be also a way to specify temporary variables that refer to a different storage location for each process. The corresponding feature in SIMD is handled by the index that appears in index range expression.

In MIMD it is natural to specify that a single variable name represents a different memory cell for each process by declaring it as private.
A shared declaration means that the declared variables are shared by all processes.
MATRIX MULTIPLY PSEUDOCODE FOR A MULTIPROCESSOR

/* matrix multiply, C=A*B. Compute elements of C by

[image: image2.wmf]å

-

=

=

1

0

N

k

kj

ik

ij

b

a

c

*/

private i, j , k;

shared a[N,N], b[N,N], c[N,N], N=3;

/*start N-1 new processes, each for the different column of c*/

for j:=0 step 1 until N-2 1 fork DOCOL;

/*the original process reaches that point and does the column N-1*/

j:=N-1;

DOCOL:

For i:=0 step 1 until N-1 begin

/*compute a row i element of j-th column of c*/

/*initialize the sum for the inner product*/

c[i,j]:=0;

/*loop over the terms of the inner product*/

for k:=0 step 1 until N-1

/*add the k-th inner product term*/

c[i,j]:=c[i,j]+a[i,k]*b[k,j];

/*end of the product term loop*/

end /*of all rows*/

join N;

c
[image: image3]end

count=3;

PARALLELISM IN ALGORITHMS

We can detect parallelism in a sequential algorithm by looking for operations that can be carried out independently of each other.

How to recognize independence of operations?
We require that results of execution of the parallelized program are to be the same as for sequential one.

Consider the sequence of statements in a sequential algorithm.

For each statement Si, define the set of all variables read by Si as its input set I(Si), and the set of all variables written by execution of Si as its output set O(Si).
Let’s consider two statements Si, Sj such that Si<Sj (Si precedes Sj in the sequence of statements chronologically).

BERNSTEIN’S CONDITIONS

Then statements Si and Sj are independent if
1.
[image: image4.wmf]Æ

=

)

(

)

(

j

i

S

O

S

O

I

 - output independence

2.
[image: image5.wmf]Æ

=

)

(

)

(

i

j

S

O

S

I

I

 - flow independence

3.
[image: image6.wmf]Æ

=

)

(

)

(

j

i

S

O

S

I

I

 - anti independence

In other words, no two statements write to same variable, and no input variable of a statement is an output variable of another.

Parallelism is a commutative relation, but not transitive.

PARALLELISM AND PARALLELIZATION

[image: image7.emf]

A

B

C

A || B & B || C but not (A || C)

Compilers can use these conditions to generate parallel code.
Such approach doesn’t give usually good results – to obtain effective parallel program it should be restructured.

For example, reduction operation:

[image: image8.wmf]å

=

=

N

i

i

a

s

1

If to find S according to

s=a1;

s = s + ai, i=2,N,

then it will require N steps.

Using associativity, we can split summation operation into disjoint pairs, and implement it in]
[image: image9.wmf]N

2

log

[steps, where]x[is the least integer greater or equal than x.

Fork j=0

Child 0

parent

Fork j=1

J=2

PAGE
9

_1126965068.unknown

_1126965192.unknown

_1126965822.unknown

_1126966314.doc

[image: image1]

A

B

C

_1126965686.unknown

_1126965130.unknown

_1126957302.unknown

