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Controlling FD and MVD Inferences in 
Multilevel Relational Database Svstems 

Tzong-An Su, Member, IEEE, and 

Abstruct- We investigate the inference problems due to func- 
tional dependencies (FD) and multivalued dependencies (MVD) 
in a multilevel relational database (MDB) with attribute and 
record classification schemes, respectively. For FD’s, we first 
determine the set of functional dependencies to be taken into 
account in order to prevent FD-compromises. Then we prove that 
incurring minimum information loss to prevent compromises is 
an NP-complete problem. Finally, we give an exact algorithm 
to adjust the attribute levels so that no compromise due to 
functional dependencies occurs. For MVD’s, we determine some 
necessary and sufficient conditions for MVD-compromises. We 
then determine the set of MVD’s to be taken into account for 
controlling inferences. Finally, we give an algorithm to prevent 
MVD-compromises in a relation with conflict-free MVD’s. 

Index Terms- Compromise, data classification, database se- 
curity, functional dependency, inference control, information 
loss, multilevel relational database, multivalued dependency, NP- 
complete. 

I. INTRODUCTION 
multilevel relational database system (MDB) is a rela- A tional database system which stores data of different 

security classifications and provides these data to users with 
different clearances. In a multilevel relational database system, 
data d is assigned a classification level L(d) ,  and each user U 

is assigned a clearance level L(u) .  Only when L ( u )  2 L(d) ,  
where 2 represents a partial ordering relation, the user U 

can access data d. There are three main data classification 
schemes, namely, classijcation by records (tuples), classifica- 
tion by attributes, and classiJication by elementary items (tuple 
components) [5]. 

Research about multilevel relational database systems was 
first initiated in 1982 by the group of Woods Hole Summer 
Study on Multilevel Database Management Security. Since 
then, the topic has attracted researchers’ attention, and some 
important results have been derived [4], [5], [9], [lo], [6], 
[7], [12], [14], [15]. In Denning’s paper [5] ,  four types of 
attacks to multilevel database systems are discussed, and one 
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approach, called commutative filters, is proposed to overcome 
inference problems. But there are still some open problems. 
One important issue is the inference problem due to integrity 
constraints (i.e., constraints that enforce the correctness of data 
in the database). Consider the following examples. 

Example 1.1: Assume employee salaries in a company are 
based on an evaluation factor, called rank, of every employee. 
That is, employees who have the same rank get the same 
salary. Let R be a relation scheme in the company database, 
where R contains EMPLOYEE-ID, . , ., RANK, and SALARY 
attributes. Assume the SALARY attribute is classified at TOP- 
SECRET level and the RANK attribute is at SECRET level. 
Also the following functional dependency holds in R: 

RANK + SALARI’ 

which denotes the relationship that, within tuple t of R, 
for a given RANK value (e.g., t[RANK]) there is always a 
unique SALARY value (e.g., t[SALARY]). In other words, RANK 
functionally determines SALARY in R. Now, a user with 
clearance SECRET can infer the salary information (which is 
unauthorized to him) if he also knows the mapping between 
RANK and SALARY attribute values. Note that under this 
classification scheme, the user U can always compromise the 
database since he certainly knows the mapping from his rank 
to his salary, and thus, he can use this information to infer 

U 
Example 1.2: Let R(SID, GI.  G?. ’ ‘ . , G,,, . GP.4) be a re- 

lation scheme of a university database, where SZD is student 
id number, G, ,  1 5 z 5 m, represents the grade of the 
student with student id number SID in course C,, and GPA 
represents his cumulative grade-point-average. It is clear that 
the functional dependency GIG2 . . .  G,, + GPA holds in 
the database. If SID, and G,. 1 5 i 5 m are classified as 
SECRET and GPA is classified as TOP-SECRET, then a user 
U with clearance level SECRET can infer the TOP-SECRET 

0 
Example 1.3: Let R = ( M ,  S. W )  be a relation scheme in 

a military database with record classification scheme, where 
M ,  S, W represent the name of the mission, the name of 
the warships involved in the mission, and weapons used in 
the mission. Assume every warship involved carries the same 
weapons, and in mission ml there are three warships and three 
types of weapons involved. Then, we have the relation r in 
the database shown in Fig. 1. 

Now, if a user U with clearance level 4 knows the fact that 
every warship carries the same set of weapons, then U can infer 

salaries of other people with the same rank. 

information GPA of any student. 
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Fig. 1. A multilevel relation 

the luple ( r r I 1 .  52. wg), (ml. s g .  w2), and (ml ,  s3,  wy) which 
arc all unauthorized to him. 0 

The above examples illustrate that if the integrity constraints 
o n  the data are not properly reflected to the classification lev- 
CIS, uscrs can infer unauthorized information from a multilevel 
relational database. 

In  this paper, we investigate the inference problems due 
LO integrity constraints in an MDB. Specifically, we consider 
[hc security problems caused by two major types of data 
dependencies, i.e., functional dependencies and multivalued 
dependencies [17], [13]. For each type of data dependency, 
we show the inference mechanism (attacking method) and a 
level assignment method to prevent such kind of inferences. 

Section I1 gives the definitions used in the paper. Section I11 
describes the inferences arising from functional dependen- 
tic\. We determine the number of functional dependencies 
to be taken into account in order to prevent the so-called 
FD-compromise. Also, we prove that preventing the FD- 
compromise, and at the same time, achieving the minimum 
information loss by changing the minimum number of attribute 
lcvels IS NP-complete. Finally, we propose an algorithm to 
adjust attribute levels to prevent FD-compromises so that the 
minimum information loss goal is obtained. In Section IV, we 
first give necessary and sufficient conditions to prevent MVD- 
compromises due to a single MVD. We then give a necessary 
and sufficient condition to prevent MVD-compromises when 
there are multiple (conflict-free [16], [ l l ] )  MVD’s. Finally, we 
present an algorithm to adjust the tuple levels in a relation so 
that MVD-compromises are eliminated. Section V concludes. 

11. DEFINITIONS AND TERMINOLOGY 

A. Tlie Relational Data Model 

An attribute is a property of some entity. As a convention, 
we use A,  B ,  C. . . . for single attributes and 2, Y, W, . . . for 
scts of attributes. Corresponding to each attribute A is a set 
of possible values for the attribute. This set is called the 
rlornain of the attribute A, denoted by DOM(A) .  A relation 
sclzeme R is a finite set of attributes {AI, A2,. . . , An) ,  de- 
noted by X(A1, A2>. . . ? An). Let D O M ( R )  = DOM(A1) x 
DOM(A2)  x . . .  x DOM(A,), where x is the Cartesian 
product. A relation instance r over the relation scheme R is 
a finite set of mappings {t l ,  t 2 , .  . . ,in> from R to D O M ( R )  
with the restriction that for each mapping t E r ,  t(A,) must be 

records). Given a set of attributes X ,  an X-value z is an as- 
signment of values to the attributes in X from their respective 
domains. Given a relation r over the relation scheme R, t [ X ]  
represents the value of the set of attributes X in the tuple t of 
relation r .  The notations X Y  and zy represent the union of 
two sets of attributes X and Y and an XY-value, respectively. 

Two important operations on relations are projection and 
join. Let r be a relation over R, and X R. The projection 
of r on X ,  denoted by 7rx(r), is the relation { t [ X ]  I t E r }  
over X ,  where t [ X ]  denotes the X-value of tuple t. The join 
of two relations r over R ( X Y )  and s over S ( X Z ) ,  where X, 
Y ,  and 2 are mutually disjoint sets of attributes, is a relation 
q over Q ( X Y 2 ) .  The relation q, denoted by r w s ,  is defined 
as {zyz I zy E r , z z  E sj.  

B. The Multilevel Relational Database 

MDB denotes a multilevel relational database. Consider an 
MDB which uses the attribute classification scheme; that is, 
each attribute A, in the MDB is assigned a classification level 
L(A,),  L(A,) E N ,  and N is the set of natural numbers. Let 
L(u) ,  L(u)  E N ,  represent the clearance level of the user 7 ~ .  

Then, the user U can access attribute A, values of tuples iff 
L(u)  2 L(A,). On the other hand, if the MDB uses the record 
classification scheme, then each tuple (record) t in a relation 
r is assigned a classification level L( t ) ,  L ( t )  E N .  The user 
U can access tuple t iff L(u)  2 L( t ) .  

C. FD-Compromises 

Let R be a relation scheme in the MDB, X and Y be subsets 
of the attributes in R ,  and r be any instance of R. We say 
X -+ Y ,  read “ X  functionally determines Y,” if it is not 
possible that T has two tuples that agree in the components 
for all attributes in the set X ,  yet disagree in one or more 
components for attributes in the set Y [17]. For example, we 
have M K  -+ SALARY in Example 1.1 and G1 G2 . . . G, i 
GPA in Example 1.2. 

As shown in Examples 1.1 and 1.2 in Section I, unauthorized 
information in an MDB can be inferred using functional 
dependencies if the classification levels are not properly as- 
signed. Consider a functional dependency (FD) X -+ Y in 
some relation R, where X, Y C Attr(R),  A t t r (R)  denotes the 
attribute set of R. We say that there exists an FD-compromise 
due to the FD X -+ Y and the mapping between X and 
Y attribute values if, for any user U with clearance level 
L(u) ,  for all X ,  in X ,  for some y3 in Y,  and L(y3) > 
L(u)  2 L(X, ) ,  U can infer the unauthorized information t [ q ]  
of some tuple t in R, by querying the authorized information 
t[X,]  and by utilizing the associated mapping between X and 
Y .  

Note that if a user knows the FD X i Y, but not the 
associated mapping between X and Y attribute values then the 
knowledge of the FD X + Y is not sufficient for compromise. 
We assume that for any FD mentioned, the user also knows 
the related mapping. 

D. MVD-Compromises 

Let R, r ,  X ,  and Y be defined as in Section 11-C. We say that 
in DOM(A,),  1 5 i 5 n. The mappings are called tuples (or there is a multivalued dependency (MVD) of Y on X ,  denoted 
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by X A-+ Y ,  if whenever t and s are two distinct tuples in 
T with t [ X ]  = s [ X ]  (that is, t and s agree on the attributes in 
X ) ,  then T also contains tuples U and w where .[XI = w[X] = 
t [ X ]  = s [ X ] ,  u[Y] = t[Y] and u [ R - X - Y ]  = s [ R - X - Y ] ,  
and .[U] = s [ Y ]  and v[R - X - Y ]  = t [R  - X - Y ] ,  where 
“-” denotes set difference. 

In Example 1.3, we have M --i S (or M -++ W).  
Given a multivalued dependency (MVD) X ii Y in some 

relation R of an MDB with the record classification scheme, 
we say that there exists an MVD-compromise due to the MVD 
X +-+ Y ,  if, for any user U with clearance level L ( u ) ,  U can 
infer the unauthorized information of some tuple t in T (i.e., 
L ( t )  > L ( u ) )  by querying the authorized tuple information 
and using the rules given in the MVD definition. 

111. INFERENCES DUE TO FUNCTIONAL 
DEPENDENCIES AND A PROTECTION METHODOLOGY 

Given a set F of FD’s on a relation R with U = At tr (R) ,  
let F+, the closure of F ,  be the set of FD’s logically implied 
by F. F+ can be computed by Armstrong’s Axioms [l], [17], 
[13]: 

Reflexivity: If Y C: X C U then X -- Y .  
Transitivity: If X -+ Y and Y -- Z ,  X ,  Y,  2 C: U ,  then 

Union: If X -+ Y andX -- Z , X ,  Y,  2 C U ,  then 

We say that two sets of FD’s F and G are equivalent if 
F+ = G’. 

In this section, we investigate the problem of inferences 
due to the users’ knowledge of the set F of FD’s and the 
associated mappings, and propose a method to prevent the 
FD-compromise. We assume that all attributes stored in the 
MDB have been assigned classification levels according to 
some “real-world’’ requirements. Due to some FD’s existing 
in the MDB, FD-compromises may occur. Our main goal here 
is to transform the inference control problem due to FD’s into 
an access control problem by introducing a classification level 
adjustment scheme for those attributes involved in the FD’s. 

x i z. 
x + Y Z .  

A. A Sufficient Condition for Preventing FD-Compromises 

In general, there may be several FD’s existing in an MDB, 
and this in turn introduces some problems. The first problem is 
how many FD’s we should take into account, and the second 
one is the effects of the interaction among FD’s. 

Given a set F of FD’s, one can use Armstrong’s Axioms 
to derive the closure F+, and consider F+ to prevent FD- 
compromises. However, the size of F+ may be exponential 
in the size of F .  The following lemma shows that if there is 
no FD-compromise caused by each FD in F then there is no 
FD-compromise in F+. 

Lemma 3.1: Consider the set F of FD’s and the associated 
mappings. If every FD X + Y in F has the property that 
L ( X ; )  2 L(Y,),  for all y3 E Y ,  where X i  is some attribute 
in X then there is no FD-compromise in F+. 

Proof Considering any FD in F alone, there is no 
FD-compromise. Moreover, any (repetitive) application of an 
Armstrong Axiom to FD’s with no FD-compromise will give 
an FD without any FD-compromise. Q.E.D. 

The above result shows how to prevent an FD-compromise 
by assigning classification levels to attributes involved in the 
FD’s. We now consider the following example. 

Example 3.1: Consider a set F of FD’s in an MDB: 
{AB -+ C, C i A, BC -+ D, A C D  -+ B}. Let the original 
classification assignments for attributes A, B, C,  and D be 
such that L(B) > L(C) > L(A)  > L(D) .  Thus, FD’s 
A B  i C, C -+ A and BC -+ D contain no FD-compromise, 
but A C D  + B does. In order to avoid FD-compromises in 
F+, we must adjust the classification levels such that all four 
FD’s in F contain no FD-compromise. One way to do this is 
by adjusting the levels of A and C and letting them be equal 
to the level of B. As an alternative, we can let L(B)  = L ( C )  

0 
Example 3.1 shows that we can adjust the classification 

levels of attributes in FD’s to avoid FD-compromises. Since 
there are many ways to do the adjustments, we face with 
the problem of choosing the best one. Due to the real-world 
requirements, we cannot do the adjustments by lowering the 
classification levels; in that case, we reveal some unauthorized 
data. Therefore, the only way is to raise the levels. As a result 
of raising classification levels, some authorized data are then 
restricted, and we have the so-called “information loss.” For 
the sake of information richness, we aim at finding a way 
which results in the minimum information loss. 

and have all four FD’s contain no FD-compromise. 

B. The Minimum Information Loss ClassiJication 
Adjustment Scheme 

To reflect the actual information loss, we formulate the clas- 
sification level adjustment problem as follows. Each attribute 
A, at each allowable classification level m is associated with 
a weight wLm, where w,,, is a positive integer, based on the 
usage and the importance of the attribute to the application. 
Under this scheme, we have w,, 5 wTn if 772 > n ,  since 
the information about A, at level m is at least as restricted 
as that at the level n. Thus, each time we raise the level of 
A,, we will have a nonincreased weight. The information loss 
caused by the classification level adjustment can be defined 
as follows. 

Information Loss: The difference between the total weight 
of attributes in the MDB before and after the adjustment. 

Example 3.2: Consider Example 3.1 with the original 
weights 7, 1, 6, and 10 for the attributes A, B, C ,  and D, 
respectively. To prevent the FD-compromise, we can raise 
the level of C to L(B) .  Assume the weight of attribute C 
at level L(B) is 3. As the result of the adjustment, we have 
the information loss of 3. cl 

Our goal is to find a level adjustment method which 
eliminates FD-compromises and incurs the minimum weight 
(information) loss. Now we can state the problem as below. 

Problem CLA: Given a set F of FD’s existing in an MDB 
with the attribute classification scheme, does there exist a level 
adjustment scheme with a weight (information) loss 5 K so 
that, after the adjustments, for any FD X -+ Y in F ,  we have 
L(X , )  2 L(Y,), for all YJ E Y and some X ,  E X? 

The CLA problem turns out to be an NP-complete problem, 
and thus, there is no known efficient algorithm to solve it. 
Here, we prove it to be NP-complete by transforming a known 
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NP-complete problem, i.e., the hitting set problem, to it. The 
hitting set problem [8] is defined below. 

Problem HS: Consider a collection C of subsets of a finite 
set S, and a positive integer K 5 IS]. Is there a subset S’ S 
with IS’I 5 K such that S’ contains at least one element from 
each subset in C? 

Theorem 3.1: Problem CLA is NP-complete. 
Proof: First we transform HS to CLA. The transformation 

is as follows. 
Let S = { E l , E 2 , . . . . E n } , C  = { C ~ , C ~ , ~ ~ ~ , C , } ,  and 

the universal attribute set U = S U {XI, X 2 , .  . . , X,}. Also, 

. . . = L(E,),  L ( X , )  > L(E,), 1 5 z 5 m, 1 5 j 5 n, and 
the weight of each attribute E,, E, E S ,  at the level L(E,) be 
2, and that at level L ( X , )  be 1. The set F of FD’s is formed 

let L(X1) 1 L(X2) = . . .  = L(X,), L(E1) = L(E2) = 

b Y 
C1- X1 
C2 -+ x2 

I c, -+ X,. 
Clearly this transformation takes polynomial time. 

Next we prove that there exists a subset SI S with 
IS’[ 5 K such that S’ contains at least one element from 
each subset in C iff we can find an adjustment scheme with 
a weight loss 5 K so that there is no FD-compromise due 
to FD’s in F .  
(e) Assume such a subset S/ exists. Our adjustment scheme 

is a5 follows. For any C,, 1 5 a 5 m, if there is only one E, 
such that E, E C, and E, E S’, then we raise the level of 
E ,  to L ( X , ) .  If there is more than one such E3, then we 
choose one, say E3, and raise its level to L(X,). Clearly, this 
adjustment has the weight loss 5 K and from Lemma 3.1, F 
contains no FD-compromise. 
(e) Assume we have an adjustment scheme with the weight 

loss 5 K so that there is no FD-compromise. Since L(X,) > 
L ( E , ) ,  for all E, in C,, 1 5 z 5 rn, every FD in F must be 
adjusted. Therefore, we can let S’ be the set of the attributes 
whose levels are adjusted. Since the total weight loss is 5 K ,  
wc know that the number of attributes which get adjusted is 
also 5 K (Note that the weight loss for adjusting one attribute 
is at least 1.) Therefore, IS’I 5 K .  Also, S’ contains at least 
one element from each subset in C.  Q.E.D. 

C. Level Adjustment Algorithm to Prevent FD-Compromises 

Although the CLA problem is NP-complete, and it seems 
that we should resort to an approximation algorithm to solve 
i t ,  we, instead, choose to use an exact algorithm since both the 
number of FD’s in F and the number of attributes involved 
are, presumably, not large in most applications. 

Below we give an algorithm to adjust the classification 
levels of attributes so that no FD-compromise exists due to a 
given set of FD’s. In algorithm CLA, a procedure, called FD- 
ADJUST, which actually does the adjusting work is called. 
For the efficiency of the algorithm, in steps 3 and 4 of the 

algorithm, we first delete those irrelevant FD’s, i.e., those that 
do not have to be adjusted. Also, in procedure FD-ADJUST, 
we use the branch-and-bound method by keeping a current 
optimal value of the weight loss (OPT) .  When an attribute 
is adjusted, we compare the current total value of the weight 
loss ( C N T )  to the current optimal one (OPT) .  If the former is 
larger than the latter, the procedure need not continue; instead, 
we can begin to test another case. 

Algorithm CLA: 
Input: 

A set F of FD’s. 
A partition UIN of the universal attribute set, where each 
block in UIN contains one attribute and its associated 
classification level. 
Weighting scheme of attributes in the MDB. 

A partition UOUT of the universal attribute set, where 
each block in UOUT contains attributes which have the 
same classification level and the associated classification 
level. The new classification level assignment represented 
by UOUT eliminates the FD-compromises, and it incurs 
the minimum information loss. 

output: 

Initialize. OPT := ca; 
Right Decomposition. For each FD in F with a com- 
posite right-hand side, i.e., the right-hand side is not 
a single attribute, decompose it as follows: Let X + 

A1A2.. .An E F, then decompose it into {X + 
Al,  X --+ A , , .  . . , X i An}. Let the result of the right 
decomposition of all FD’s be F,. 
Find the largest classification level Ll in U I N .  
Delete those FD’s from F,. with the left-hand sides 
containing an attribute A with L(A)  = Ll. Let Ft denote 
the resulting set. 
Left Decomposition. Decompose each FD in f t  in the 
following manner: Let Bz1B22 ...El,[ --+ A, E Ft, then 

where lFtl = m. 
Form all the combinations of two-tuples in the set of Ft 
sets, 1 5 z 5 m, by taking one two-tuple from each Fa. 
Let OPEN denote the set of all combinations. 
repeat 
Choose one combination C of two-tuples from OPEN, 

CALL FD-ADJUST (C); until OPEN = 0 
Terminate. 

Fa = {(Bzl, Az), (B221 A ) ,  ’ ‘  ‘ >  ( B z l i  A%)}, 1 I 2 I m, 

OPEN := OPEN - { C } ;  

procedure FD-ADJUST (C); 
begin 
CNT := 0; 
U’ := U I N ;  
Let M be the list of attributes Mi appearing in the left-hand 
sides of all two-tuples in C, with L(M1) 2 L(M2) 2 
. . . 2 L(Mn), where n is the number of distinct attributes 
appearing in the left-hand sides of all two-tuples in C; 
for i := n down to 1 do 

begin 
Let C; be the subset of C with Mi on the left-hand 
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sides of two-tuples in C. 

L(M,) < L(A)  then 
if there is any two-tuple (M,, A )  in C, with 

begin 
Choose the attribute K on the right-hand side of 
two-tuples in C, with the largest classification 
level; 

(* BI, is the block in U’ containing attribute K *); 
B k  := Bk U BM, 

U’ := U’ - B M ~ ;  
c“ := CNT + ( W M Z , L ( M , )  - wM*,L(k ) ) ;  
(* wMt,L(Mz)  is the weight of attribute mi at level 

if CNT 2 OPT then return 
end 

L(Mt)  *I 

end; 
OPT := CNT; 
UOUT := U’ 
end; 

D. Time Complexity of the Level Adjustment Algorithm 

We now consider the time complexity of the adjustment 
algorithm CLA. In the procedure FD-ADJUST, there are two 
major parts contributing to the time complexity. The first one 
sets up the ordered list M ,  which takes O(m1ogrn) time, 
where rn is the number of two-tuples in C. The second part is 
the execution of the for loop, which takes O(m) time to finish 
in the worst case. The worst case, n = rn, occurs when each 
two-tuple in C has a distinct left-hand side. 

In the main procedure, step 6 dominates the complexity, 
which produces nzl IF,/ combinations. Although IF; I varies 
for different FD’s of F ,  in the worst case, we can assume 
/F;I = IUINI. Thus, we have the total worst-case complexity 
O( rn log ml U r N y ) .  

Iv .  INFERENCES DUE TO MULTIVALUED DEPENDENCIES 

In this section, we discuss the security problems caused by 
the MVD inferences. We assume the MDB uses the record 
classification scheme i.e., each tuple in a relation is assigned 
a classification level. Under this assumption, we first examine 
the inferences from a single MVD, and then extend our results 
into the case of multiple MVD’s. 

A. Single MVD Inferences 

In this section, we discuss the inference problems in an 
MDB due to a single MVD. We first define some notations 
used in the discussion. Let r be a relation over a relation 
scheme R, t be any tuple in r ,  and U represent a user of the 
MDB. We define 

Tu = {t  I t E T and L( t )  5 L(u ) }  
T ( X  = x) = {t I t E T and t [X]  = x} 
Tl,,(X = x;u) = {t I t E T ( X  = x) and L( t )  I: L(u)}  
Thrgh(X = x;u) = {t I t E T ( X  = x) and L( t )  > L(u)} .  

The basic result is stated in Lemma 4.1 below. 
Lemma 4.1: Consider an MDB with the record classification 

scheme. Let R be a relation scheme in the MDB and X ++ 
Y exist in R. Let U represent a user of the MDB with 

clearance level L(u)  and T be a relation over R. There is 
no MVD-compromise due to X ++ Y in T iff for any 
z in 7 r ~  ( T )  and any tz in Thzsh(X = x: u) either a) there 
does not exist tl in Tl,,(X = z; U )  such that tl [Y] = t 2  [Y] 
or b) there does not exist tl in Tl,,(X = x; U )  such that 
t l[R - X - Y ]  = tz[R - X - Y ] .  

Proof: 
(+) Assume there exist x in D O M ( X )  and t 2  in Thrg,l(X = 

z ; u )  such that tz[Y] = tP[Y]  for some t, E T[, , (X = z : ~ )  
and tZ[R-X-Y] = t , [ R - X - Y ]  for some t, E TlOu,(X = 
z : ~ ) ,  then, by the definition of MVD, the user U can use t ,  
and t, (which are authorized to him) to infer t z .  Thus, an 
MVD-compromise occurs. 

(+) First, assume a) is satisfied. Since a) is satisfied, for 
any t 2  in TtLzgh(X = z: U ) .  tz[Y] cannot be inferred by the 
user U using the rules in the MVD definition, and thus t 2  can 
not be inferred. Therefore, no MVD-compromise will occur. 
Now assume b) is satisfied. Using the same argument, one can 
also prove that no MVD-compromise will occur. Q.E.D. 

Lemma 4.1 describes a procedural technique to prevent 
MVD-compromises by assigning proper classification levels 
to tuples in a given relation. Consider the following example. 

Example 4.1: Consider the Example 1.3 with the MVD 
M ++ S (or M ++ W).  We can change the classification 
levels of tuples in r such that the condition in Lemma 4.1 
is satisfied and thus, there is no MVD-compromise. Note 
that in Fig. 2, the levels of tuples (ml. 51. wg), (m1. s2. wl), 
(ml.  s j .  w1) and (ml. s3. w2) have now been changed. 0 

Two variations of Lemma 4.1 which use the notations from 
relational algebra are listed in Lemma 4.2 and 4.3. 

Lemma 4.2: Consider an MDB with the record classification 
scheme. Let R be a relation scheme in the MDB, r be a relation 
over R, and X ++ I’ exist in R. Also let P = T I  (Tlou ( X  = 
z; U ) )  and Q = TR-  1-1 (Tlow ( X  = z: U ) ) ,  where 7r denotes 
the projection operation of a relation. There is no MVD- 
compromise due to X ++ Y iff for all J, .z E T ~ ( T )  and 
for all U ,  TR-\-(TL,~,(X = z:u)) = P x Q, where x denotes 
the Cartesian product. 

Lemma 4.3: Consider an MDB with the record classification 
scheme. Let R be a relation scheme in the MDB, X +- I- 
exist in R, P = TS~T(T,) and Q = T - ~ ( ~ - ~ - ~  )(Tu), where 
7r denotes the projection operation of a relation. There is no 
MVD-compromise due to X ++ Y iff for all U ,  Tu = P w 
Q, where w denotes the join operation. 

B. Compromises Due to a Set of MvD’s 

In Section IV-A, we have considered the inferences due to 
a single MVD. In general, there may be several MVD’s in a 
given relation. Therefore, we have the same problem as in the 
case of functional dependencies, namely, dealing with a set of 
MVD’s and still preventing the MVD-compromises. 

Given a set of MVD’s, one can use inference rules to derive 
new MVD’s. Since these new MVD’s are implied by the old 
ones, we should consider them together. Ref. [3] describes a 
complete set of inference rules for MVD’s as follows. 

1) Complementation: Let X, Y ,  and 2 be sets such that 
their union is R, and Y n Z C. X. Then X ++ Y iff 
X ++ 2. 
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2 )  Reflexivity: If Y C X ,  then X +-+ Y .  
3) Augmentation: If Z C. W and X ++ Y then X W  ++ 

4) Transitivity: If X ++ Y and Y ++ 2 then X --i 

Given a set M of MVD’s, let M+, the closure of M ,  denote 
the set of MVD’s which can be derived from M using the 
inference rules 1-4. Investigating all the MVD’s in M+ for 
MVD-compromises is a time-consuming task. However, the 
following theorem gives us a short-cut. 

Theorem 4.1: Given a set M of MVD’s, if there is no 
MVD-compromise due to any MVD in M then there exists 
no MVD-compromise due to M+. 

Proof: See the Appendix. 

Y z.  
z - Y. 

Theorem 4.1 tells us that to prevent MVD-compromises, we 
can consider only MVD’s in the given set M instead of its 
closure M+. 

Theoretically, given a relation scheme, any possible set of 
MVD’s can exist in the relation scheme. It is claimed that [16] 
some of these sets of MVD’s are unrealistic, and do not exist in 
real-world examples. Therefore, in this paper, we investigate 
only those sets of MVD’s which are claimed to exist in the 
real world i.e., conflict-free MVD’s [11], [16]. In [16], it is 
shown that in real-world applications the only sets of MVD’s 
that need ever be considered are conflict-free. 

Before we give the definition of conflict-free MVD’s, we 
nccd some more terminology. Let M be a set of MVD’s 
in relation R, the set {Yl, . . . , Y,) is a dependency basis 
for X ,  ( X ,  Y, C. R) if X ++ Y,  is in M+, Y,  # 0, 
X n Y,  = 0, 1 5 i 5 n, and for any MVD X ++ Z 
implied by M ,  Z - X is the union of some of the x’s. We 
u s e D E P ( X )  = {Yl ; . . ,Yn)orX++Y~I . . . IY ,  todenote 
the dependency basis of X. It is known [2] that a dependency 
basis must exist for any X and M .  Given a set M of MVD’s, 
X is a key of M if there exists an MVD X ++ Y in M .  
Each Y in D E P ( X )  is called an essential dependent of X if 
X ++ Y cannot be derived from M without using an MVD 
having the left-hand side X .  A key is essential if it has an 
essential dependent. 

We are now in a position to define conflict-free MVD’s. 
Let M be a set of MVD’s. M is conflict-free if for any two 
essential keys X and Y of M ,  the following condition holds: 

and 

D E P ( Y )  = {K, ’ ’  ’ , v k ,  Y1, * ’ ’ ,T, ( z y X 1  ’ ’  ’ X i ) )  

where 

{Vl , .  . . , Vj} C. DEP(X n Y )  and Z,X = 2,Y. 

Example 4.2: Consider the relation R( P, U, S, M ,  W )  in an 
MDB, which represents a Person in some Mission, the Unit 
where the person comes from, the Speciality of the person, 
and the Weapons used in the mission, respectively. We have 
the following MVD’s existing in R : 

P+-+U P + + S  P +-+ M W  
M + + W  M ++ PUS 

It is easy to see that DEP(P) = {U, S, M W )  and 
D E P ( M )  = {W, P U S ) .  Moreover, the above set of MVD’s 
is conflict-free since one can verify that the following 
substitutions on the conflict-free MVD definition are correct: 

0 
Another data dependency related to multivalued dependency 

is called the join dependency (JD). Let R be a relation scheme. 
A decomposition of R is a set D = { R I ,  RP,  ’ ‘ ‘ , Rj}  of 
subsets of R such that R = RI U Rz U . .. U Rk. It is not 
necessary that the RI’s be disjoint. Let D = { R I ,  R2,. . . , Rk) 
be a decomposition of R. A relation r over R satisfies the join 
dependency w [RI ,  Rz, . . . , Rk] (or w [ D ] )  if T = T R ~  ( r )  
w T E ~  ( r )  w . . . w T R ~  ( r ) .  Given a relation scheme R with a 
set M of MVD’s and a decomposition D on R, we say that 
M is equivalent to the join dependency w [D] iff, for any 
relation instance r over R, r satisfies M iff r satisfies w [D].  

An important property of a conflict-free set of MVD’s is 
stated below [16]. 

Lemma 4.4: Given a relation scheme R and a conflict-free 
set M of MVD’s over R, there is a unique join dependency 
J = w [ X I ,  X2,  . . . , X n ]  over R such that M is equivalent 
to J .  

Using this property, for conflict-free MVD’s, we can derive 
a necessary and sufficient condition for preventing MVD- 
compromises as stated in Theorem 4.2. 

Theorem 4.2: Consider a relation scheme R, a conflict-free 
set M of MVD’s over R, and a relation instance r over R. Let 
J =w [X, ,  X z ,  . . . , X,] be the equivalent join dependency 
of M ,  and Pi = rx,(T,), 1 5 i 5 n. There is no MVD- 
compromise in r due to M iff for all U ,  Tu = PI w Pz w . . . w 
Pn . 

Proof: 
(+) We first prove that for all U ,  Tu satisfies M .  Let X +-+ 

Y be an arbitrary MVD in M ,  and s, t E Tu with s [ X ]  = t [ X ] .  
By the definition of the MVD, we can generate two different 
tuples v and w with v [ X ]  = w [ X ]  = s [ X ]  = t [ X ]  in 
r ,  because r satisfies X ++ Y .  Since there is no MVD- 
compromise due to M (and thus due to X +-+ Y ) ,  ‘U and 
w should be in Tu. Therefore, T, satisfies X +-+ Y .  Same 
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arguments can apply to other MVD’s in M ,  and we know that 
Tu satisfies M. Because, for conflict-free set M of MVD’s, 
w [XI, X2, . . . , X,] is the equivalent join dependency of M ,  
and Tu, for all U ,  satisfies M, therefore, for all U ,  Tu = PI w 
P 2  w ’ . .  w P,. 
(e) Since for all U ,  Tu = PI w P2 w . . . w P,, Tu 

satisfies the join dependency w [XI, XZ, . . . , X,]. Because 
w [XI, XZ, . . . , X,] is the equivalent join dependency of M ,  
therefore, for all U ,  Tu must also satisfy M .  Thus, for any user 
U ,  the tuples which U can infer are always in Tu, and there is 
no MVD-compromise. Q.E.D. 

Theorem 4.2 is the general case of Lemma 4.1-4.3. A 
simple explanation is as follows. Tu represents the set of tuples 
authorized to be accessible to the user U. If, for each user U ,  

Tu satisfies J (and thus, M),  then all the tuples which can 
be inferred by the user U using the MVD definition (or JD 
definition) are always in Tu. Thus, U cannot infer unauthorized 
tuples and therefore there is no MVD-compromise. Theorem 
4.2 gives us a guideline to prevent MVD-compromises due to a 
set of conflict-free MVD’s. In the next section, we transform 
the MVD inference problem into an access control problem 
by raising levels of some tuples so that the MDB satisfies 
Theorem 4.2, and thus there exists no MVD-compromises. 

C. Level Adjustment Algorithm to Prevent MVD-Compromises 

1) LevelAdjustmentAlgorithm: Assume all the data stored in 
the MDB have been assigned classification levels by using the 
record classification scheme. Due to some MVD’s existing in 
the MDB, there may be MVD-compromises. Our goal is to find 
an algorithm which adjusts the classification levels of records 
(tuples) in the MDB so that there is no MVD-compromise. 
Based on Theorem 4.2, we propose the following algorithm 
to adjust the security levels of tuples and prevent MVD- 
compromises. We first find the equivalent join dependency of 
the conflict-free set of MVD’s, and then perform the actual 
adjustment work. Thus, given a set M of conflict-free MVD’s 
existing in a relation scheme R, our algorithm can be divided 
into three phases. The first phase finds the dependency bases 
of keys of all MVD’s in M.  Based on these dependency 
bases, phase two finds the database scheme S where the join 
dependency w [SI is equivalent to M .  The third phase does the 
actual adjustment work. Note that for the sake of completeness 
we have included below some known results (i.e., procedure 
DEP and DECOM). For the relevant theory, we refer readers 
to [ll] and [16]. 

Phase 1: Finding dependency bases. The following proce- 
dure is a modified version of the one in [2]. Similar algorithms 
can be found in [17] and [13]. The procedure DEP takes a 
relation scheme R and a set M of conflict-free MVD’s in R as 
input. The output of the procedure DEP consists of dependency 
bases of all the keys in M .  
procedure DEP 
begin 
for each key X in M do 

begin 

FLAG : = “T”; 
BASIS(X) := {{A}IA E X} U {R - X}; 

while FLAG do 
begin 
FLAG : = “F”; 
for each MVD W ++ 2 in M do 

begin 
Y := U{VlV E BASIS(X) andVnW # 0}: 
21 := 2 - Y ;  
if 21 is not empty and is not a union of 
elements of BASIS(X) then 

begin 
FLAG : = “T”; 
BASIS(X) := BASIS(X) U (21): 
repeat 
find a pair of sets 2 2  and 2 3  in 
BASIS(X) that are not disjoint and 
replace them by the sets 2 2  - 23,  
23 - 2 2 ,  and 2 2  n 23, 
throwing away the empty set 
until BASIS(X) consists of a 
disjoint collection of sets 
end 

end 
end 

BASIS(X) := BASIS(X) - { { A }  I A E X}; 
return BASIS(X) 

end 
end; 

Phase 2: Finding the set of relation schemes S from R such 
that w IS] is equivalent to M .  The following algorithm is from 
[ll]. The procedure DECOM accepts the relation scheme R, 
the set M of conflict-free MVD’s described in phase 1, and 
the output of procedure DEP (i.e., dependency bases of keys 
in M )  as its input, and generates a set S of relation schemes 
from R such that w [SI is equivalent to M .  

procedure DECOM; 
begin 
S := {R} :  
for each key X in M do 

begin 

for each Y in S such that Y contains X do 
c1 := 0; 

begin 
s := s - {Y} ;  
C1 := C1 U {X(Y n W)jY n W f 0% for 
some W in D E P ( X ) } ;  
end; 

s := s U c1 
end 

end; 

Example 4.3: Consider the relation scheme R and its associ- 
ated conflict-free set M of MVD’s in Example 4.2. Applying 
procedure DEP on R, we obtain DEP(P)  = {U,  S, M W }  and 
D E P ( M )  = {W. PUS}. Based on these dependency bases, 
we can use procedure DECOM to derive the equivalent join 
dependency of R which is w [PU, PS ,  PM.  M W ] .  0 

Phase 3: Adjusting the levels of records. The procedure 
MVD-ADJUST adjusts the security levels of tuples in a 
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relation instance T of R and eliminates MVD-compromises. 
The basic idea of the procedure MVD-ADJUST is based on 

Theorem 4.2. Let S = {SI: 5’2; . . . , Sm} be the set of relation 
schemes derived from Phase 2, and the clearance levels of the 
MDB users range from 1 to LNO with the level at LNO having 
the highest authority. The procedure takes each clearance level 
,i starting from LNO and performs the following work in the 
descending order of clearance levels. 

For each clearance level i ,  let Ti be the set of tuples which 
are authorized to be accessible to users with level i (i.e., 
T; = {t  I f E r ,L ( t )  5 i } ) .  Because of the existence of M in 
r ,  there are MVD-compromises in Ti. Part of the compromises 
may arise from the inferences of tuples with levels i by those 
users with levels less than i .  To eliminate this type of MVD- 
compromises, we first divide T; into two parts R; and Ri-1 

where R; is the set of tuples with classification levels equal 
to i and is the set of tuples with levels less than i. Next, 
we raise the levels of some tuples in R;-1 to level i .  Let the 
resulting Rj-1 (after the adjustment) be RI-,. Now, if Ri-l 
satisfies w [SI (or M )  then all the tuples which can be inferred 
by users with levels less than i are always in RiP1. Thus, the 
part of MVD-compromises described above can be eliminated. 

So far, we have only taken care of one type of MVD- 
compromises in Ti, i.e., compromises caused by the inferences 
of tuples with level i .  Other MVD-compromises may still exist 
in T,,  e.g., the inferences of tuples with level i - 1 by users 
with levels less than i - 1. Since, after the above adjustment, 
users with levels less than i cannot compromise tuples with 
level %, to eliminate the inferences of tuples with level i - 1 by 
users with levels less than i -  1, we can consider the current set 
of tuples with levels equal to or less than i - 1 (i.e., RiPl) and 
repeat the process described above. To completely eliminate 
MVD-compromises, the above process must be repeated until 
,i is equal to level 2. 

Example 4.4: Consider the relation scheme R and the 
associated conflict-free set M of MVD’s in Example 4.2. From 
Example 4.3, we know that the equivalent join dependency 
of M is w [SI =w [ P U , P S , P M , M W ] .  Let T be a 
relation instance of R. Fig. 3(a) shows the relation T and 
the classification levels of tuples in T .  As shown in T ,  the 
classification levels for tuples are 1, 2, and 3, i.e., LNO = 3. 
For simplicity of the discussion, we refer to a tuple using its 
identification number which is stored under the attribute Id. 

It is easy to see that MVD-compromises exist in T (e.g., 
tuple 11 can be inferred from tuples 12 and 13). Using the 
process described above, we first divide T (or, in this example, 
Ts) into R3 = (4, ll}, and R2 contains the remaining tuples 
with levels less than 3. We then raise the levels of tuples 3, 7, 
8, and 12 in R2 to level 3. This adjustment will prevent users 
with levels less than 3 from inferring tuples with level 3. The 
resulting Rh is shown in Fig. 3(b). As shown in Fig. 3(b), Rh 
satisfies w [SI. 

Although we have eliminated the inferences of tuples with 
level 3, we still need to consider the inferences of tuples with 
level 2 from users with levels less than 2. Therefore, we divide 
Tz (or Rh) into R2 = (13) and R1 = {1,2,5,6,9,10,14} and 
try to raise the levels of tuples in R1 to level 2. After carefully 
checking on RI ,  we know that R1 has already satisfied w [SI, 

3 P1 U 1  s3 m2 w3 

1 1 1  3 I P 3  I U 2  33 m 2  w3 

i.e., tuples with levels greater than or equal to 2 cannot be 
inferred by users with level 1. Thus, there is no need to do any 
level adjustment on RI .  Also, since the level 1 is the lowest 
level in the MDB (or in terms of the notation described above, 
i = 2), we can terminate the process and have the relation 
r without any MVD-compromise. The final r is shown in 
Fig. 3(c). 0 

In general, when we raise levels of tuples to prevent MVD- 
compromises, there can be several ways to do the adjustment. 
In Example 4.4, instead of raising the levels of tuples 3, 7, 8, 

12 3 P 3  U 2  5 3  m 2  w4 
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and 12, we can raise the levels of tuples 8, 12, 13, and 14 to 3 
and prevent the compromises of tuples 4 and 11. Therefore, we 
have the same problem as in the case of the FD-compromise, 
namely, choosing the best adjustment scheme which incurs 
minimum information loss. The information loss in the MVD- 
compromise case is similar to that in the FD-compromise case 
and can be defined as follows. 

Each tuple ti at each allowable classification level rn is 
associated with a weight w;,. Under this scheme, we have 
w;, 5 w ; ~  if rn > 1. Thus, each time we raise the level 
of a tuple ti, we will have a nonincreased weight. We can 
define the information loss in the case of MVD-compromise 
as the difference between the total weight of tuples in the 
relation r after and before the level adjustment. Based on this 
definition, we now describe the method used in the procedure 
MVD-ADJUST for raising the levels of tuples in a relation. 
This method not only prevents MVD-compromises but, at the 
same time, reduces the information loss caused by the level 
adjustment. 

The method is implemented from statements 4 to 9 in 
the procedure MVD-ADJUST. We consider a specific T; and 
its partitions into Ri and R;-1 as described in previous 
paragraphs. To prevent the inferences of tuples in R, (i.e., 
tuples with levels equal to i) from users with levels less than 
i, we must raise levels of some tuples in Ri-1. Our method to 
raise levels is based on the following corollary of Theorem 4.2. 

Corollary 4.1: Let S, R;, R;-1 be defined as before, and t, 
be a tuple in R;. If there exists an SI;, SI; E S, 1 5 k 5 m, 
such that tj[Sk] = V j k  and V j k  is not in TS,, (Ri-1) then users 
with clearance level less than i cannot infer the tuple t j .  

Proof: Since V j I ,  is not in 7rsk (&-I), by using the 
join dependency w [SI (and thus the MVD inference rules 
in Section 11-D), users with levels less than i cannot generate 
the tuple t j .  Q.E.D. 

Example 4.5: Consider the relation T2 shown in Fig. 3(b). 
We can divide TZ into Rz = (13) and R1 = (1, 2, 5, 6, 9, 
10, 14). Since tls[MW](= rnzwy) does not belong to 7 r A l T T -  

0 
Before we raise the levels of tuples in Ri-1 to level i ,  we 

first check R; to see whether there exist tuples which cannot be 
inferred. If there are, we just remove them from Ri and store 
them in the final resulting set, i.e., RESULT. These actions 
are performed in statement 5. 

To reduce the information loss, we define some parameters 
to determine which tuples in Ri-1 need to have their levels 
raised. First consider Ri-1. For each V j k  in 7rsb (Ri-l), 
1 5 k 5 rn, 1 5 j 5 17rsk(R;-1)l, we compute the 
total information (weight) loss due to raising levels of tuples 
in Ri-1 to the level i, where the values of Sk in these 
tuples are equal to V j k .  Let this total weight loss be W l j I ; .  

A similar process applies to R;. For each V j k  in 7rsk ( R E ) ,  
1 5 j 5 17rsk (&)I,  1 5 k 5 rn, we count the total number of 
tuples in R; where the values of SI, in these tuples are equal 
to v jk .  Let this number be N ~ I , .  

To measure the information loss and thus, to determine 
which tuples in R;-1 should be adjusted, for each w l j ~ ;  defined 
above, we define the parameter p j k  as the ratio of W l j k  to Njk 

(pjk = N j k / w l j k ) ,  where N ~ I ,  is the number of tuples in Ri 

(RI), users with level 1 cannot infer t13. 

with the SI, value equal to V j k .  The meaning of pjk can be 
explained as follows. If we raise the levels of tuples in Ri-1 

having the Sk value of V j k  then we can eliminate inferences 
of p j k  tuples in R; with one unit weight loss. It is clear that 
we should choose the largest p j k  and raise the levels of tuples 
with the corresponding value V j k  in Sk, since choosing the 
largest p j k  means that we can eliminate the maximum number 
of inferences with one unit weight loss. 

The procedure MVD-ADJUST below accepts the relation 
T and the relation scheme S generated in phase 2 as its 
input, and adjusts the classification levels of tuples in T to 
eliminate MVD-compromises. The output of the algorithm is 
the adjusted relation T which is stored in RESULT. 

procedure MVD-ADJUST; 
begin 
RESULT: = 0 ; 
T := r;  

1 for i := LNO downto 2 do (* LNO is the number of 
security levels in the MDB *) 

begin 
2 R, := { t  I t E T , L ( t )  = i } ;  
3 Ri-1 := {t  I t E T,L(t) < i } ;  
4 while R; # 0 do 

5 
begin 

for each SI, in S do 
for each VjI; in TS,, (R;) do 

if V j k  not in 7rsk (Ri-1) then 
begin 
MOVE := {t 1 t E R;:t[Sk] = ~ j k } ;  

RESULT : = RESULT U MOVE; 
R; := Ri- MOVE; 
end; 

6 for each SI, in S do 
for each V j k  in 7rsk (&I) do 

w l j ~ ;  := total weight loss due to raising tuples 

with SI; value of vjk to level i; 

for each V j k  in 7rsk (R;)  do 

in Ri-1 

7 for each SI; in S do 

N,I; : = total number of tuples with SI; value 
of V j k ;  

8 for each SI, in S do 
for each V j k  in 7rsk (R;) do 

p j k  := N j k l W l j k ;  

9 let ' u j k  be the value corresponding to the maximum p J k  
(break the tie arbitrarily); 

for each t in RAISE do 
RAISE : = {t 1 t E R;-l:t[Sk] = ~ j k } ;  

L( t )  := i; 
Ri-1 := Ri-1- RAISE; 
MOVE := {t I t E R;,t[Sk] = ~ j k } ;  

RESULT := RESULT U RAISE U MOVE; 

end; 
Ri := Ri- MOVE 

T := Ri-1 
end 

end; 
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Fig 4 Computation of parameters v, wl, N ,  and p 

Finally we illustrate the procedure MVD-ADJUST by using 
the following example. 

Exurnple 4.6: Let R, T ,  M ,  S, and LNO be the same as 
defined in Example 4.4. Also, assume the weights of tuples 
at level 3, 2, and 1 are 1, 2, and 3, respectively. We now 
perform the procedure MVD-ADJUST on r .  From Example 
4.4, we split T into RJ and Rz. RJ = (4, l l }  and R2 contains 
those remaining tuples with levels less than 3 in T .  At this 
point, all the values in 7rsk (RJ), 1 5 k 5 m, can be found 
in the corresponding T S ~ .  (Rz). Therefore, both of the two 
tuples in R3 can be inferred using the tuples in Rz and thus 
statement 5 can be skipped. 

Now we must determine which tuples in R2 need to have 
their levels raised in order to prevent compromises on the 
tuples in RJ. We do this by first calculating the parameter 
!),;A. for each value 'uJk in 7rs,(R*), 1 _< j _<  ITS^(&)^, 
1 5 k 5 VI,. Fig. 4 shows the values of each p j k .  For example, 
adjusting the tuples in R2 with PU = plul, i.e., raising their 
lcvels to 3, will eliminate the inference of the first tuple in 
R:, and the p value for plul is 1/12, where 12 is the total 
weight loss due to raising the seven tuples in R2 to level 3, 
and 1 indicates that there is only one tuple in RJ which can 
be protected from the MVD-inference due to this adjustment. 

As a result of the exhaustive calculation of all possible p 
values, we find that p3s3  has the maximum p value of 0.5. We 
thus raise the levels of tuples in R2 with P S  value equal to 
p:js:j to 3 and this avoid the inference of the second tuple in 
RJ. We implement that by changing the level of p3u2s3rn2w4 
of Rz and then moving it with the second tuple of RJ to the 
RESULT set. This process (while loop) is repeated until all 
the tuples in R3 are moved to RESULT set. The current Rz is 
shown in Fig. 3(b). In fact, R2 is the subrelation of r which 
can be accessed by users with clearance level 2 without any 
MVD-compromise on tuples with level 3. Although users with 
levels less than or equal to 2 cannot infer tuples with level 3 
at this point, still, level 1 users may infer level 2 tuples in Rz. 
Therefore, we consider the current R2 as a new relation which 
may have MVD-compromises and apply the entire process 
described above again (This will be the second iteration of 

tl 
The correctness of procedure MVD-ADJUST is stated and 

proved in the following theorem. 
Theorem 4.3: Given a relation scheme R, a conflict-free set 

M of MVD's over R and a relation instance r of R, let S = 
{SI, Sz, . . . , S,} be a decomposition over R, and w [SI be the 
equivalent join dependency of M .  After performing the proce- 
dure MVD-ADJUST on r ,  there is no MVD-compromise in r. 

Proofl We first show that the procedure terminates. Since 

statement 1.) The final result is shown in Fig. 3(c). 

the for loop in statement 1 iterates LNO - 1 times (limited 
number of iterations), what we need to show is the termination 
of the while loop in statement 4. For each z (and thus RA), 
we remove some tuples from R, in each iteration of the 
while loop. In each iteration, two types of tuples in R, will 
be removed (if any). One type is those tuples which can be 
inferred by using tuples in R,-1 and the other type is those 
which cannot. Because tuples in R, always belong to one of 
these two categories, as the iterations continue, R, will become 
empty, and the while loop will terminate. 

Now we show that MVD-ADJUST correctly adjusts the 
classification levels and prevents MVD-compromises. For each 
z, 2 5 z 5 LNO, we show that R,-1 satisfies the join 
dependency w [SI when the while loop terminates. Given 
R,-1, 2 5 z 5 LNO, after the termination of the while loop, 
let PJ = 7r~ , (R , -~ ) , l  5 J 5 m and J P  = PI w P2 w 
. . .  w P,. Let t E R,-1. For each 1, 1 5 3 5 rn, t[S,] is 
in PJ.  By the definition of the join operation, t is in J P ,  i.e., 
R,-l C J P .  Let s E JP. s must be in r because w [SI is 
the equivalent join dependency of M .  Furthermore, s must be 
in €2-1, since otherwise, we can still generate a tuple in R,, 
which contradicts with the assumption that R, 5 0, and the 
termination of the while loop. Thus, J P  & R,-1. From the 
two results shown above, we know R,-1 = J P  and there is 
no MVD-compromise in r .  Q.E.D. 

2) Time Complexity of the Level Adjustment Algorithm: 
Since the entire adjustment algorithm consists of three con- 
secutive phases, to determine the time complexity, we first 
determine the time complexity of each phase. The phase that 
dominates the algorithm gives the time complexity of the entire 
algorithm. 

From [2], we know that the time complexity of the pro- 
cedure DEP is O(lMl x lRI3), where IMI is the number of 
MVD's in the relation R, and IR( is the number of attributes 
in R. For phase 2, the procedure DECOM takes O(IM12 x IRI) 
[ l l ] .  We now determine the time complexity of the procedure 

Let the number of tuples in the original relation T be n. 
Consider the first iteration of the first for loop (statement 
1). In the first iteration, it takes O(n) to form R, and 
R,-1 (statements 2 and 3). Now consider the statements 
inside the while loop. Statement 5 can be implemented using 
multilists, i.e., each S k  has a linked list storing the values in 
7rsh ( r ) .  Assume inserting a value W j k  of 7rsk ( r )  into the 
corresponding list takes ITS,, ( r )  I / 2  operations (comparisons) 
(average search time to determine whether ?J,k is already in the 
list). To create all these lists for R,-1 in the worst case takes 
p E,"=, ITS, (.)//a, where p is the number of tuples in R,-1. 

MVD-ADJUST. 
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To remove those tuples in R, which cannot be inferred using 
tuples in R,-1 (with a u3k  value which is not in rsk (R%-l)), 
we can, for each tuple in R,, check the value of each S k .  

The entire process in the worst case takes q Czl I T S %  (~)1/2,  
where q is the number of tuples in R,. Thus, to complete 
statement 5 (in the worst case) takes operations (comparisons) 

The time complexity for performing statements 6 and 7 is 
also O(n  I T S ,  (.)I). Performing statements 8 and 9 takes 
O(Zzl I T S %  (.)I) time. The statements after statement 9 can 
be implemented in O(n). 

Assume the security levels are evenly distributed to tuples 
in R. For the first iteration of statement 1, lR%l, the number of 
tuples in R,, is equal to n/ LNO. Now consider the while loop. 
In the worst case, for each iteration of the while loop, we may 
remove only one tuple from R,. Thus the time complexity for 
the first iteration of statement 1 is (n/LNO)(n I T S %  (.)I). 
Note that as the iterations of the while loop go on, the size 
of R, changes. Thus, the time complexity of statements inside 
the while loop will also change. Here we consider only the 
worst case, and assume the time complexity for each iteration 
of the while loop is the same which is nczl I T S ~ ( T ) ~ .  Now 
we add the effect of the loop in statement 1. The number of 
iterations of statement 1 is LNO. Thus, the time complexity 
of the procedure MVD-ADJUST is O(n2 

Now we can determine the time complexity of the entire 
algorithm. Comparing the time complexity of the three proce- 
dures, we find that the procedure MVD-ADJUST dominates 
those of the other two. Therefore, we conclude that the time 
complexity of the entire algorithm is O(n2 

(P + 4 )  c:1 ITS* (7-)1/2 time, which is O(n  c:1 ITSt (.)I). 

I T S , ( T ) ~ ) .  

I ~ s ~ ( r ) l ) .  

V. CONCLUSIONS 

In this paper, we first examine the inference problem due 
to functional dependencies under the attribute classification 
scheme. We decide the number of functional dependencies 
needed to be taken into account, and then prove that incurring 
minimum information loss to prevent FD-compromises is an 
NP-complete problem. Despite the NP-completeness result, we 
propose an exact algorithm to adjust attribute levels so that 
FD-compromises are avoided, since, presumably, the number 
of attributes involved in the algorithm is small. This algorithm 
will incur minimum information loss. 

Under the record classification scheme, we also study the 
inference problem due to multivalued dependencies. We de- 
rive several necessary and sufficient conditions for MVD- 
compromises. For a set M of MVD’s, we prove that it is 
sufficient to consider only M itself, instead of M+,  in order 
to prevent MVD-compromises caused by M .  It is argued that 
in the real world, the only sets of MVD’s need to be considered 
are conflict-free. Based on this observation, we assume that M 
is conflict-free, and develop an algorithm to adjust the tuple 
levels in a relation so that MVD-compromises are eliminated. 

Although the scope of the MDB we investigate in this paper 
is restricted to a single relation, one may (at least theortically) 
extend the results to the entire MDB since the MDB can be 
considered as a universal relation. Also, our results consider 
only attribute and record classification schemes. However, 

we believe that they are useful in further studies for the 
construction of a secure multilevel relational database system. 

APPENDIX 
PROOF OF THEOREM 4.1 

Proof: We show that any MVD obtained from M using the 
inference rules 1-4 does not have any MVD-compromise. 

[rule 11: We prove the claim for the case that if X ++ Y 
then X --+ 2. The other case is symmetric and is omitted. 
Since X -+-+ Y does not have any MVD-compromise, we 
have : for all x E TX(.) and for all U ,  for any t 2  E Thzgh(X = 
x ; ~ ) ,  either tz[Y] # t l[Y] or t z [R-X-Y]  # t l [R-X-Y] ,  
for all tl E Tl,,(X = 5 ;  U ) .  i) tz[R - X - Y ]  # t l[R - X - 

t z [Z  - X - Y ]  # tl[Z - X - Y ]  + t2[Z] # tl[Z]. ii) 

tz[R - X - Z ]  # t l [R  - X - 21. From the above result and 
Lemma 4.1, X -++ Z does not cause MVD-compromise. 

[rule 21: Using Lemma 4.1, we prove the following : for 
all x E T X ( T )  and for all U ,  for any t 2  E Thrgh(X = X U ) ,  

t z [ R - X - Y ]  # t l [ R - X - Y ] , f o r a l l t l  E Z , ~ , ( X = ~ ; U ) .  
Since Y C X, tz[R-X-Y] = tz[R-X] and tl[R-X-Y] = 
t l[R-X].  Now, it is clear that tz[R-X-Y] # t l [R-X-Y] ,  
otherwise, t 2  = tl. 

[rule 31: Using Lemma 4.1, we prove the following: Assume 
X -++ Y does not have any MVD-compromise. Then for all 
xw E T X W ( T )  and for all U ,  for any t? E Thzgh(XW = 
x w : ~ )  either tz[YZ] # t l[YZ] or tz[R - XW - Y Z ]  # 
t l[R - XW - Y Z ] ,  for all tl E Tl,,(XW = xw;~). Since 
t l [X]  = x and t z [ X ]  = x, therefore, tz E Thzgh(X = x: U ) ,  

for all t 2  E Thzgll(XW = xw; U )  and tl E Tl,,(X = x: U ) ,  

for all tl E Tl,,(XW = xw: U ) .  Because X ++ Y does not 
cause MVD-compromise, we have for all x E T S ( T )  and for 
all U ,  for any t z  E Thzsh(X = x ; ~ ) ,  either tz[Y] # t l[Y] or 
t z [ R - X - Y ]  # t l [ R - X - Y ] ,  for a l l t l  E Tl,,,(X = x : ~ ) .  
(Case 1): tz[Y] # t l[Y].  We then have tz[YZ] # t l [YZ] ,  
for all tz E Thlgh(XW = xw;~), for all tl E Tl,,,(XW = 
xw:~), and thus, the MVD X W  ++ Y Z  does not cause 
any MVD-compromise for this case. (Case 2): tz[R - X - 
Y ]  # t l[R - X - Y ] .  Since tz[XW] = t l [XW],  for all 
t2 E Thzgh(XW = xw; U ) ,  for all tl E Z,,(XW = xw: U ) ,  

we have t z [R-XW-Y]  # t l [ R - X W - Y ] .  Also, Z C W ,  
therefore, tz[R-XW-YZ] # tl[R-XW-YZ] and thus, the 
MVD XW ++ Y Z  does not cause any MVD-compromise 
in this case. 

[rule 41: Using Lemma 4.1, we prove the following: Assume 
X ++ Y and Y +-+ Z do not cause any MVD-compromise. 
Then for all x E T X ( T )  and for all U ,  for all t 2  E Thzgh(X = 
Z ; U )  either t z [Z-Y]  # t l [ Z - Y ]  or tZ[R-X-(Z-Y)]  # 
t l[R - X - (2 - Y ) ] ,  for all tl E Tl,,(X = IC;.). Since 
X ++ Y does not cause any MVD-compromise, we have 
for all x E TX(.) and for all U ,  for any tz E Thlgh(X = x: U ) ,  

either tz[Y] # t l[Y] or tz[R-X-Y] # t l [R-X-Y] ,  for all 
tl E Tl,,(X = x ; ~ ) .  (Case 1): tZ[Y] # t l [Y] .  Since tz[X] = 
tl [XI ,  we have t z  [Y - X ]  # tl [Y - XI .  Furthermore, we have 

That is, t z [ R - X - ( 2 - Y ) ]  # t l [R-X- (Z -Y) ] .  thus, the 

Y ]  * t , [ (XUYUZ)-X-Y] # t , [ ( X u Y u Z ) - X - Y ]  * 
t2[Y] # t l [Y]  -+ tz[Y-X-(YnZ)]  # t , [Y-X-(Ynz)]  + 

t z [ ( Y - X ) ( R - X - Y - Z ) ]  # t l [ ( Y - X ) ( R - X - Y - Z ) ] .  
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MVD X ++ 2 - Y does not cause any MVD-compromise 
for this case. (Case 2) : t2 [R - X - Y ]  # tl [R - X - Y ] .  Since 
t : ! [ R - X - Y ]  # t l [ R - X - Y ] , f o r a l l t l  ~ T i ~ ~ ( X = x ; u ) ,  
there must be some tuples si in Ti,,(X = % ; U ) ,  1 5 i 5 m, 
such that t2[Y] = s ; [Y]  (Case 1 is not satisfied). Also, 
Y ++ Z does not cause MVD-compromise, thus, we can 
consider the two subcases below. 

i) t2[R - Y - Z ]  # si[R - Y - Z ] ,  1 5 i 5 m, 
s i  E T/,,,(X = % ; U ) .  Since t 2 [X]  = s i [ X ] ,  1 5 i 5 rn, 
therefore, t 2 [ R  - X - Y - Z ]  # si[R - X - Y - 21, 
1 5 i 5 m. Thus, we have t2[(R - X - Y - Z ) ( Y  - 
S)] # s;[(R - X - Y - Z ) ( Y  - X)],  1 5 i 5 rn, i.e., 
t 2 [ R - X - ( Z - Y ) ]  # s i [ R - X - ( Z - Y ) ] ,  15 i 5 rn. Since 
f 2 [ Y ]  # <s,j[Y], sj  E Ti,,,(X = 2 ;  U ) ,  s j  # s;,  1 5 i’ 5 m, and 
tZ[X]  = .? j [X] ,  therefore, t2[Y - X ]  # s j [Y  - XI ,  and thus, 

That is, t2[R - X - (2 - Y ) ]  # sj[R - X - (2 - Y ) ] ,  for 
all .s,; E Ti,,,(X = x ; u ) ,  sj  # s i ,  1 5 i 5 rn. Combining 
the two cases together, we have t2[R - X - (2 - Y ) ]  # 
s [ X  - X - (2 - Y ) ] ,  for all s E Tl,,(X = IC;.). Thus, 
X ++ Z - Y does not cause MVD-compromise for this 
case. 

ii) f2[Z] # s i [Z] ,  1 5 i 5 m, s i  E Ti,,(X = 2 ; ~ ) .  

Wc aim at proving that t2[Z - Y ]  # s [ Z  - Y ] ,  for all s E 
T,,,,,,(X = : I : ;  U ) .  Assume this is not true. Since t z [Z]  # s ; [Z] ,  
i.e., t 2 [ Z - Y ]  # s ; [ Z - Y ] ,  1 5 i 5 m, we only need to check 
those sj’s,  E Tl,,,(X = z ;u) ,  sj # s i ,  1 5 i 5 rn. Let 
s,; E Ti,,,,,(X = :t.;u), s j [ Z  - Y ]  = t 2 [ 2  - Y ]  and s j [ Y ]  # 
t z [ Y ] .  Since X +-+ Y ,  we should have ss E T such that 
.s:[R-?i-Y] = s , j [R-X-Y]  (or s I [Z -Y]  = s j [Z -Y] ) ,  and 
.s$[Y] = t 2 [ Y ] .  Because s ; [Y]  = t2[Y] = sg[Y] ,  1 5 i 5 rn, 
s; E Ti,,,,,(X = : c ; u ) ,  and si[R - X - Y ]  = sj[R - X - U ] ,  
s,, E T/,,,,,,(X = :c; U ) ,  also, X ++ Y does not cause any 
MVD-compromise, therefore, ss E T l , , ( X  = 2;  U). Thus, si 
is one of the si’s, 1 5 i 5 rn. Let this s; be represented by 
s, .  Now we have s i  E Ti,,,(X = Z ; U ) ,  s i [Y]  = tz[Y] and 
s , [ Z  - k’] = <s,;[Z - Y ]  = t2[Z - Y ] ,  i.e., si[Z] = t z [Z] .  This 
contradicts our initial assumption that t2[Z] # s i [Z] .  Thus, 
S ++ Z - Y does not cause any MVD-compromise in this 
case. Q.E.D. 

r , [ ( Y - X ’ ) ( R - X - Y - Z ) ]  # S j [ ( Y - X ) ( R - X - Y - Z ) ] .  
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