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This paper considers the problem of providing security to statistical databases against 
disclosure of confidential information. Security-control methods suggested in the 
literature are classified into four general approaches: conceptual, query restriction, data 
perturbation, and output perturbation. 

Criteria for evaluating the performance of the various security-control methods are 
identified. Security-control methods that are based on each of the four approaches are 
discussed, together with their performance with respect to the identified evaluation 
criteria. A detailed comparative analysis of the most promising methods for protecting 
dynamic-online statistical databases is also presented. 

To date no single security-control method prevents both exact and partial disclosures. 
There are, however, a few perturbation-based methods that prevent exact disclosure and 
enable the database administrator to exercise “statistical disclosure control.” Some of 
these methods, however introduce bias into query responses or suffer from the O/l query- 
set-size problem (i.e., partial disclosure is possible in case of null query set or a query set 
of size 1). 

We recommend directing future research efforts toward developing new methods that 
prevent exact disclosure and provide statistical-disclosure control, while at the same time 
do not suffer from the bias problem and the O/l query-set-size problem. Furthermore, 
efforts directed toward developing a bias-correction mechanism and solving the general 
problem of small query-set-size would help salvage a few of the current perturbation- 
based methods. 

Categories and Subject Descriptors: H.2.0 [Database Management]: General-security, 
integrity, and protection 

General Terms: Protection, Security 

Additional Key Words and Phrases: Compromise, controls, disclosure, inference, security 

INTRODUCTION the real world that is modeled), attributes 
(characteristics of the entities), and rela- 

A database consists of a model of some tionships among the different entities. 
part of the real world. Such a model is made Entities with identical attributes consti- 
up of entities (the elements of the part of tute a particular entity type. In a hospital 
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database, for example, patients and treat- 
ments are system entities, and name, Social 
Security number, and diagnosis type are 
attributes of the entity type patient. 

A statistical database (SDB) system is a 
database system that enables its users to 
retrieve only aggregate statistics (e.g., sam- 
ple mean and count) for a subset of the 
entities represented in the database. An 
example is Ghosh’s [1984,1985] description 
of an SDB that is made up of test data for 
a manufacturing process. Another example 
is the database maintained by the U.S. 
Census Bureau. These examples are spe- 
cial-purpose databases, since providing 

aggregate statistics is their only purpose. In 
other situations, a single database may 
serve multiple applications, including a sta- 
tistical application. A hospital database, for 
example, might be used by physicians to 
support their medical work as well as by 
statistical researchers of the National 
Health Council. In that case, the statistical 
researchers are authorized to retrieve only 
aggregate statistics; the physicians, on the 
other hand, can retrieve anything from the 
database. 

Many government agencies, businesses, 
and nonprofit organizations need to collect, 
analyze, and report data about individuals 
in order to support their short-term and 
long-term planning activities. SDBs there- 
fore contain confidential information such 
as income, credit ratings, type of disease, 
or test scores of individuals. Such data are 
typically stored online and analyzed using 
sophisticated database management sys- 
tems (DBMS) and software packages. On 
the one hand, such database systems are 
expected to satisfy user requests of aggre- 
gate statistics related to nonconfidential 
and confidential attributes. On the other 
hand, the system should be secure enough 
to guard against a user’s ability to infer any 
confidential information related to a spe- 
cific individual represented in the database. 
The problem here is “the inevitable conflict 
between the individual’s right to privacy 
and the society’s need to know and pro- 
cess information” [Palley 1986; Palley and 
Simonoff 19871. Dalenius [ 19741 presents 
an overview of this problem as does the 
following citation from Miller [1971, p. 
1361: 

Some deficiencies inevitably crop up even in the 
Census Bureau. In 1963, for example, it reportedly 
provided the American Medical Association with a 
statistical list of one hundred and eight-eight doc- 
tors residing in Illinois. The list was broken down 
into more than two dozen categories, and each cat- 
egory was further subdivided by medical specialty 
and area residence; as a result, identification of 
individual doctors was possible . . . . 

The recent proliferation of computer- 
ized-information systems has added to the 
growing public concern about threats to 
individuals’ privacy. It is therefore not sur- 
prising that the problem of securing SDBs 
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has become an important one in recent 
years. As we move further into the infor- 
mation age and see expert and knowledge- 
based systems used in conjunction with 
SDBs, the security problem is expected 
to become even more important. True- 
blood [ 19841, for example, illustrates how 
knowledge-based and expert systems could 
use nonconfidential information to infer 
confidential information. 

The following example of a hospital da- 
tabase discusses the problem of securing an 
SDB. The database contains these data 
about patients: 

(Age, Sex, Employer, Social Security 
Number, Diagnosis Type) 

In the hospital environment, physicians 
may be given access to patients’ entire med- 
ical records, whereas statistical researchers 
may only be allowed to obtain aggregate 
statistics for subsets of the patient popu- 
lation. A subset of patients whose data are 
included in the computation of the response 
to a query is referred to as the query set. 
Statistics are calculated for subsets of pa- 
tients having common attribute values 
(e.g., Age = 42 and Sex = male). Such a 
subset can be specified by a characteristic 
formula, C, which is a logical formula 
over the values of the attributes using the 
Boolean operators AND (&), OR (+), and 
NOT (1). For example, 

C = (Age = 42) & (Sex = Male) 

& (Employer = ABC) 

is a characteristic formula that specifies the 
subset of male patients, age 42, employed 
by the ABC company. The size of the query 
set that corresponds to a characteristic for- 
mula C is denoted by ] C 1. 

Suppose there is a malevolent researcher 
who wants to obtain information about the 
diagnosis type of a given patient, Mr. X. A 
malevolent user who wants to compromise 
the database is referred to as a snooper. 
In our example, assume that the snooper 
knows the age and employer of Mr. X. He 
can then issue the query 

Ql: COUNT (Age = 42) & (Sex = Male) & 
(Employer = ABC). 

If the answer is 1, the snooper has located 
Mr. X and can then issue such queries as 

Q2: COUNT (Age = 42) & (Sex = Male) & 
(Employer = ABC) & (Diagnosis Type 
= Schizophrenia). 

If the answer to Q2 is 1, the database is 
said to be positively compromised and the 
user is able to infer that Mr. X has the 
diagnosis type schizophrenia. If the answer 
is 0, the database is said to be partially 
compromised, because the user was able to 
infer that the diagnosis type of Mr. X is not 
schizophrenia. Partial compromise refers to 
the situation in which some inference about 
a confidential attribute of an entity can be 
made, even if the exact value cannot be 
determined. It may take the form of a neg- 
ative compromise, that is, it is inferred that 
an attribute of a certain entity does not lie 
within a given range. 

As we have seen from the above example, 
there are basically three types of authorized 
users: the nonstatistical user (e.g., the phy- 
sician in the hospital example) who is au- 
thorized to issue queries and update the 
database, the researcher who is authorized 
to retrieve aggregate statistics from the da- 
tabase, and the snooper who is interested 
in compromising the database. There is 
also a database administrator (DBA) who, 
by definition, is the guardian of the 
database. In the remainder of this paper 
we will use the terms user and researcher 
interchangeably. 

In this paper we assume that the follow- 
ing elements of access control [Turn and 
Shapiro 19781 have been implemented and 
are effective in preventing unauthorized 
access to the system: 

Authorization of people to access the 
computer facility and the database sys- 
tem. 
Identification of a person seeking access 
to the computer facility and the database 
system. 
Authentication of the user’s identity and 
access authorization. 

As such we will use the term snooper to 
refer to a person who is making improper 
use of the data normally available to him 
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or her as an authorized user. Usually it is 
assumed that a snooper has supplementary 
(i.e., a priori) knowledge about a target. For 
example, in queries Ql and Q2, the snooper 
knows a priori that the target is male, 42 
years old, and employed by the ABC Com- 
pany. Assumptions regarding the a priori 
knowledge of the snooper are crucial to 
the development of an effective security- 
control method: The more the security- 
control method is aware of each user’s 
supplementary knowledge, the more effec- 
tive it will be in reducing the likelihood of 
compromising the database. 

An SDB that serves multiple applica- 
tions can be structured as a hierarchical, 
network, or relational database. An SDB 
whose only purpose is to provide aggregate 
statistics can be structured in a tabular 
form. The relational and tabular forms of 
SDBs are widely discussed in the literature 
[Ghosh 19861. 

In the relational form, each entity in the 
real world is represented by a tuple con- 
sisting of attribute values of that entity. A 
set of tuples with similar attributes consti- 
tutes a relation. Such a relation is usually 
depicted as a two-dimensional table, where 
the rows correspond to tuples and the col- 
umns correspond to attributes. In statisti- 
cal analysis, the domain of attribute values 
is often subdivided into classes, which are 
used as categories. Based on these cate- 
gories, all entities are classified into ele- 
mentary cells. If two entities belong to the 
same categories for all attributes, they are 
in the same elementary cell. This process 
is referred to as microaggregation. 

If M attributes are used for categoriza- 
tion, the data can be represented by an 
M-dimensional table consisting of elemen- 
tary cells. This type of table representation 
is called the tabular form. The cells of such 
tables contain summary statistics (e.g., the 
number of entities) computed over the en- 
tities contained in the cell [Denning 19831. 
Many statistical databases (e.g., census 
data) are published in tabular form. 

An SDB in relational form is easily trans- 
lated into an equivalent one in tabular 
form. The reverse, however, is not true; that 
is, it is not always possible to deduce 
the relational form from the tabular form. 

This is because there is information loss 
when attribute values of entities are cate- 
gorized in order to obtain the tabular 
representation. 

The remainder of this section discusses 
the problem of securing SDBs and gives a 
brief overview of the solution approaches. 
Then Section 1 identifies a set of criteria 
that can be used to evaluate the per- 
formance of a security-control method, 
and Sections 2 through 5 examine the 
security-control methods that have been 
proposed to date that are related to the 
solution approaches discussed in the Intro- 
duction. A detailed comparative analysis of 
the most promising security-control meth- 
ods is given in Section 6, followed by 
a discussion of new types of threats that 
are starting to be explored in the literature 
in Section 7. Section 8 presents our 
conclusions. 

The Security Problem of Statistical Databases 

The objective of an SDB is to provide re- 
searchers with aggregate statistics (e.g., 
mean and count) about a collection of en- 
tities while protecting confidentiality of 
any individual entity represented in the 
database. It is the policy of the system as 
set by the DBA that determines the crite- 
rion for defining confidential information 
[Denning and Schlorer 19831. 

Threats to data security arise from a 
snooper’s attempt to infer some previously 
unknown, confidential data about a given 
entity. Threats to security may result in 
exact or partial disclosure. A disclosure is 
said to occur (or, equivalently, an SDB is 
said to have been compromised) if through 
the answer to one or more queries a snooper 
is then able to infer the exact value of (exact 
disclosure) or a more accurate estimate of 
a confidential attribute of an individual 
entity. In this paper, we use the terms 
compromise and disclosure interchangeably. 

Overview of Solution Approaches 

Several methods for protecting the security 
of SDBs have been suggested in the litera- 
ture. These methods can be classified under 
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Figure 1. (a) Query set restriction; (b) data perturbation; (c) output perturbation. 

four general approaches: conceptual, query 
restriction, data perturbation, and output 
perturbation. 

Two models are based on the conceptual 
a,pproach: the conceptual model [Chin and 
Ozsoyoglu 19811 and the lattice model 
[Denning 1983; Denning and Schlorer 
19831. The conceptual model provides a 
framework for investigating the security 
problem at the conceptual-data-model level. 
The lattice model constitutes a framework 
for data represented in tabular form. Each 
of these models presents a framework for 
better understanding and investigating the 
security problem of SDBs. Neither presents 

a specific implementation procedure. A 
discussion of these models is given in 
Section 2. 

Security-control methods that are based 
on the query-restriction approach (see Fig- 
ure la) provide protection through one of 
the following measures: restricting the 
query set size, controlling the overlap 
among successive queries by keeping an 
audit trail of all answered (or “could be 
deduced”) queries for each user, making 
cells of “small size” unavailable to users of 
SDBs that are in tabular form, or partition- 
ing the SDB. Section 3 includes a discus- 
sion of these methods. 
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Data perturbation introduces noise in the 
data. The original SDB is typically trans- 
formed into a modified (perturbed) SDB, 
which is then made available to researchers 
(see Figure lb). Section 4 examines each of 
the data-perturbation-based methods. 

The output-perturbation approach per- 
turbs the answer to user queries while 
leaving the data in the SDB unchanged 
(see Figure lc). A discussion of the output- 
perturbation-based methods is given in 
Section 5. 

Types of Statistical Databases and 
Computer Systems 

may not be suitable for dynamic SDBs 
since the efforts of transforming the origi- 
nal SDB to the perturbed one may become 
prohibitive. 

Centralized-Decentralized 

In a centralized SDB there is one database. 
In a decentralized (distributed) SDB, over- 
lapping subsets of the database are stored 
at different sites that are connected by 
a communication network. A distributed 
database may be fully replicated, partially 
replicated, or partitioned. The security 
problem of a distributed SDB is more com- 
plex than that of a centralized one due 

The nature of the database and the char- to the need to duplicate, at each site, the 

acteristics of the computer system strongly security-control overhead, as well as the 

affect the complexity of the SDB security difficulty of integrating user profiles. 

problem and the proposed solution ap- 
proach. The following classification [Turn 
and Shapiro 19781 reflects the variety of 
environments. 

Offline-Online 

In an online SDB, there is direct real-time 
interaction of a user with the data through 
a terminal. In an offline SDB, the user 
neither is in control of data processing nor 
knows when his or her data request is proc- 
essed. In this mode, protection methods 
that keep track of user profiles become 
more cumbersome. Compromise methods 
that require a large number of queries (e.g., 
regression-based-compromise method, see 
Section 7) also become more difficult when 
working offline. 

Static-Dynamic 

A static database is one that never changes 
after it has been created. Most census da- 

Dedicated-Shared Computer System 

In a dedicated SDB, the computer system 
is used exclusively to serve SDB applica- 
tions. In a shared system, the SDB appli- 
cations run on the same hardware system 
with other applications (possibly using dif- 
ferent databases). The shared environment 
is more difficult to protect, since other ap- 
plications may be able to interfere with the 
protected data directly through the oper- 
ating system, bypassing the SDB security 
mechanism. 

The above discussion indicates that the 
degree of difficulty of securing an SDB 
against a snooper’s attempt to infer some 
previously unknown, confidential data 
about an individual entity depends upon 
whether the SDB is online or offline, static 
or dynamic, centralized or decentralized, 
and running on a dedicated or shared 
computer system. 

1. EVALUATION CRITERIA 
tabases are static. Whenever a new version 
of the database is created, that new version 

This section discusses the criteria for 

is considered to be another static database. 
evaluating the security-control methods 

In contrast, dynamic databases can change investigated in Sections 2 through 5. 

continuously. This feature can complicate (1) Security is the level of protection 
the security problem considerably, because provided by the control method against 
frequent releases of new versions may en- complete (or exact) and partial disclosure. 
able snoopers to make use of the differences In perturbation-based methods, partial dis- 
among the versions in ways that are diffi- closure is referred to as statistical disclo- 
cult to foresee. Data-perturbation methods sure. Beck [ 19801 suggests that a statistical 
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disclosure is said to occur if, using infor- 
mation from a series of queries, it is pos- 
sible to obtain a better estimate for 
confidential information than was possible 
using only one query. The larger the num- 
ber of queries required to compromise an 
SDB partially (or statistically), the more 
secure is the SDB. 

In this paper, we adopted the following 
definition of compromise. Consider a con- 
fidential attribute Ai for an individual 
entity i represented in the database 

( 1 the entity possesses a given 

Ai= 
property (e.g., disease type 
AIDS) 

(0 otherwise 

or 

Ai is a numerical attribute (e.g., income) 

An exact compromise is said to take place 
if by issuing one or more queries, a user is 
able to determine that Ai = 1 or its exact 
value (if it is a numerical attribute). A 
partial compromise occurs if by issuing one 
or more queries, a user is able to determine 
that Ai = 0 or to obtain, for the-case of 
numerical attribute, an estimator A; whose 
variance satisfies the following: 

Var&) <CT, 

where cl is a parameter that is set by the 
DBA. 

In this paper, we consider a security- 
control method to be acceptable if it 
prevents exact disclosure and results in 
statistical-disclosure control. The term 
statistical-disclosure control, introduced in 
Dalenius [1977], refers to the ability of a 
system to provide users with a point esti- 
mate of the desired statistic and to require 
a “large” number of independent samples 
for obtaining a “small” variance of the es- 
timator. What constitutes a large number 
of queries and a small variance depends on 
the sensitivity of the data involved. The 
important point here is that the DBA is 
able to set the system parameters according 
to what he or she considers a large number 
of queries and a small variance. 

(2) Robustness of a given method is con- 
cerned with such assumptions as regarding 

the supplementary knowledge of a snooper. 
“A user’s supplementary knowledge is a set 
of all the information about the database 
which a user knows from a source other 
than the system” [Haq 19771. In dynamic 
SDBs especially, user knowledge with 
respect to inserting and deleting entities 
as well as updating attributes has to be 
considered. 

(3) Suitability to numerical and/or cat- 
egorical attributes needs to be considered. 
It is desirable to have a method that can 
be applied to control the security of con- 
fidential numerical as well as categorical 
attributes. 

(4) Suitability to more than one attri- 
bute is necessary since a typical real-world 
application involves several attributes. 
Those methods that have been designed to 
deal with only one confidential attribute 
(numerical or categorical) are clearly 
restrictive. 

(5) Suitability to dynamic SDBs is also 
necessary. In the types of environments we 
are discussing it is assumed that only the 
DBA and possibly a few other users are 
authorized to update the SDB; for them, 
the SDB is just a regular database. The rest 
of the users (researchers) must be provided 
with statistics that reflect the dynamics of 
the real world. Hence, for a security-control 
method to be suitable for an online dynamic 
SDB, it ensures that any changes to the 
SDB are reflected in the statistics provided 
to users as soon as the changes have taken 
place in the real world. 

(6) Richness of information revealed to 
users is determined by the amount of non- 
confidential information that is unneces- 
sarily eliminated as well as, in case of 
perturbation-based methods, the statistical 
quality of the information provided to 
users. An ideal security-control method 
should provide users with all relevant non- 
confidential information and at the same 
time protect all confidential information. 
For tabular SDBs, a measure of informa- 
tion loss is as follows [~zsoyoglu and 
Chung 19861: 

100 * ( SC ] 
TC ’ 
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where ] SC ] is the number of suppressed 
cells and TC is the total number of cells. 
This formula may overestimate the amount 
of nonconfidential information eliminated. 
Notice that it is natural in the context of 
the lattice model, where there is no data 
manipulation language and all the infor- 
mation about the model can be character- 
ized by the cells of the lattice. 

Bias, precision, and consistency are three 
components of the statistical quality of the 
information revealed to users. Bias repre- 
sents the difference between the unper- 
turbed statistic and the expected value 
of its perturbed estimate [Denning and 
Schlorer 19831. In general, the property of 
being unbiased is one of the more desired 
ones in point estimation. We will, there- 
fore, assume that being unbiased is a 
desirable property of any security-control 
method. 

Precision refers to the variance of the 
estimators obtained by users. On the one 
hand, we would like to provide users with 
as precise information as possible, that is, 
with an estimator with as low a variance as 
possible. On the other hand, we would like 
to ensure that an estimator obtained by a 
snooper would have as high a variance as 
possible. Therefore, an effective security- 
control method is one that enables the DBA 
to adjust the precision to an appropriate 
value by setting the method’s parameters 
accordingly. It is also desirable to provide 
users with a confidence interval of the es- 
timated statistic. As will be shown in the 
next sections, however, this requirement 
gives a snooper additional information that 
may enable him or her to find an easy way 
to compromise the database. 

Consistency represents the lack of con- 
tradictions and paradoxes [Denning and 
Schlorer 19831. Contradiction arises when, 
for example, different responses are ob- 
tained to repetitions of the same query or 
the average statistic differs from the com- 
puted average using the sum and count 
statistics. (A difference in answers to rep- 
etitions of the same queries that is due to 
changes in the real world is not, however, 
considered an inconsistency.) A negative 
response to a count query is an example of 
paradox. Consistency is a desirable feature 
of any security-control method. 

(7) Cost is made up of three compo- 
nents. The first is the implementation cost, 
which represents the effort required by the 
DBA to implement the security-control 
method and to determine the required pa- 
rameters of that method. The second com- 
ponent, processing overhead per query, 
measures the CPU time and storage re- 
quirements of the method during query 
processing. In an online-dynamic-SDB 
environment, the processing component of 
the cost is a significant factor. The third 
component is the amount of education re- 
quired to enable users to understand the 
security-control method so that they can 
make effective use of the SDB. 

2. CONCEPTUAL APPROACH 

2.1 The Conceptual Model 

In Chin and ijzsoyoglu [1981] and ijzsoy- 
oglu and Chin [1982] a framework is 
described for dealing with the security 
problem from the development of the 
conceptual schema to implementation. 
Background on this framework can be 
found in Chin’s earlier work [1978]. In the 
conceptual-modeling approach, the popu- 
lation (a population is a collection of enti- 
ties that have common attributes) and its 
statistics are all that users can access. 
There is no data manipulation language 
(such as relational algebra) allowed to 
merge and intersect populations. 

The framework, which has been analyzed 
in ijzsoyoglu and Chung [ 19861 and ijzsoy- 
oglu and Su [ 19851, deals with several issues 
that have not been considered jointly else- 
where in the literature. The most important 
of these issues are as follows: 

(1) An SDB is more than just one file 
that has data about one population. 
An SDB contains information about 
different types of populations (e.g., 
patients, treatments, medicines, doc- 
tors). Moreover, the security control 
components of the SDB manage- 
ment system should be made aware 
of the relevant subcategories of each 
population and the security con- 
straints with respect to these subcat- 
egories that must be enforced. 
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(2) 

(3) 

(4) 

The dynamics of the database (in- 
cluding the dynamics of its structure 
and security constraints) should be 
taken into account. In particular, dis- 
closure due to these dynamics should 
be prevented. 

Users’ supplementary knowledge 
should be maintained and kept up to 
date. The security-control method 
could take such information into 
consideration when responding to a 
user query. 

Possible inferences that may lead to 
disclosure, with or without users’ 
supplementary knowledge, about 
confidential information should be 
analyzed. 

The framework relies on the distinction 
between the conceptual-data-modeling 
level and the internal level. The framework 
applies mainly to the conceptual level. The 
framework, however, contains a certified 
main kernel, which deals with all access to 
the confidential part of the physical data- 
base. Within this framework, the security 
is basically guaranteed by the introduction 
of the concept of “smallest nondecompos- 
able subpopulations” (referred to as atomic 
populations or A-populations). These A- 
populations always contain either zero or 
at least two entities, thus preventing disclo- 
sure of information about one individual 
entity. The A-populations correspond to 
elementary cells in an SDB, which are 
represented in tabular form (see the dis- 
cussion on the lattice model below). In the 
conceptual-modeling framework, however, 
the definition of the A-populations is con- 
trolled by the database designer (usually 
the DBA). Preventing A-populations from 
having only one entity due to insertions 
and deletions is controlled by either delayed 
update processing or by dummy entities. As 
Schlorer [1983] notes, adding dummy 
entities may introduce bias in reported 
statistics. 

The framework describes an architec- 
ture, called the Statistical Security Man- 
agement Facility, for realizing statistical 
security in SDB environments. The parts 
of this facility are discussed in Sections 
2.1.1 to 2.1.5. 

2.1.1 Population Definition Construct 

Each subpopulation has a corresponding 
population definition construct that keeps 
track of information such as the allowed 
statistical query types for each attribute of 
the population, the security constraints 
enforced in updates, and the history of 
changes in the (sub)population. 

2.1.2 User Knowledge Construct 

User Knowledge Construct is a process that 
keeps track of the properties of each user 
group. These properties describe the 
group’s knowledge from earlier queries as 
well as any supplementary knowledge it 
may have (e.g., knowledge about confiden- 
tial attribute values of individual entities). 
It is worthwhile to note that several of the 
methods discussed in the next section, that 
is, query-overlap control and auditing, pro- 
pose some kind of user knowledge construct 
that is not as elaborate as the one proposed 
here. 

2.1.3 Constraint Enforcer and Checker 

Constraint enforcer and checker is the pro- 
cess that enforces security constraints 
when queries are issued to the system. It 
provides the user knowledge construct with 
information on successfully answered quer- 
ies (and, therefore, increased knowledge of 
a user group). The constraint enforcer and 
checker is invoked whenever the DBA 
needs to study changes in the security con- 
straints. It is also invoked whenever users 
try to perform inserts, updates, or deletions 
of entities in the database. The DBA is 
informed by the constraint enforcer and 
checker about the security consequences of 
such transactions. 

2.1.4 Conceptual Model Modification 

Conceptual model modification is a process 
that supports all changes to the conceptual 
model. These changes are first checked in 
a test mode, where conceptual model mod- 
ification communicates with the constraint 
enforcer and checker and reports security 
consequences of the proposed changes to 
the DBA. 
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Table AS 

Table ASE 

Figure 2. Lattice model. 

2.1.5 Question and Answering System 

The question and answering system is the 
primary tool by which the DBA communi- 
cates with all other processes. It is invoked 
whenever a process needs to bring some 
facts to the attention of the DBA (e.g., 
disclosure possibility, insertions, updates, 
deletions) or when the DBA initiates ques- 
tions to the system. 

The conceptual-modeling framework is 
an ambitious endeavor. To our knowledge, 
the framework has not been realized as a 
complete working software system. Also, 
note that considerable overhead may result 
from implementing such a system. Never- 
theless, the framework has broadened the 
scope of research in security of statistical 
databases. 

The conceptual-modeling framework has 
turned out to be a useful vehicle for further 
research. Update handling techniques 
within this framework have been studied in 
ijzsoyoglu and Qzsoyoglu [ 19811. They con- 
clude that output perturbation by means of 
rounding is convenient in reducing the 
probability of compromise in the case of 
single confidential attribute. Their inves- 
tigation is concerned with a single popula- 
tion in the generalization hierarchy. 
Ozsoyo~lu and Su [1985] extended that 
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work in a study on the rounding method 
for a tree-organized generalization hier- 
archy, still within the conceptual-modeling 
approach. 

2.2 The Lattice Model 

A second general framework that has suc- 
cessfully supported the research in the 
security of SDBs is the lattice model [Den- 
ning 1983; Denning and Schlijrer 19831. 
This model can be viewed as a generaliza- 
tion of the one described in Kam and Ull- 
man [1977]. The lattice model describes 
SDB information in tabular form at differ- 
ent levels of aggregation. The interest in it 
stems from the fact that statistical infor- 
mation that is provided at different levels 
of aggregation may introduce redundant 
information. If confidential information is 
suppressed at the detailed level (e.g., by 
suppressing cells with single entries, as 
with the A-populations [Chin and ozsoy- 
oglu 1981]), such information might be dis- 
closed due to more aggregate information. 

To illustrate, consider a hospital data- 
base with categorical attributes Age, Sex, 
and Employer (A, S, E). The correspond- 
ing lattice model is shown in Figure 2. 
The most detailed way to represent this 
database in tabular form consists of a 
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AGE 

TABLE ASE O-20 21-45 46-65 >65 

EMPLOYER 
UNEMPLOYED 

ABC-COMPANY 

XYZ-INC. 

M 24 2 9 49 
F 26 0 1 51 
M 0 1 9 0 
F 0 16 0 0 
M 1 20 48 0 
F 1 0 52 0 

AGE 

TABLE AS O-20 21-45 46-65 >65 

SEX M 25 23 66 49 
F 27 16 53 51 

AGE 

TABLE AE O-20 21-45 46-65 >65 

EMPLOYER 
UNEMPLOYED 
ABC-COMPANY 
XYZ-INC. 

50 2 10 100 
0 17 9 0 
2 20 100 0 

SEX 

TABLE SE M F 

EMPLOYER TABLE ALL: 
UNEMPLOYED 84 78 
ABC-COMPANY 10 16 13101 
XYZ-INC. 69 53 

AGE 

TABLE A O-20 21-45 46-65 >65 

52 39 119 100 

SEX 

M F 

TABLE S 163 147 

EMPLOYER 

UNEMPLOYED ABC-COMPANY XYZ-INC. 

TABLE E 162 26 122 

Figure 3. Lattice model of Figure 2 (extension). 

three-dimensional table ASE with dimen- dimensional tables: 
sions A, S, and E (Figure 3). A particular 
elementary cell in this table might be, for (1) Table AS, where ASE is aggregated 
example, the cell, where A = 42, S = M, over the dimension E; an example of a cell 
and E = ABC company. This tabular in this case is the one in which A = 42 and 
form can be aggregated into three two- S = M. 
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(2) Table AE, where ASE is aggregated 
over the dimension S; an example of a cell 
in this case is the one in which A = 42 and 
E = ABC company. 
(3) Table SE, where ASE is aggregated 
over the dimension A ; an example of a cell 
in this case is the one in which S = M and 
E = ABC company. 

The aggregation performed in obtaining 
these three new tables is called microaggre- 
gation. The process can be repeated in or- 
der to obtain three one-dimensional tables: 

(1) Table A, where table AS is aggregated 
over the dimension S or table AE is aggre- 
gated over the dimension E. 
(2) Table S, where table AS is aggregated 
over the dimension A or Table SE is aggre- 
gated over the dimension E. 
(3) Table E, where table AE is aggregated 
over the dimension A or Table SE is aggre- 
gated over the dimension S. 

The aggregation can be extended one 
step further, where a zero-dimensional ta- 
ble is obtained. This table contains only 
one cell, providing statistics for the data- 
base as a whole. Note that the set of all 
two-dimensional tables may sometimes dis- 
close the elementary cell statistic of the 
three-dimensional table. 

The relationship between tabular data 
and SDBs can be defined more formally as 
follows: Let the set of attributes of an SDB 
be (A,, . . ., AMI. Suppose that for each 
attribute Ai, a finite domain of allowable 
values, aii, is given (ji = 1, . . . , ] Ai ( ). 
Schlorer [ 19831 defines an m-set as a query 
set that can be specified using m (but not 
fewer) attributes. An elementary m-set is 
characterized by a formula of the form 

(AI = aij,) 

& (AZ = azj,) & . . * 8~ (A, = a,j,,,). 

These elementary m-sets correspond to the 
cells in tabular data with m dimensions (an 
m-table). 

Although in an actual dynamic SDB data 
will not always be structured according to 
such tables, elementary m-sets provide an 
interesting concept for systematically 
studying the approaches to query restric- 
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tions. For example, it is shown in Denning 
and Schlorer [1983] that all m-tables for 
a given statistic (e.g., COUNT or SUM) 
constitute a lattice when m ranges from 
1 to M. 

3. QUERY RESTRICTION APPROACH 

Five general methods have been developed 
to restrict queries: query-set-size control, 
query-set-overlap control, auditing, cell 
suppression, and partitioning. Following is 
a discussion of these five methods, together 
with an evaluation of their performance 
with respect to the criteria discussed in 
Section 1. The results are summarized in 
Table 1. (See also Denning [1982, Chapter 
61 for an excellent discussion of several of 
these methods and Denning and Schlorer 
[ 19831 for additional results.) 

3.1 Query-Set-Size Control 

The query-set-size control method permits 
a statistic to be released only if the size of 
the query set ] C ] (i.e., the number of en- 
tities included in the response to the query) 
satisfies the condition [Fellegi 1972; Fried- 
man and Hoffman, 1980; Hoffman and 
Miller 1970; Schlorer 19751: 

where L is the size of the database (the 
number of entities represented in the da- 
tabase) and K is a parameter set by the 
DBA. K should satisfy the condition 

OaK+ 

It was shown that by using a snooping tool 
called “tracker” it is possible to compromise 
the database even for a value of K that is 
close to L/2 [Denning et al. 1979; Denning 
and Schlorer 1980; Jonge 1983; Schlorer 
1980; Schwartz et al. 19791. Notice that K 
cannot exceed L/2, otherwise no statistics 
would ever be released. 

To illustrate the basic idea of a tracker, 
consider the following queries where the 
female set is used as a tracker: 

Q3: q(C) = COUNT (Sex = Female) 
Q4: 9 (C) = COUNT (Sex = Female + (Age 

= 42 & Sex = Male & Employer = 
ABC)) 
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Q5: q(C) = COUNT (Sex = Female + (Age 
= 42 & Sex = Male & Employer = 
ABC & Diagnosis Type = Schizophre- 
nia) ) 

Suppose that the response to Q3 and Q4 
are, respectively, A and B, where K % A I 
L-KandKsBsL-K.IfB=A+l, 
then the target is uniquely identified by the 
clause “Age = 42 & Sex = Male and Em- 
ployer = ABC.” In this case, the database 
is positively compromised if the response 
to Q5 is B and negatively compromised if 
the response to Q5 is A. It is usually easy 
to find a tracker for a characteristic formula 
C [Schlorer 19801. 

A summary of the performance of the 
query-set-size-control method with respect 
to the evaluation criteria is given in Ta- 
ble 1. In general, there seems to be a con- 
sensus in the literature that subverting the 
query-set-size-control method is “straight 
forward and cheap” [Denning 1982; Traub 
et al. 19841. 

3.2 Query-Set-Overlap Control 

Notice that Q3 and Q4 have a large number 
of entities in common. Dobkin et al. [1979] 
noticed that many compromises use query 
sets that have a large number of overlap- 
ping entities. They studied the possibility 
of restricting the number of overlapping 
entities among successive queries of a given 
user. If K denotes the minimum query set 
size and r denotes the maximum number of 
overlapping entities allowed between pairs 
of queries, then according to Dobkin et al., 
the number of queries needed for a compro- 
mise has a lower bound of 1 + (K - 1)/r. 
Unfortunately, however, for typical values 
of K/r, the lower bound of the number of 
queries needed to compromise the database 
is not a practical hindrance. 

In practice, query-set-overlap-control 
method suffers from drawbacks such as 
[Dobkin et al. 19791: (1) this control mech- 
anism is ineffective for preventing the co- 
operation of several users to compromise 
the database, (2) statistics for both a set 
and its subset (e.g., all patients and all 
patients undergoing a given treatment) 
cannot be released, thus limiting the use- 
fulness of the database, and (3) for each 
user, a user profile has to be kept up to 

date. The performance of the query-set- 
overlap method with respect to the evalu- 
ation criteria is summarized in Table 1. In 
regard to the cost criterion, the following 
comments are in order. The initial imple- 
mentation effort consists of developing 
software that maintains user profiles and 
compares a new query set with all previous 
sets. We feel that such an effort is moder- 
ate. The processing overhead per query 
may, however, be very high due to the com- 
parison algorithm. Every new query issued 
by a given user has to be compared with his 
or her previously issued ones. Each com- 
parison takes O(L) processing time, where 
L is the size of the SDB. 

3.3 Auditing 

Auditing of an SDB involves keeping up- 
to-date logs of all queries made by each user 
(not the data involved) and constantly 
checking for possible compromise when- 
ever a new query is issued [Hoffman 1977; 
Schlorer 19761. Auditing has advantages 
such as allowing the SDB to provide users 
with unperturbed response, provided that 
the response will not result in a compromise 
[Chin et al. 19841. One of the major draw- 
backs of auditing, however, is its excessive 
CPU time and storage requirements to 
store and process the accumulated logs. 

Chin and Ozsoyoglu [1982] developed a 
CPU time and storage-efficient method 
(called audit expert) that controls disclo- 
sure of a confidential attribute when using 
the SUM query. Consider a response, d, to 
a SUM query. Such a response provides the 
user with information in the form of a 
linear equation: 

4: aixi = d, 
i=l 

where L is the number of entities repre- 
sented in the SDB, ai is one if the ith entity 
belongs to the query set and is zero other- 
wise, and Xi represents the value of a con- 
fidential numerical attribute for entity i. 

The user’s knowledge obtained by que- 
rying the SDB may, therefore, be described 
in the form of a set of linear equations 
obtained from linear combinations of equa- 
tions in the set of answered queries. The 
audit expert maintains a binary matrix 
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Table 1. A Summary of the Performance 

Security 
Suitable for Suitability 

Security 
Control 
Method 

Exact Partial Numerical Suitable for to Online 
Disclosure Disclosure or Categ. One or More Dynamic 
Possible? Possible? Robustness Attribute Attributes SDB 

Query Set Size Yes Yes 
Control 

Query Set Over- Yes (unless Yes 
lap Control number of 

queries 
severely 
restricted) 

Auditing No Yes 

Low 

Low 

Low 

Partitioning No 

Cell Suppression No 

Yes, but more Controlled by 
protection size of A- 
results population 
from larger 
min. size of 
A-popula- 
tion 

Yes Low 

Both 

Both 

More than one 

More than one 

Moderate 

Moderate 

Both 

Both 

One, otherwise 
processing 
overhead is 
very high 

More than one 

Low 

Yes 

Both More than one No 

whose columns represent specific linear 
combinations of database entities and 
whose rows represent the user queries that 
have already been answered. These rows 
are chosen in such a way that they describe 
exactly and efficiently the knowledge space 
of each user. When a new query is issued, 
the matrix is updated. A row with all zeros 
except for an ith column indicates that 
exact disclosure of the confidential attri- 
bute of the corresponding entity is possible. 
Thus, the answer to the new query should 
be denied. It was shown that it takes the 
audit expert no more than O(L2) time to 
process a new query [Chin and Ozsoyoglu 
19821. Hence, the method is suited for small 
SDBs. 

The auditing method has been further 
investigated in Chin et al. [1984] for a 
special type of SUM query, the range SUM 
query, which is defined as 

iil wi = d, 

where ai is one if LB 5 i 5 UB and is zero 
otherwise, and xi, as before, represents the 
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value of a confidential-numerical attribute 
for entity i. Chin et al. [1984] show that 
when using the proper data structure, the 
complexity of checking if a new range SUM 
query could be answered can be reduced to 
O(L) time and space as long as the number 
of queries is less than L or to O(t log L) 
time and O(L2) space for the t th new range 
SUM query with t 1 L. 

Table 1 includes a summary of the per- 
formance of the auditing method with 
respect to the evaluation criteria. We notice 
that the audit expert that has been devel- 
oped only for SUM queries does not provide 
protection against partial disclosure. Al- 
though the DBA can provide the audit ex- 
pert with information regarding additional 
user knowledge, the robustness of the 
method is considered very low since statis- 
tics on subpopulations with only a few en- 
tities will be made available to users. With 
respect to the cost criterion, the initial im- 
plementation effort is high because com- 
plex algorithms have to be implemented. 
For example, Chin and Ozsoyoglu [1982] 
show that maximizing the amount of non- 
confidential information that is to be 
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Richness of Information costs 

Amount of 
Nonconf. Info. 

Eliminated Bias 

Initial Processing 
Implemenation Overhead User 

Precision Consistency Efforts Per Query Education 

High 

Very high 

NA NA NA 

NA NA NA 

Moderate NA NA NA 

Moderate (very 
high for 
sparse SDBs) 

Yes, if dummy NA NA 
entities are 
added 

Low 

Moderate 

Low 

Very high for 
large SDBs 

High Very high for 
large SDBs 

Moderate for 
static SDB; 
very high for 
dynamic SDB 

Very low for 
static SDB 

Very low 

Very low 

Low 

Low 

Moderate NA NA NA High None None 

provided to users is an NP-complete prob- 
lem (i.e. there exists no polynomial-time 
algorithm for solving this problem). 

Two observations are worth noting. 
First, the security level provided for the 
SUM query by the audit expert may in 
actuality be better than assumed. This is 
due to the fact that for snoopers to be able 
to perform a linear system attack on a SUM 
query they must have enough supplemen- 
tary knowledge about the database entities 
to enable them to identify, through the 
characteristic formulas of the successive 
queries, controlled groups of entities [Den- 
ning 19831. To illustrate, consider the fol- 
lowing four queries: 

x1 + x2 = dl, 

x3 + x4 = dz, 

xl + x3 + x5 = d3, 

1~2 + x4 + x5 = d4. 

Given the query responses dl, d2, d3, and 
d4, snoopers can infer x5 as follows: 

d3 + d4 - d, - dz 
x5 = 

2 

As noted in Denning [1983], however, in 
order for snoopers to perform such an at- 
tack, they must have enough supplemen- 
tary knowledge about the database entities 
SO that they know exactly the coefficients 
of x1 through x5 in the query responses. In 
most practical applications, it is rare that 
a user would have such supplementary 
knowledge. 

The second observation is related to the 
method proposed in McLeish [1983]. This 
method can be classified as a variant of 
auditing. It is based on the model used in 
Kam and Ullman [1977], which views an 
SDB as a function f from strings of k bits 
to the positive and negative integers with 
the keys being the domain off. A query is 
always of length lz bits; for example, for k 
= 5 a possible query could be l**O*, with s 
O’s and l’s (in this case s = 2) and the * 
standing for “do not care.” The result of a 
query Q that is of length k and has s O’s 
and l’s is given by 

c f(i). 
key i matches Q 

In the hospital database, for example, 
the key could consist of 17 bits 
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xxxywwwwwwwzzzzzz as follows: 

xxx 
Y 

is a code for the clinic, 
is a code for the patient’s sex 
(0 = Male, 1 = Female), 

wwwwwww is a code for the patient’s age, 
zzzzzz is a code for the type of disease. 

Thus, the query ***0101010111111 would 
represent the sum of all male patients, 
independent of which clinic they are in, of 
age 42 who have a disease type 111111. 

According to McLeish [1983], the 
amount of information gained by issuing a 
query Q is given by: 

log ( L 

) 

if ]C] z2L 
min(]C], L- ICI) or ]C] 50 

1ogL if ICI = L 
0 otherwise 

where L and ] C ] are the database size and 
the query-set size, respectively. 

McLeish [1983] argues that minimizing 
this information function corresponds to 
increasing the chance of compromising the 
database. Given a query of length k bits 
issued to an SDB of 2k entities, it is shown 
that the expected value of the information 
gained by issuing such query is 

/, \ l/k--l 
k - (k - 1) ; 

0 

and is minimized when 

p= ; 

0 

l/k-l 

for k > 1 (1) 

where p is the probability of an * occurring 
in any given bit position. 

Based on the above results, the security- 
control method suggested in McLeish 
[1983] can be summarized as follows: 

Keep audit trails of the sequence of que- 
ries in the following ways: 

l Observe the actual value of p for that 
sequence of queries and determine if it is 
statistically significantly close to the mini- 
mum value given by (1). If so, there is a 
high likelihood that the user is attempting 
to compromise the database. 
l Evaluate the information function for 
each query in the sequence and study sta- 
tistically the deviation of this value from 

the minimum expected value given by (1). 
Based on these deviations, determine the 
likelihood that the user is attempting to 
compromise the database. 

Since the study is preliminary in nature, 
no implementation details such as the com- 
putational time and storage requirements 
have been addressed. 

In general, the applicability of the audit- 
ing method to real world situations is ques- 
tionable since it is not feasible to account 
for disclosure “by collusion” that involves 
several users. Furthermore, unless we are 
concerned with a centralized and dedicated 
SDB with few users and one confidential 
attribute, the CPU time and storage re- 
quirements would render the method im- 
practical. Despite these shortcomings, we 
believe it is too early to eliminate auditing 
completely from consideration. 

3.4 Partitioning 

The basic idea of partitioning is to cluster 
individual entities of the population in a 
number of mutually exclusive subsets, 
called atomic populations [Chin and Ozsoy- 
oglu 1979, 1981; Schlorer 1983; Yu and 
Chin 19771. The statistical properties of 
these atomic populations constitute the raw 
materials available to the database users. 
These authors pay special attention to the 
disclosure risk due to the dynamics of the 
SDB: If a snooper has additional knowledge 
of entity insertions, updates, and deletions, 
many new avenues of attack emerge under 
nearly all query-restricting methods. Par- 
titioning could be an attractive technique 
to overcome this problem. 

As long as atomic populations do not 
contain precisely one individual entity, a 
high level of security and precision can be 
attained. Partitioning is illustrated in Fig- 
ure 4. As can be seen, the cells with size 1 
have been eliminated by combining them 
with neighboring cells of different sex. In 
terms of the lattice model (Figure 2) we 
are, in this way, preserving the two-dimen- 
sional table AE (Age-Employer). The ta- 
bles AS and SE shown in Figure 2 are no 
longer completely available. The choice to 
preserve the two-dimensional table AE 
(and consequently the one-dimensional ta- 
bles E and A) is arbitrary. It is not always 
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AGE 

TABLE ASE O-20 21-45 46-65 >65 

EMPLOYER 
UNEMPLOYED 

ABC-COMPANY 

XYZ-INC. 

M 24 2 49 
F 26 0 10 51 
M 0 

17 
9 0 

F 0 0 0 
M 
F 2 

20 48 0 
0 52 0 

AGE 

TABLE AS O-20 21-45 46-65 >65 

SEX M X X X 49 
F X X X 51 

AGE 

TABLE AE O-20 21-45 46-65 >65 

EMPLOYER 
UNEMPLOYED 
ABC-COMPANY 
XYZ-INC. 

50 2 10 100 
0 17 9 0 
2 20 100 0 

SEX 

TABLE SE 

EMPLOYER 
UNEMPLOYED 
ABC-COMPANY 
XYZ-INC. 

M F 

X X TABLE ALL: 
X X 
X X m 

AGE 

O-20 21-45 46-65 >65 

TABLE A 52 39 119 100 

SEX 

TABLE S 

TABLE E 

M F 

X X 

EMPLOYER 

UNEMPLOYED ABC XYZ 

162 26 122 

Figure 4. Protection by partitioning on the model of Figure 3. 

possible to preserve at least one (m - l)- be combined with another cell, thus re- 
dimensional table if cells of m-dimensional stricting some entry in table AE. 
tables are combined. For example, if the Schlorer [1983] has investigated a large 
lady employed by XYZ, Inc., who is younger number of practical databases and found 
than 21 was not included in the database, that a considerable number of atomic pop- 
the cell that contains the man employed by ulations with only one entity will emerge. 
XYZ, Inc., who is younger than 21 would Clustering such populations with larger 
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ones leads to serious information loss 
[ Schlorer 19831. 

In order to cope with the problem of A- 
populations. of size 1, it was proposed in 
Chin and Ozsoyoglu [1979, 19811, to add 
dummy entities to the database. Including 
dummy entities, however, introduces bias 
into statistics such as the Average [ Schlorer 
19831. In the same study, Chin and ozsoy- 
oglu [1981] also proposed to postpone the 
processing of insert and delete transactions 
until there are two or more such transac- 
tions per atomic populations. Such a mode 
of operation is not well suited to a dynamic- 
SDB environment in which an update to 
the SDB should immediately be reflected 
in the information provided to users. 
Extensive study of these problems is still 
required before wide-scale applicalion of 
partitioning is feasible [Schlorer 19831. 

The performance of partitioning with re- 
spect to the evaluation criteria is summa- 
rized in Table 1. We add the following 
comments. In regard to partial disclosure, 
the original papers [Chin and Ozsoyoglu 
1981; Ozsoyoglu and Ozsoyoglu 1981; 
Schlorer 19833 usually assume that the 
minimum size of the nonempty atomic pop- 
ulations equals 2. Atomic populations of 
small size make partial disclosure more 
likely. Small atomic-population sizes could 
lead to robustness problems too. The 
general idea of partitioning, however, is 
also applicable to atomic populations of 
some minimum size of 4, 5, . . . , and so on, 
in which case partial disclosure can be 
controlled to some extent. 

The amount of nonconfidential infor- 
mation eliminated is moderate. For sparse 
databases, it could become considerable 
(information loss > 50%). See Ozsoyoglu 
and Chung [ 19861. 

As far as cost of partitioning is con- 
cerned, there are several possibilities. If we 
are dealing with a static SDB that is already 
in tabular form, software modules have to 
be developed that (1) detect sensitive cells 
and create A-populations and (2) prepro- 
cess queries in order to detect violation of 
the partitioning rules. This seems to be a 
moderate initial effort. The processing 
overhead per query is very low. The situa- 
tion becomes slightly more complicated for 

a static SDB in relational form. If feasible, 
a proper way to implement partititioning is 
to transform the SDB to a corresponding 
one of tabular form. It could be argued that 
such a transformation introduces some loss 
of information due to the fact that the 
relational model allows queries such as 

COUNT (Sex = Female + (Sex 

= Male & Age 

= 42) & Employer 

= ABC & Diagnosis 

= Schizophrenia) 

The additional richness of queries 
relational model, however, always 

Tme 

in the 
stems 

from the fact that A-populations are 
divided, which according to partitioning 
should be disallowed. 

For dynamic SDBs in relational form, A- 
populations have to be defined as separate 
entity types. Here, several notions from the 
conceptual-modeling approach described in 
Section 1 will be required. Therefore, the 
initial investment in software modules will 
be considerable. The nrocessing overhead 
per query could still be minor if each new 
version of the dynamic SDB is brought into 
tabular form. Otherwise, depending upon 
the way in which the query language and 
the SDB are implemented, the processing 
overhead per query could become very high. 

Finally, the cost of user education in- 
volves the publication of the set of A-pop- 
ulations to the user community; otherwise, 
users are unaware of queries that should be 
denied. 

3.5 Cell Suppression 

Cell suppression [Cox 1980; Sande 19831 is 
one of the techniques typically used by 
census bureaus for data published in tabu- 
lar form. Cell suppression has been inves- 
tigated for static SDBs. The basic idea is 
to suppress from the released table(s) all 
cells that might cause confidential infor- 
mation to be disclosed. Other cells of non- 
confidential information that might lead to 
a disclosure of some confidential informa- 
tion also have to be suppressed (this is 
called complementary suppression). The 

ACM Computing Surveys, Vol. 21, No. 4, December 1989 



Security Control Method For Databases l 533 

AGE 

TABLE ASE 

EMPLOYER 
UNEMPLOYED 

O-20 21-45 46-65 >65 

M X X X 49 
F X X X 51 

ABC-COMPANY M 0 X X 0 
F 0 X X 0 

XYZ-INC. M X X 48 0 
F X X 52 0 

AGE 

TABLE AS O-20 21-45 46-65 >65 

SEX M 25 23 66 49 
F 27 16 53 51 

AGE 

TABLE AE 

EMPLOYER 
UNEMPLOYED 
ABC-COMPANY 
XYZ-INC. 

O-20 21-45 46-65 >65 

50 2 10 100 
0 17 9 0 
2 20 100 0 

SEX 

TABLE SE M F 

EMPLOYER 
UNEMPLOYED 
ABC-COMPANY 
XYZ-INC. 

84 78 TABLE ALL: 
10 16 
69 53 

AGE 

O-20 21-45 46-65 >65 

TABLE A 52 39 119 100 

SEX 

M F 

TABLE S 163 147 

EMPLOYER 

UNEMPLOYED ABC XYZ 

TABLE E 162 26 122 

Figure 5. Protection by cell suppression in the model of Figure 3. 

basic idea of cell suppression is illustrated cell suppression becomes impractical if an 
in Figure 5 for the SDB shown in Figure 3. arbitrary complex syntax for queries is 

A thorough study on cell suppression for allowed. (With such a syntax, suppression 
the static SDB environment is presented of complete tables from the lattice model 
in Denning et al. [ 19821. They show that might be necessary.) If, however, the syntax 
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is restricted such that the query set is an 
elementary m-set (see Section 2), 

(AI = aij,) 

& (AZ = azj,) & * * * & (A, = a,j_), 

cell suppression would remain of practical 
value. Fortunately, the summary tables 
used by the census bureaus usually take the 
form of such elementary m-sets. 

The determination of complementary 
suppressed cells has been studied by Cox 
[1980]. He shows that the determination of 
a minimum set of complementary suppres- 
sion involves a great deal of computational 
complexity. An insight into heuristics and 
software required to solve these problems 
in practice (the Canadian census) is in- 
cluded in Sande [1983]. It is interesting 
to note that Cox and Sande use an elabo- 
rate sensitivity criterion, called the k%- 
dominance rule. According to this criterion, 
a cell is sensitive if the attribute values of 
two or three entities in the cell contribute 
more than k% of the corresponding SUM 
statistic. 

Recently, ijzsoyoglu and Chung [1986] 
have published a study that is of interest 
for both the partitioning method and the 
cell-suppression method. It is concerned 
with preventing users from obtaining the 
information that a cell is of size 1. The 
problem is attacked by merging a cell of 
size 1 with a cell of size > 1. For this 
problem, an efficient heuristic is presented. 
The information loss may still become high 
(52%), however, thus limiting its applica- 
tion to real world SDBs. 

In Table 1 we summarize the perfor- 
mance of the cell suppression method 
described in Cox [1980] with respect to the 
evaluation criteria. 

4. DATA PERTURBATION 

The methods based on the data-perturba- 
tion approach fall into two main categories, 
which we will call the probability- 
distribution category and the fixed-data- 
perturbation category. The probability- 
distribution category considers the SDB to 
be a sample from a given population that 
has a given probability distribution. In this 

case, the security-control method replaces 
the original SDB by another sample from 
the same distribution or by the distribution 
itself. In the fixed-data-perturbation cate- 
gory, the values of the attributes in the 
database, which are to be used for comput- 
ing statistics, are perturbed once and for 
all. The fixed-data-perturbation methods 
discussed in the literature have been devel- 
oped exclusively for either numerical data 
or categorical data. Accordingly, these 
methods will be discussed separately. 

As shown in Figure lb, the data-pertur- 
bation approach usually requires that a 
dedicated transformed database is created 
for statistical research. If the original da- 
tabase is also used for other purposes, the 
original database and the transformed SDB 
are both maintained by the system. 

4.1 The Bias Problem 

Before discussing the data-perturbation- 
based methods, it is important to note that 
this approach has a large risk of introducing 
bias to quantities such as the conditional 
means and frequencies. This point is 
stressed in Matloff [ 19861. Following 
Matloff’s notation and line of thought, the 
source of this bias can be explained as 
follows. 

Let X denote the original value of an 
attribute to be perturbed, and let X’ denote 
this perturbed value X’ = X + (Y. Now 
consider the set of entities that has a per- 
turbed value w. Matloff shows that the 
expected value of X under the condition 
thatX’=w;thatis,E(X]X’=w)isnot 
necessarily equal to w. More specifically, if 
X is a numerical-positive variable with a 
strictly decreasing density function (e.g., 
the exponential density function) to which 
a perturbation that is symmetrical around 
0 has been added, Matloff [1986] shows 
that 

E(X]X’ = w) < w. 

In this case perturbation introduced bias in 
the response to the user query. 

This result has important consequences 
for fixed-data perturbation. Each query in 
which the selection of the query set is based 
on perturbed values runs the risk of being 
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biased. Matloff also shows that this bias 
can be considerable. For example, if X and 
Y are correlated attributes with a bivariate 
Gaussian distribution whose expected value 
is 0 and X is perturbed by an independent 
noise variable LY with mean value zero and 
variance Var(a), then the following bias 
occurs: Let 

m(w) = E(Y ] X= W) 

= (E(XY)/Var(X))w 

m’(w) = E(Y (X’ = zu) 

= (E(X’ Y)/Var(X’))w. 

Since LY is independent of Y and both Y 
and (Y have a mean of zero, we have 

or 

m’(wJ=(VEb,,),(wJ 

i 

Var(X) 
= Var(X) + Var(cu) ) 

m(w) 

=(l +iar(ol))m(w) 

then 

m’(w) 1 -= 
m(w) 1 + Var(cY)/Var(X) 

Therefore, if Var(cu) = Var(X), which is 
not unreasonable for perturbing noise, a 
bias of 50% occurs. We assume that such a 
bias is unacceptable. This bias problem will 
be further addressed in the context of the 
methods discussed below. 

4.2 Probability Distribution 

Within the probability-distribution cate- 
gory, two methods can be identified. The 

basic idea of the first is to transform the 
original SDB with another sample that 
comes from the same (assumed) probability 
distribution. This method is described in 
Reiss [ 1980, 19841 for multicategorical 
attributes and is called “data swapping” 
or “multidimensional transformation” 
[Schlorer 19811. The method has been fol- 
lowed for categorical or numerical attri- 
butes by Liew et al. [1985]. The second 
method, described in Lefons et al. [1983], 
calls for replacing the original SDB by 
its (assumed) probability distribution. A 
discussion of each of these methods is 
presented. 

4.2.1 Data Swapping 

Reiss [1984] suggested a method that deals 
with multicategorical attributes called 
“approximate data swapping.” The method, 
which extends earlier work by Reiss [1980] 
and Schlorer [1981], is described for 
Boolean attributes (O-l). According to 
Reiss [ 19841, however, it is straightforward 
to extend the method to the case in which 
attributes take any value within the set 
K4 1, 2, * * . , r - 1) for any arbitrary value 
r. In this method, the original database is 
replaced with a randomly generated data- 
base having approximately the same t-order 
statistics as the original database. (A t- 
order statistic is some statistical quantity 
that can be computed from the values of 
exactly t attributes [Schlorer 19831, for ex- 
ample, the number of patients whose Sex 
= Male and Disease = AIDS is two-order 
frequency count.) Due to the computational 
requirement of the method, it is only fea- 
sible to consider it for static SDBs where 
offline mode of usage is used (see Figure 
la). Even if the computational requirement 
were reduced, the following issues have 
to be resolved before its application to an 
online-usage mode would be practical. 

(1) Every time a new entity is added or 
a current entity is deleted, the relationship 
between this entity and the rest of the 
database has to be taken into consideration 
when computing a new perturbation. The 
required algorithm is not straightforward. 

(2) There is a need for a one-to-one map- 
ping between the original database and the 
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Table 2. A Summary of the Performance 

Security 
Suitable for Suitability 

Security Exact Partial Numerical Suitable for to Online 
Control Disclosure Disclosure or Categ. One or More Dynamic 
Method Possible? Possible? Robustness Attribute Attributes SDB 

Data Swapping 

Probab. Distribu- 
tion by Liew 
et al. 

Analytical Method 

Fixed Data Per- 
turb. by Traub 
et al. 

Fixed Data Per- 
turb. by Warner 

No Yes (difficult) High 

No Yes (easy es- For exact 
pecially for discl.- 
large SDBs) Moderate; 

for partial 
discl.- 
Very Low 

Yes in ex- Yes (especially Moderate 
treme for large 
cases SDBs) 

No Can be bal- Moderate 
anced 
against 
security 

No Can be bal- Moderate 
anced 
against 
security 

Categorical More than 
one 

Both One 

Not suitable 

Not suitable 
for real 
time 

Numerical More than 
one 

Moderate 

Numerical One Moderate 

Categorical One Moderate 

perturbed database. Although several alter- 
native methods discussed in Reiss [1984] 
look promising, further investigation is 
required. 

(3) The precision resulting from this 
method may be considered unacceptable 
since, as shown in Reiss [1984, p. 331, the 
method may in some cases have an error of 
up to 50%. In a static-SDB environment 
such extreme cases may be analyzed and 
corrected by the DBA before the release 
of the perturbed SDB. This is infeasible, 
however, in the case of the dynamic SDB. 

(4) The small query-set (size 0 or 1) 
problem needs to be resolved; otherwise the 
database is vulnerable to such compromise 
as the regression-based one [Palley 1986; 
Palley and Simonoff 19871 (see Section 7). 

A summary of the performance of this 
method is presented in Table 2. In general, 
data swapping has not been developed 
enough to be seriously considered for static 
or dynamic SDBs. 

4.2.2 The Probability-Distribution Method by 
Liew et al. 

Liew et al. [1985] describe a method for 
protecting a single confidential attribute 
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in an SDB. The method is applicable to 
both categorical and numerical attributes. 
The generalization to multiple-dependent- 
confidential attributes is not, however, 
straightforward. The method consists of 
three steps: 

(1) Identify the underlying density func- 
tion of the attribute values and estimate 
the parameters of this function. 
(2) Generate a sample series of data from 
the estimated density function of the con- 
fidential attribute. The new sample should 
be the same size as that of the database. 
(3) Substitute the generated data of the 
confidential attribute for the original data 
in the same rank order. That is, the small- 
est value of the new sample should replace 
the smallest value in the original data, and 
so on. 

As a result of the third step, this method 
could equally as well be classified under the 
fixed-data-perturbation category. For ease 
of discussion, we describe it in this section. 

This method is equivalent to a noise- 
addition method, hence it introduces sam- 
pling bias in query responses [Matloff 
19861. The bias results from sampling from 
a population that is not the true-target 
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of the Data Perturbation Methods 

Richness of Information costs 

Amount of Initial Processing 
Nonconf. Info. Implementation Overhead 

Eliminated Bias Precision Consistency Efforts Per Query 

None Yes (could be Could be High Very high None 
serious) very low 

None Yes (could be Inversely NA Moderate None 
serious for related 
small to size 
SDBs) of the 

SDB 

l 537 

User 
Education 

Moderate 

Very low 

None Yes (serious) Moderate NA Very high None Very low 

None 

None 

Yes (serious) Can be Moderate Low Very low Very low 
balanced except for 
against extreme 
security 

No Can be Moderate Low Very low Very low 
balanced 
against 
security 

population [Tendick and Matloff 19871. 
For an SDB of small size, the noise intro- 
duced by this method is larger; thus better 
security is achieved but biased-query re- 
sponses are provided to users. As the size 
of the database increases, the bias becomes 
smaller but less security of confidential 
attributes is achieved. 

The evaluation of the performance of this 
method with respect to the evaluation cri- 
teria is summarized in Table 2. Partial dis- 
closure is easily possible since the noise 
added to the confidential attribute becomes 
rapidly small, even for databases of mod- 
erate size. Additional knowledge about 
other entities in the database may enhance 
the likelihood of partial disclosure. 

4.2.3 The Analytical Method 

Lefons et al. [1983] describe a method for 
protecting multinumerical-confidential at- 
tributes. The method consists of estimating 
the joint probability function of several nu- 
merical attributes. The key contribution of 
this work lies in the approximation of the 
data distribution by orthogonal polyno- 
mials. The coefficients used in the compu- 
tation of this approximation are called 
canonical coefficients. These coefficients 

are well suited for usage in an online envi- 
ronment because they can be adopted easily 
in case of insertions and deletions of the 
database entities. 

Although the method looks promising, 
its security aspect needs further investiga- 
tion. In particular, if the new probability- 
distribution function is a very precise de- 
scription of the original data, then there is 
hardly any protection against partial disz 
closure. On the other hand, if deviatiohs 
between the distribution function and the 
original data are possible, then issues such 
as how to avoid bias and how could the 
DBA exercise control on the trade-off 
between precision and security need to be 
addressed. 

The evaluation of the analytic approach 
with respect to the criteria of Section 1 is 
presented in Table 2. Exact disclosure is 
possible in extreme cases. For example, if 
the distribution shows that 1% of the pop- 

ulation satisfies certain criteria and it is 
known that the size of the original database 
amounts to 100, exact disclosure occurs. 

4.3 Fixed-Data Perturbation 

This section discusses the fixed-data- 
perturbation method for numerical attri- 
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butes and the fixed-data-perturbation 
methods for categorical attributes. 

4.3.1 Fixed-Data Perturbation for Numerical 
Attributes 

Traub at al. [ 19841 developed a method that 
applies to numerical attributes. Suppose, 
for example, that the true value of a given 
attribute (e.g., salary) of an entity k is Yk. 
The response to the sum query, under this 
method, will be 

T= i Xk, 
k=l 

where 

xk = Yk + ek, 

ek is a random-perturbation variable with 

E(ek) = 0 and var(ek) = uz, 

and (ek 1 are independent for different k’s. 
Under this method, the perturbation ek 

of an entity k is fixed. Thus, it is not 
possible for snoopers to improve their 
estimates of a given statistic by repeating 
queries. 

The additive-perturbation method de- 
scribed above suffers in terms of scale. For 
example, perturbing a salary of $150,000 by 
3000 would be considered a compromise 
while at the same time perturbing a salary 
of $15,000 by 3000 would preverve the con- 
fidentiality of the data. Several alternatives 
to this basic method have been suggested 
in Traub et al. [1984]. One alternative is to 
apply multiplicative rather than additive 
perturbation, thus overcoming the scale 
problem. 

Note that this method is akin to the 
probability-distribution method [Liew et 
al. 19851. The bias problem, which was 
discussed earlier in this section, applies 
also to the fixed-data-perturbation method 
[Traub et al. 19841. The method could, 
however, be saved for practical usage only 
if a bias-compensation mechanism is also 
developed and implemented. In this re- 
spect, this method has an advantage over 
the probability-distribution method [Liew 
et al. 19851, because the way in which noise 
is added to the data is much clearer and 
therefore better suited for statistical analy- 
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sis. We expect that the bias problem for 
single attribute (or independent attributes) 
is solvable. Recently, Tendick and Matloff 
[ 19871 have suggested a bias-correction 
mechanism for both the multivariate nor- 
mal and nonparametric cases. The appli- 
cation of these bias-correction mechanisms 
to the fixed-data-perturbation method 
[Traub et al. 19841 needs further study. 

A summary of the evaluation of the fixed- 
data-perturbation method [Traub et al. 
19841 with respect to the criteria of Section 
1 is given in Table 2. Unlike other data- 
perturbation methods, this method is likely 
to be appropriate for usage in an online 
SDB. The original and perturbed values 
can be maintained, with users accessing 
only the perturbed database. Updates, dele- 
tions, and insertions affecting the original 
attributes can immediately be reflected into 
the perturbed values. 

4.3.2 Fixed-Data Perturbation for Categorical 
Attributes: Basic Method 

Warner [ 19651 developed the “randomized 
response” method for the purpose of apply- 
ing it to data collection through a survey. 
The method deals with a single confidential 
attribute that can take only the value 0 or 
1 (e.g., drug addiction). In order to describe 
this method as applied to the COUNT 
query in an SDB, we extend our hospital 
database example to include a confidential- 
categorical attribute (O-l): drug addiction. 
Consider the following query: 

Q6: COUNT (Age = 42 & Sex = Male & 
Employer = ABC & Drug Addiction .= 
Yes) 

Let 

n = the query-set size (true answer to the 
above query). 

no = the number of entities that satisfy the 
characteristic formula, excluding the clause 
that pertains to the confidential attribute; 
that is, COUNT (Age = 42 & Sex = Male 
& Employer = ABC). This will be referred 
to as the nonconfidential-response set. 

Yi = the value of the confidential attribute 
after applying data perturbation to entity 
i. Specifically, if Xi is the original value of 
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the confidential attribute, then 

yi = { ;“; - Xi ] 
with probability p 
with probability 1 -p 

where the fixed parameter p is set by the 
DBA. Typical values for p are 0.6-0.8. The 
roles of p and 1 - p can be interchanged 
such that p might take values 0.2-0.4. 
n, = the number of Yi’s with a value of 1 
in the confidential-response set (i.e., the 
query-set size). 
N = the response to the user. It is the 
unbiased-maximum-likelihood estimator of 
n (thus, no bias problem) and is given by 

N= nob - 1) + 1 
2p - 1 

where 

Note that a correct determination of no 
is crucial for this method. This, in general, 
is not a trivial problem. For the query Q6, 
it is easy to determine no because the query 
consists of a nonconfidential-Boolean 
expression connected by an AND operator 
with one simple confidential clause. Thus, 
we are able to distinguish, in a straightfor- 
ward way, between the nonconfidential- 
response set (with cardinality no) and its 
subset for which Y = 1 (with cardinality 
no). 

Consider, however, the following query: 

Q7: COUNT (Sex = Male & Drug Addic- 
tion = Yes + Employer = ABC & Drug 
Addiction = No) 

In this case, defining no and nl is not a 
trivial task. We outline a general procedure 
for dealing with this problem that aims at 
transforming the characteristic formula C 
into a formula C ’ of the form 

(Y = 1) & A, + (Y = 0) & A, + AB, 

where Ai n Aj = 0, for i 5 j and Ai is 
nonconfidential for i = 1, 2, 3. 

Step 1. Transform C into its most ex- 
panded form. Each term of the new formula 
contains a clause (Y = l), a clause (Y = 0), 
or no reference to Y at all. 

Step 2. Collect all terms with Y = 1, all 
terms with Y = 0, and the remaining terms. 
This yields a formula of the form (Y = 1) 
&B,+(Y=O)&B,+B,. 
Step 3. Transform this formula into (Y = 
1) & B, & (lB2) & (lB3) + (Y = 0) & 
(~7~) & Bz & (lB3) + B, + BS, which 
gives the required result (the formula C ’ ). 
Step 4. During the query processing, the 
algorithm should use separate counters 
nf’ and n, (l) for the first clause, nff’ and 
nj” for the second clause, and nc3) for the 
third clause. 
Step 5. After processing, the response N 
can be estimated as the sum of the three 
variables N(l), N@), and Nc3), where 

N(1) = nt’(p - 1) + nf’ 
2p - 1 

N(2) = nf’(p - 1) + n:“’ 
2p-1 

N’3’ = n(3) 

This procedure shows that this fixed- 
data-perturbation method is a feasible so- 
lution for an SDB application, although its 
generalization is not trivial. 

Table 2 includes a summary of the per- 
formance of the fixed-data-perturbation 
method by Warner 119651 with respect to 
the evaluation criteria. Notice that in this 
case, similar to the fixed-data-perturbation 
method described in Traub et al. [1984], it 
is possible to balance precision and secu- 
rity. A more detailed discussion of this issue 
is given in Section 6. 

4.3.3 Fixed-Data Perturbation for Categorical 
Attributes: Extensions 

The fixed-data perturbation for categorical 
data is an extension of Warner’s [1965] 
method (as applied to data collection 
through interviews) to the case in which 
the population can be divided into t cate- 
gories as given in Abul-Ela et al. [1967]. 
The confidential information is obtained 
by a “Yes” or “No” answer from each 
interviewee to precisely one randomly 
drawn question out of a set of t - 1 
questions. Each question takes the 
form, “Do you belong to group i”? (for 
i = 1,2,. . . , t - 1). As in Warner’s method, 
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the interviewer is not aware of the partic- 
ular question to which the interviewee is 
responding. 

Applying this method to an SDB envi- 
ronment results in a considerable infor- 
mation loss since the original t-possible 
values of the confidential attribute are 
reduced to two possible values (yes or no). 
More specifically, assuming equal probabil- 
ity of each of the t values, the available 
information is reduced from log2 (t ) bits to 
1 bit. This information loss is considered a 
serious hindrance in applying the method 
to real-world SDBs. 

It was shown that the above two methods 
of randomized response can be formulated 
as special cases of a general class of linear 
regression models [Warner 19711. It was 
further suggested that this general model 
might be applied to perturb categorical data 
in a statistical database [Traub et al. 19841. 
The two randomized-response methods dis- 
cussed above are the only methods that we 
are aware of as being specific models that 
fall under the general class of models de- 
scribed by Warner. (We consider the meth- 
ods described in Greenberg et al. [1969a, 
1969b] to be minor variations of these two 
methods.) Therefore, for Warner’s general 
class of models to be applicable to SDBs in 
online mode (see Figure lb), new methods 
have to be developed. Such methods should 
have better performance with respect to 
their computational requirements and 
information loss. 

The randomized-response methods dis- 
cussed above do not address the case of 
more than one categorical attribute. The 
application of these methods to SDBs with 
multicategorical attributes requires further 
study. 

The discussion presented in this section 
indicates that data-perturbation-based 
methods suffer from a bias problem, and/ 
or not being suitable for dynamic SDBs, 
and/or being limited to one confidential 
attribute. A study of how to remedy these 
drawbacks is needed. 

5. OUTPUT-PERTURBATION APPROACH 

Before discussing the output-perturbation- 
based methods, we would like to note that 
the bias problem pointed out in the pre- 

vious section is less severe here. This is due 
to the fact that the query set selected under 
the output-perturbation approach is based 
on the original values, not the perturbed 
values. Thus, the value of Y’ in Section 4.1 
is generated after selecting the appropriate 
values of X. 

5.1 Random-Sample Queries 

Denning [1980] proposed a method that is 
comparable to ordinary random sampling 
where a sample is drawn from the query set 
itself. Given a characteristic formula C, a 
set of entities that satisfies C is determined. 
For each entity i in the query set, the sys- 
tem applies a Boolean formula f (C, i) to 
determine whether this entity is to be in- 
cluded in the sampled query set. The func- 
tion f is designed in such a way that there 
is a probability P that the entity is included 
in the sampled query set. The probability 
P can be set by the DBA. The required 
statistics are computed based on the sam- 
pled query set. The statistics computed 
from the sampled query set have to be 
divided by P in order to provide a corre- 
sponding unbiased estimator. For example, 
if the response to a count query based on 
the sampled query set is n*, an estimator 
for the true count is n*/P. The sampling 
mechanism in this method is designed in 
such a way that lexicographically the same 
queries produce the same sample from the 
query set. Logically equivalent but lexico- 
graphically different queries, however, do 
not necessarily produce identical sampled 
query sets. As a result, independent esti- 
mates of a given statistic can be obtained 
by issuing logically equivalent but not iden- 
tical queries. The method thus suffers from 
the resulting inconsistency. 

The probability of an entity being in- 
cluded in the query set P is either fixed 
(independent of n) or variable (varies 
with n). 

When P is fixed there should be a query- 
set-size restriction if P is large. Otherwise, 
there is a high probability of including all 
the entities of a small query set, thus com- 
promising the database. 

When P is variable, it should approach 0 
for a query-set size approaching 1 in order 
to avoid compromising the database. This, 
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however, results in an estimator whose 
variance, Var(n), approaches infinity. 
Therefore, in discussing this method we 
limit our attention only to the case of fixed 
P with a minimum query-set-size restric- 
tion. The minimum query-set-size restric- 
tion should be applied to n* instead of n, 
otherwise it is easily shown that compro- 
mise can be achieved by a tracker of size 
K - 1, where the query-set size is less than 
or equal to K. We shall ignore this imple- 
mentation issue in the remainder of the 
paper. 

A summary of the performance of this 
method with respect to the evaluation cri- 
teria is given in Table 3, and additional 
discussion is included in Section 6. 

Finally we note that a variant of the 
random-sample queries [Denning 19801 has 
been proposed in Leiss [1982]. According 
to the method by Leiss [ 19821, the modified 
query set is extended by a small sample 
from those entities in the SDB that are not 
included in the genuine query set. Unlike 
the random-sample queries [Denning 
19801, it is difficult to avoid the bias result- 
ing from the method in Leiss [ 19821. There- 
fore, no further discussion of Leiss’s 
method is included in this paper. 

5.2 Varying-Output Perturbation 

Beck [1980] suggested a method for SUM, 
COUNT, and PERCENTILE queries. The 
method introduces a varying perturbation 
to the data that are used to compute the 
response to a (eventually repeated) version 
of a given query. We will use the COUNT 
query and follow Beck’s notation to illus- 
trate the basic idea of the method. Let 

n = the query-set size determined by the 
characteristic formula C. 

N = the perturbed value of n; it is the 
response to users and is given by 

N = C -Co., 
k=l 

where 

-G,k = i zgtk, 
i=l 

where .Z$ are independent random vari- 
ables with 

E(Z$) = i and Var(.Zti) = $. 

Thus 

E(&,k) = 1 and E(&,k) = j: 

and 

E(N) = n and Var(n) = ja?. 

The variable & is the sum of j random 
variables 2:’ that change their values at 
varying rates. Each new draw of Z3 causes 
at least a new draw of 2:‘. After (al/cl)” 
drawings of Zf’, however, a snooper might 
have an accurate estimator of n (although 
this estimator may be biased). Therefore, 
after (al/cl)* drawings of Zf’, a new draw 
of-w’ is made, and so on. Let d = (a1/c1)2, 
then it takes d3 queries for snoopers to find 
their target with sufficient accuracy. Due 
to the varying rates of change of the values 
of Zf’, subsequent draw of Z3 are highly 
correlated. The purpose of introducing this 
correlation is to make the number of quer- 
ies needed for a disclosure grow exponen- 
tially with j. 

The varying-output-perturbation method 
[Beck 19801 for SUM and PERCENTILE 
queries proceeds along the same line of 
thought. Here we will discuss only the SUM 
query. 

Suppose we have a query SUM(Y) over 
a query set R, with n entities in R. Suppose 
further that the mean value of Y for the 
que_ry set is yr and for the entire database 
is Y. The response to the query will be 

T=iXk, 
k 

where xk = Yk + & ( Yk - F,.) + 22. 
In this equation 2, and Z2 are indepen- 

dent random variables with 

E(Z,) = 0 and Var(Zi) = 2ja” 

E(Z,) = 0 

and 

Var(&) = j$ (yr - P)2. 
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Table 3. A Summary of the Performance 

Security 
Suitable for Suitability 

Security Exact Partial Numerical Suitable for to Online 
Control Disclosure Disclosure or Categ. One or More Dynamic 
Method Possible? Possible? Robustness Attribute Attributes SDB 

Random Sample No Yes (can be Moderate Both More than one High 
Queries by balanced 
Denning against 

precision) 
Varying Output No Yes (can be Moderate Numerical One or several High 

Perturb. by balanced independent 
Beck against ones 

precision) 

It can be shown that 

E(T) = jl Y,a, 

Var(T) = 2jna + 2S,2 + 2ja2(Fr - 9)2, 

where 

s2 = CL (Fr - n2 
r n 

is the sample variance over the set R. 
Given Beck’s criterion of compromise, 

the value ,yk of some individual k by an 
estimator Yk through repeated queries is 

Var(Yk) < c2(Yk - P)” 

Beck showed that dj queries (with d = 
(a/c)“) are required for partial compromise. 

Table 3 shows the evaluation of this 
method with respect to the criteria dis- 
cussed in Section 1. Additional discussion 
is included in Section 6. 

5.3 Rounding 

Output perturbation may take some form 
of rounding, where the answer to the query 
is rounded up or down to the nearest mul- 
tiple of a certain base b. Systematic round- 
ing [Achugbue and Chin 19791, random 
rounding [Fellegi and Phillips 1974; Haq 
1975, Haq 19771, and controlled rounding 
[Dalenius 19811 are three types of rounding 
that have been investigated. The basic idea 
of each of the rounding methods is sum- 
marized below. 

Consider a database in a tabular form and 
suppose that, due to security reasons, it was 
decided to round the true statistic nij of cell 
i, j in the table. As shown above, systematic 
and random rounding calls for adding a 
quantity +d, or -dij to nij. According to 
controlled rounding, the same quantity +d, 
(or -dij ) is added to three other cells. These 
cells are chosen in such a way that the 
released row sum, ri, and column sum, rj , 
equal the true row sum, ni, and the true 
column sum, nj , respectively. 

Random rounding suffers from two major 
drawbacks [Achugbue and Chin 19791: 

Let r = ] C ] (mod b) and 1x1 = the value (1) It is possible (with small probability, 
of X rounded downward. however) for a randomly rounded row of an 

5.3.1 Systematic Rounding 

The response to the user 

ifr=O, 

if r < L(b + 1)/2J 

ICl+b-r ifrrL(b+1)/2J 

5.3.2 Random Rounding 

The response to the user 

c 
ICI ifr=O, 

= ICI-r 
i 

l-r 
with probability b 

] C ] + b - r with probability f 

5.3.3 Controlled Rounding 
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Richness of Information costs 

Amount of Initial Processing 
Nonconf. Info. Implementation Overhead User 

Eliminated Bias Precision Consistency Efforts Per Query Education 

Low None Can be balanced Low Low Low Low 
against secu- 
rity 

Low None Can be balanced 
against secu- 
rity 

Low Moderate Moderate Very high 

SDB in a tabular form to determine the 
exact original values of the row cells. 
(2) It is possible to determine the true 
value, nij (or greatly narrow its range) by 
averaging the responses to the same query. 

Systematic rounding introduces nonzero 
bias. Furthermore, systematic rounding can 
be circumvented by derounding or using a 
tracker [Denning and Schlorer 19831. 

Generally, rounding is not considered 
an effective security-control method. But 
combining rounding with other security- 
control methods seems to be a promising 
avenue. For example, in Ozsoyoglu and Su 
[1985], rounding was used as an additional 
security-control method. 

Before concluding this section, it should 
be pointed out that the output-perturbation 
approach does not add noise to the data 
and thus does not suffer from a serious bias 
problem. It suffers, however, from the 
possibility of having a null query set, 
thus providing valuable information to a 
snooper. Compromised methods such as 
regression-based ones (see Section 7) could 
easily take advantage of the null-query-set 
situation. 

6. COMPARATIVE ANALYSIS OF THE 
SECURITY-CONTROL METHODS 

The discussion presented in the previous 
sections shows that the random-sample- 
queries method [Denning 19801, the vary- 
ing-output-perturbation method [Beck 
19801, the fixed-data-perturbation method 
[Traub et al. 19841, and the fixed-data- 

perturbation for categorical data method 
[Warner 19651 are clearly among the most 
promising security-control methods for on- 
line, dynamic SDBs (the most difficult type 
of SDBs). This section presents a compar- 
ison of these methods based on the evalu- 
ation criteria discussed in Section 1 as 
applied to both the COUNT and SUM 
queries. 

6.1 Security Criterion for the COUNT Query 

Partial disclosure occurs if a snooper at- 
tempts (through issuing m queries) to 
obtain an estimator ri for the true count 
value, n, whose perturbed value is N and 
the variance of that estimator satisfies the 
following: 

Var(fi) < c?, 

where c1 is a parameter that is set by the 
DBA. We want to determine the value of 
m that will result in 

Var(fi) < CS 

under each of the methods. 
Let ri be an estimate of n obtained after 

mR repeated queries when using the ran- 
dom-sample queries [Denning 19801. We 
then have 

Var(N) since answers to 
Var(fi) = 7 repeated queries _. 

are independent 

or 

Var(N) Var(N) -=- 
mR = Var(;L) d 

, 
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but 

Hence, 

Adam and Wortmann 

OF 

n(1 - P) 
Var(N) = p . 

n(1 - P) 
mR = 

When the varying-output-perturbation 
method [Beck 19801 is used, the answers to 
repeated queries are not independent and 
the number of repeated queries, mv, that 
will result in 

Var(fi) = CT 

is given by 

at mv= 7. 0 Cl 

Under equal precision to users it can be 
easily shown that mR 5 mv, since for equal 
precision we have 

n(1 - P) 

P 
= jaf. 

Dividing both sides by CS we get 

n(1 - P) a4 
PC: =.i 2 

0 

or 

as compared to 

2 i 
al mv= T . 0 Cl 

Under certain circumstances (e.g., small 
n) the method [Denning 19801 provides a 
precision that might not be attainable by 
Beck’s [1980] method. In such cases, mR < 
mv as shown below since 

n(1 - P) 
P <jd, 

or 

mRcf < ja:, 

4 
mR<jy, 0 Cl 

which is clearly less than mv. 
Finally, we notice that under Beck’s 

method [ 19801, unlike under Denning’s 
[1980], Var(N) has an attractive property 
of being a constant. Thus, a user always 
experiences the same error. 

Under fixed-data perturbation, we re- 
strict our discussion to the method de- 
scribed by Warner [ 19651. For this case, a 
snooper might easily acquire the value of 
the perturbed attribute. Therefore, the 
probability 1 - p of perturbing a specific 
confidential attribute should be sufficiently 
large to prohibit any disclosure occurring 
if the perturbed value of that attribute is 
revealed. Thus, 1 - p would typically be 
set to, say, 0.20 to 0.40 (or 0.60 to 0.80, 
which is virtually the same). As can be seen 
from the formula for N in Section 4.3.2, 
the parameter p must not be set equal to 
0.50. The fixed-data-perturbation method 
for categorical data [Warner 19651, in 
the variation described here, cannot be 
compromised. 

The above discussion leads to the conclu- 
sion that, from the point of view of security 
of the COUNT query, Warner’s method 
[1965] is superior to both the varying- 
output-perturbation method [Beck 19801 
and the random-sample-queries method 
[Denning 19801. Furthermore, the varying- 
output-perturbation method is superior to 
the random-sample-queries method. 

6.2 Precision Criterion for the COUNT Query 

A user who is interested in obtaining an 
estimate for the true value of the count n 
would obtain a value N as a response to the 
issued query. All methods (considered in 
this section) ensure that N is an unbiased 
estimator of n, that is, E(N) = n. 

A summary of the following discussion is 
presented in Table 4. 

(1) Under the random-sample-queries 
method [Denning 19801, the variance of N 
is given by Var(N) = n(1 - P)/P. Two 
input parameters are required for this 
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Factors 

Table 4. The Precision Criterion for the COUNT Query 

Varying Output 
Random Sample Queries Perturbation 

Fixed Data Perturbation 
by Warner 

1. Precision: V(N) n(1 - P) 
V(N) = p 

V(N) = ja:’ 

2. Required input parameters and their 
recommended values 

.5 I p 5 .90 4 5 j 5 30 and .5 5 c1 c 1.0 .6 5 P I .8 
Minimum query set size could and a: = c:d 

be as low as 9 and d = 3.0 

3. Range of Precision 
Min value of V(N): .lln (when p = .9 and n > 9) 3.0 (when j = 4 and c1 = .5) 

whenl=landp=.6 
%3 

Max value of V(N): n(whenp=.5andn>9) 90.0 (when j = 30 and c1 = 1.0) 

4. Need for a minimum query set size 

5. Confidence interval for n 

Yes 

Cannot be published since 
V(N) is dependent on n 

No No 

Can be published since V(N) is Cannot be published since V(N) is dependent on 
independent of n n (however, see text) 

VW = n, 
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method: the probability P and the mini- 
mum query-set size. The probability P that 
an entity is included in the sampled query 
set typically ranges between 0.5 and 0.9. 
The minimum query-set size, on the other 
hand, could be as low as 9. These values of 
P and the minimum query-set size result in 
a precision varying from Var(N) = O.lln 
(for P = 0.9 and n < 9) to Var(N) = n (for 
P = 0.5 and n > 9). 

We note that the confidence interval of 
N is a function of n, P, and the confidence 
level (1 - 01). If P and ct! are known, knowl- 
edge of the confidence interval would lead 
to disclosure on n. 

(2) Under the varying-output-perturba- 
tion method [Beck 19801, the variance of 
N is given by Var(N) = ja?, where j is a 
parameter set by the DBA that controls 
the minimum number of queries needed to 
compromise the database. Typical values 
of j are in the range of 4 to 30, and al = 
(d )I/‘. The values of the parameters cl and 
d are also set by the DBA, with cl control- 
ling the desired degree of protection and 
typically taking a value < 1.0. The param- 
eter d, on the other hand, follows from 
balancing precision against security, and 
its optimal value is shown to be 3.0. 

We observe that under the varying- 
output-perturbation method [Beck 19801 
the variance Var(N) can take as low of a 
value as 3.0 (when j = 4 and cl = 0.5) and 
as large of a value as 90 (when j = 30 and 
c1 = 1). Under the random-sample-queries 
method [Denning 19801, however, Var(n) 
can take as low of a value as 1.11 (when n 
= 10 and P = 0.9) and can take as large of 
a value as n (when P = 0.5). In general, the 
random-sample-queries method may result 
in somewhat better precision for small 
query-set size, and the varying-output-per- 
turbation method may result in a better 
precision for large query-set sizes. 

Under the varying-output-perturbation 
method (unlike under the random-sample- 
queries method), the variance Var(N) is 
constant and independent of the query-set 
size n. Therefore, publishing confidence in- 
tervals of N would not provide additional 
information on the value of n, and conse- 
quently no disclosure would be possible. 

It is worth pointing out that, accord- 
ing to the varying-output-perturbation 
method, the response to a count query with 
an empty set is always 0. This may lead to 
a disclosure. One possible solution to this 
problem is to follow the suggestion in Beck 
[1980, p. 3301 for dealing with a similar 
problem with the SUM query. Specifically, 
it is possible to enforce a lower bound 
(jaf) for the variance of any COUNT 
query. This modification does not, however, 
introduce any autocorrelation among the 
responses to different but logically equiva- 
lent queries; thus, compromise is easier 
than without this modification. 

(3) Under the fixed-data-perturbation 
method for one categorical confidential at- 
tribute [Warner 19651, the variance of N is 
given by 

The parameter p takes a value between 
say 0.6 and 0.8. These values result in a 
precision varying from Var(N) = $z,., (for 
p = 0.8 and n/no = 1 or 0) to Var(N) = 
yno ( forp = 0.6 and n/no = 0.5). In general, 
Var(N) 5 kno, where k is a function of p. 

A confidence interval cannot be given 
because Var(N) depends on n. A confi- 
dence interval that is based on the upper 
bound of Var(N) will not lead to a dis- 
closure, however, since no is not considered 
confidential. 

6.3 Security Criterion for the SUM Query 

When comparing the security of the 
random-sample-queries and the varying- 
output-perturbation methods, a reasoning 
similar to the discussion on the COUNT 
query can be applied. Such a reasoning 
leads, again, to the conclusion that as far 
as security is concerned, the varying- 
output-perturbation method is superior to 
the random-sample-queries method. The 
fixed-data-perturbation method for one 
categorical-confidential attribute [Warner 
19651 cannot be compromised and is thus 
considered superior to the other methods. 
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6.4 Precision Criterion for the SUM Query 

A user who is interested in obtaining the 
sum of a given attribute Y in each entity of 
the response set would obtain a value of T 
as a response to the issued query. Similar 
to the COUNT query, all methods (consid- 
ered in this section) ensure that T is an 
unbiased estimator of the true value. Ta- 
ble 5 summarizes the following discussion. 

(1) Under the random-sample-queries 
method, the variance of T is approximately 
given by 

(1 - PI 
Var(T) = n Var( Y,.) p , 

where Var( Y,.) is the sample variance over 
the response set. As with the COUNT 
query, there are two input parameters: P 
and the query-set size. 

The precision Var(T) has an intuitively 
attractive property: Var( T) is proportional 
to the sample variance over the response 
set. The precision ranges from Var(T) = 
O.lln Var( Y,) to Var(T) = n Var( Y,.), anal- 
ogous to the COUNT query under the 
random-sample-queries method. 

Publishing a confidence interval for T 
does not lead to immediate disclosure [be- 
cause it is based on the product of n and 
Var( Yr)], but it may facilitate compromise 
for a snooper who has additional knowledge 
of either n or Var( Yr). 

(2) Under the varying-output-perturba- 
tion method [Beck 19801, the variance of T 
is given by 

Var(T) = 2ja’n Var( Y,.) + 2ja’( P- y,.)‘, 

where 7r and P are, respectively, the mean 
value of Y in the response set and the 
database. Similar to the COUNT query, j 
and a2 are the input parameters. The value 
of j ranges from 4 to 30; the value of a2 
follows from a2 = dc’, where d is again 
recommended to equal to 3. The value of c 
would most likely range from 0.1 to 0.5. 
This leads to the following approximate 
minimum value of the variance Var(T), 

0.24n Var(Y,) + 0.24(H - yr)“, 

and to a maximum value of 

25n Var(Y,) + 45(P - yr)‘. 

As was previously mentioned, the re- 
sponse to any SUM query is required to 
have at least a variance equal to jay’, 
which is equivalent to a numerical value 
between 0.48P2 and 909”. For large n, the 
value of Var(T) is approximately propor- 
tional to Var(Y,.), similar to the random- 
sample-queries method. The attractive 
property of the COUNT query under the 
varying-output-perturbation method viz. a 
precision that is independent of n is, how- 
ever, not retained in the SUM query. Pub- 
lishing a confidence interval for T does not 
lead to immediate disclosure, but might 
facilitate compromise for a snooper who 
has additional knowledge of n, Var( Y,.), y, 
or yr’,. 

(2) Under the fixed-data-perturbation 
method [Traub et al. 19841, the precision is 
based on applying Chebyshev’s inequality, 
which holds for an arbitrary distribution of 
the fixed perturbation e. The variance of T 
is given by 

Var(T) = j,,“. 

The only parameter to be specified is a,. 
This parameter may virtually take any 
value. Consequently, any precision can be 
achieved, subject to the condition that 
Var(T) is proportional to n. Publishing a 
confidence interval may simplify the task 
of the snooper in disclosing the value of n. 

Traub et al. [1984] describe a variation 
of their method in which the standard de- 
viation of the error ek which is proportional 
to a, might be too small for large values of 
Yk or too large for small values of Yk. This 
results in a method in which 

xk=eYk+ YL, 

where E(e) = 0 and Var(e) = 0:. This 
means that 

Var(T) = nat YP, 

given that we adhere to the security crite- 
rion given by 

‘J(yk) < c2y;, 

ACM Computing Surveys, Vol. 21, No. 4, December 1989 



Factors 

1. Precision: V(T) 

2. Required input parameters 
and their recommended values 

Table 5. The Precision Criterion for the SUM Query 

Varying Output 
Random Sample Queries Perturbation 

V(T) = 
nV(V) . (1 -PI V(T) = 2ja”nV(Y) 

P + Pja”(P - Yr)’ 

.5 I p S .90 4sjs30 and.lsc,s.5 
Minimum query set size, and a: = c:d 

could be as low as 9 and d = 3.0 

Fixed Data Perturbation 
by Traub et al. 

V(T) = no;4; alternatively, 
V(T) = nuf V’( Y) 

o, no specific guidelines or 
restrictions; alternatively, 
.2 5 ut c 1.0 

3. Range of precision 
Min value of V(T): 

Max value of V( !I’): 

4. Confidence interval for T: 

.llnV(Y) 
(when p = .9 and n > 9) 

nV(Y) 
(when p = .5 and n > 9) 

May be published but 
increases risk of 
disclosure 

.24nV(Y) + .24(fi- yt)” 
(when j = 4 and C = 2) 

45nV(Y) + 45(P - Fr,,” 
(when j = 30 and C = 1.0) 

May be published but increases 
risk of disclosure 

.OlnV’(Y) (when J = .l) 

.25nV’(Y) (when o, = .5) 

May be published but not in 
cases where confidential data 
exist in addition to numerical 
data 



Security Control Method For Databases l 549 

where c2 is comparable to the parameter c 
in the varying-output-perturbation method 
[Beck 19801. Therefore, reasonable values 
for c2 range from 0.1 to 0.5. 

6.5 Consistency Criterion 

By its very nature, fixed-data-perturbation- 
based methods yield consistent responses 
to all queries. Contrary to this are both the 
varying-output-perturbation method [Beck 
19801 and the random-sample-queries 
method [Denning 19801. These methods 
normally provide users with inconsistent 
results. The consistency of the fixed-data- 
perturbation-based methods does not, how- 
ever, prevent paradoxical values from 
occurring. For example, a negative salary is 
possible under the fixed-data-perturbation 
method [Traub et al. 19841. In addition, 
under the fixed-data-perturbation method 
for one categorical-confidential attribute 
[Warner 19651 the estimated number of 
entities that have a given property, out of 
a nonconfidential-response set of size no, 
may occasionally be less than 0 or larger 
than no. Such “strange” results can also be 
obtained from both the random-sample- 
queries and the varying-output-perturba- 
tion methods. We feel that this is a general 
drawback of perturbation approaches as 
compared to other approaches such as 
query restriction, 

6.6 Robustness Criterion 

In general, a perturbation method is robust 
with respect to increased snooper’s knowl- 
edge if the perturbation added to a specific 
value does not depend on other values in 
the query set. 

Yi represent a nonperturbed attribute- 
value of entity i, 

Xi represent the perturbed attribute- 
value, and 

ei denote the perturbation under query 
q(C). 

Then 

ei = { 

Xi - Yi for numerical data 
( Xi - Yi ( for categorical data 

The method is fully robust if ei is dependent 
on Yj only for i = j for all q(C). 

Note that this definition of robustness 
encompasses attacks to dynamic databases 
by knowledge of insertions, deletions, or 
updates of records. Thus, the fixed-data- 
perturbation methods [Traub et al. 1984; 
Warner 19651 are robust. The random- 
sample-queries method [Denning 19801 is 
also fairly robust, although increased 
snooper’s knowledge might be used to cir- 
cumvent the effect of the minimum query- 
set-size restriction. The varying-output- 
perturbation method [Beck 19801 is much 
less robust because ei is dependent on all Yi 
in the query set. 

6.7 Cost Criterion 

In any SDB an initial effort is required to 
develop a “statistical filter” that would pro- 
cess all queries before handing them to the 
“normal query processor.” The statistical 
filter ensures that 

l a user can only access aggregate data 
(e.g., COUNT and SUM), and 

l a user cannot access any directly identi- 
fying attribute (e.g., name or Social Secu- 
rity number). 

Furthermore, as discussed in Section 1, 
the implementation of a given method 
involves three aspects: setting the input 
parameters, educating users, and making 
additional programming efforts to imple- 
ment the specific method. 

Each of the methods considered in this 
section requires the setting of few input 
parameters (see Tables 4 and 5). In all 
methods, once the basic policy decision of 
what is considered a disclosure has been 
made, setting the input parameters is 
straightforward. 

With respect to user education, effective 
usage of the SDB requires understanding 
of the basic idea of the method in use. In 
relation to each other, the methods can 
be categorized as follows: The random- 
sample-queries method [Denning 19801 and 
the fixed-data-perturbation method [Traub 
et al. 19841 are relatively easy to explain, 
whereas the varying-output-perturbation 
method [Beck 19801 and the fixed-data- 
perturbation method for categorical data 
[Warner 19651 are more difficult to explain. 
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All methods can be implemented in such 
a way that the perturbation is applied 
during the query processing. Fixed-data- 
perturbation-based methods can, however, 
also be implemented such that data are 
perturbed upon data entry. The methods 
can be ranked in increasing order of 
implementation effort as follows: the fixed- 
data-perturbation method, the random- 
sample-queries method, the varying- 
output-perturbation method, and the fixed- 
data-perturbation method for categorical 
data. 

With respect to the processing overhead 
per query, the random-sample-queries 
method is more efficient as compared to 
the varying-output-perturbation method. 
If the fixed-data-perturbation method and 
the fixed-data-perturbation method for cat- 
egorical data are implemented once, at the 
time data are entered into the system, the 
CPU-time requirement would clearly be 
less than that of the random-sample-quer- 
ies method. In this case, the online-storage 
requirement would be considerably more 
(assuming that under the fixed-data- 
perturbation methods the original SDB is 
also kept online). On the other hand, if the 
perturbed attribute values are generated 
every time they are accessed, additional 
storage requirement is avoided at the ex- 
pense of an increased CPU-time require- 
ment. As a result, the CPU time 
requirement of the fixed-data-perturbation 
method and the fixed-data-perturbation 
method for categorical data would be 
comparable to that of the random-sample- 
queries method. In practice, the bottleneck 
for the user is typically the input/output 
time requirement, which is determined by 
the database management system and is 
hardly affected by the security-control 
method. 

6.6 Combination of the Traub et al. Method 
with Other Methods 

Before concluding this section, it should be 
pointed out that the security of the cate- 
gorical data may be violated indirectly by 
means of statistics on numerical data. In 
general, if we have a confidential-cate- 
gorical attribute, the associated security 

method should be applied whenever this 
attribute is accessed in a given query, in- 
dependent of the nature of the query (e.g., 
COUNT or SUM). To illustrate, consider 
the following example in which the fixed- 
data-perturbation method [Traub et al. 
19841 is used for protecting numerical at- 
tributes and some other method is used for 
protecting categorical attributes: 

SUM (Salary) 
where (Age = 42 & Sex = Male & Employer 
= ABC) 
SUM (Salary) 
where (Age = 42 & Sex = Male & Employer 
= ABC & Diagnosis Type = Schizophrenia) 

If the protection method for categorical 
attributes is not applied to the SUM query, 
a compromise occurs when the responses 
to both queries are equal (assuming that 
the target is a 42-year-old male working for 
the ABC organization). 

The fixed-data-perturbation method can 
be combined with the fixed-data-perturba- 
tion method for categorical data, which is 
suitable for protecting a single Boolean- 
confidential attribute. For the general case 
in which more confidential-categorical at- 
tributes are involved, a combination of 
the fixed-data-perturbation, the random- 
sample-queries, and the varying-output- 
perturbation methods is an alternative that 
is worth investigating. 

The combination of the fixed-data-per- 
turbation and the random-sample-queries 
methods is easily implemented because the 
methods are nearly complementary. As far 
as precision of the SUM query is concerned, 
note that when combining both methods 
we get 

Thus, 
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Using the results in Cox [1980], we then 
have 

n(1 -P) 
Var(T) = p Var( Yr) + a,2. 

In other words, the variance under the com- 
bined method equals the sum of the vari- 
ances of each method separately. The 
security and precision, with respect to the 
categorical attribute, are the same with 
the combined method as with the random- 
sample-queries method. 

The combination of the fixed-data- 
perturbation method and the random- 
sample-queries method would result in the 
following response to the SUM query: 

T = i &.kxk = i &,k(yk + ekh 
k=l k=l 

Therefore, 

Var( T) = i Var(ZB,k Yk 
k=l 

) + n Var(Zse 

R 

1 

= Var(Z3) 2 Yi + n(E(Z,))“uz 
k=l 

= 0 i ja?(n9,2+nVar(Y,))+na, 

=ja: Pp +jafVar( Y,) + ng,. 

In this case, the resulting variance is not 
equal to the sum of the variances of both 
methods separately, but is less for large n. 
This is due to the fact that, as was previ- 
ously discussed, the precision of the 
COUNT query under the varying-output- 
perturbation method is essentially different 
from the SUM query. Again, the security 
and precision of the categorical data are the 
same under the combined method. 

7. NEW TYPES OF THREATS 

Several types of threats are just starting to 
be explored in the literature. These threats 
are quite different in nature from the ones 
examined by researchers concerned with 
the security of SDBs. It is important, there- 
fore, that researchers concerned with the 
security of SDBs be aware of and give at- 

tention to these new types of threats. A 
discussion of these threats follows. 

(1) Logical inference. Morgenstern 
[1987] addressed the threat to nonstatisti- 
cal databases that arise from logical infer- 
ence and the semantics of the application. 
Some approaches designed to overcome the 
logical-inference problem in nonstatistical- 
database environments have already been 
suggested in the literature [Denning 1984, 
1985; Su and Ozsoyoglu 19871. The exten- 
sion of such a threat to SDBs is yet to be 
explored. 

(2) Diophantine inference. Rowe [ 19841 
examined situations in which a domain- 
dependent structure exists for a confiden- 
tial attribute such that it can be character- 
ized by very few independent variables. For 
example, in a university database we would 
have 

n, * salary, + n2 * salary2 + n3 * salary, 

= total-salary, 

where nl, salaryi, n2, salaryz, and n3, 
salary, are, respectively, the number and 
average salary of assistant, associate, and 
full professors. 

The above linear equation is referred to 
as Diophantine (integer-solution) equation. 
In these situations, Rowe [1984] discussed 
ways of obtaining a finite set of possible 
values for each of the unknown variables 
in the Diophantine equation and for prun- 
ing this set using additional equality con- 
straints on the possible values of the 
unknown variables. He stated that Dio- 
phantine inferences are very sensitive to 
changes in the coefficients involved, and it 
is very difficult to analyze expected and 
worst-case time complexities of solution 
methods for different problems. He con- 
cluded by pointing out that data or output 
perturbation seem to be the only real pos- 
sible methods for protecting the database. 

Although the practicality of this compro- 
mise method has not been studied, re- 
searchers concerned with security-control 
methods for SDBs need to take such a 
threat into consideration. 

(3) Regression methodology. Palley 
[1986] and Palley and Simonoff [1987] 
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discussed the use of regression analysis to 
compromise SDBs. Their method calls for 
developing a synthetic database from the 
“original” database: 

togram for each xi by asking queries of the 
form, “COUNT WHERE xi = value”. 

(i) Decide on a set of nonconfidential 
attributes X = (x1, x2, . . . , xk) that would 
be useful for describing and predicting the 
confidential attribute (y). Develop a his- 

(2) Are users able, by using regression, 
to obtain a better estimate of a confidential 
attribute than the one provided by the 
security-control method? 

(a) The database is secured using one of 
the methods that withholds statistics that 

The answer to these questions should be 
considered in the context of the security- 
control method that is in effect. Specifi- 
cally, consider the following two cases: 

(ii) For each of the k attributes, draw a 
random sample (samplei, for i = 1, 2, . . . , 
k) from the corresponding histogram. Issue 
the following queries: “COUNT y WHERE 
xl = samplel, x2 = sample2, . . . , xk = sam- 
dek “, “MEAN y WHERE x1 = sampleI, x2 
= samplez, . . . , xk = samplek”, “STAN- 
DARD DEV. y WHERE x1 = sampleI, x2 
= sample2, . . . , xk = samplek”. Repeat 
for, say, 300 samples for each of the k 
attributes. 

(iii) Record the results of the above step 
(all samples of the k attributes and corre- 
sponding value of the confidential attri- 
bute) in a synthetic database. 

Once the synthetic database has been 
created, it is then used to estimate the ,6 
coefficients in the regression equation y = 
X/3 + e. A snooper can then use this regres- 
sion equation to obtain an estimate of the 
average value of y for a given value of X 
attributes. 

We agree with the authors that it is gen- 
erally undesirable to have users of an SDB 
develop regression models that represent 
the functional relationship between a con- 
fidential attribute and a set of nonconfi- 
dential attributes. In general, however, 
the effectiveness of a regression model is 
limited by the existence of a regression 
relationship between confidential and non- 
confidential attributes. Furthermore, the 
following two fundamental questions need 
to be addressed: 

(1) Are users able, by using regression, 
to obtain a value of a confidential attribute 
that cannot be obtained directly from the 
security-control method? 

could lead to compromise. In this case, 
regression could be used to obtain an esti- 
mate (not the actual value) of the withheld 
statistic of the confidential attribute given 
a specific value of each of the nonconfiden- 
tial attributes. The question, How good is 
this estimate? has not been fully investi- 
gated. Palley and Simonoff [1987] have 
mainly focused on the “R-squared” as the 
key measure for the performance of the 
regression-compromise method and give 
little attention to other measures such 
as the correlation between the withheld 
statistic and its regression estimate and 
the average error (difference between 
the withheld statistic and its regression 
estimate). 

(b) The database is secured using one of 
the methods that does not withhold query 
responses (e.g., output or data perturba- 
tion-based method). In this case, the user 
can, legitimately, obtain directly from the 
security-control method, as well as using 
regression, an estimate of the desired ag- 
gregate statistic of the confidential attri- 
bute. The quality of the estimate obtained 
from the security-control method in com- 
parison to the one obtained from the 
regression-compromise method depends on 
the security-control method that is in ef- 
fect. In general, the security-control 
method makes use of the information con- 
tained in the whole database and the whole 
query set, whereas the regression-compro- 
mise method makes use of only a subset of 
the database and a subset of the query set. 
Therefore, it stands to reason, however, 
that the estimate obtained from the secu- 
rity-control method is better than the one 
obtained from the regression-compromise 
method. 
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8. CONCLUSIONS 

Our conclusions are summarized in the 
following points. 

(1) No single security-control method 
satisfies the conflicting objectives-high 
level of security, high level of richness of 
information provided to users, high level of 
robustness, low level of initial and process- 
ing costs-and is applicable to all types of 
SDB environments. An effective solution 
approach is to combine several methods 
into one that would be well suited for a 
general class of SDB environment, such as 
dynamic or static SDBs. 

(2) The majority of the security-control 
methods developed to date have viewed the 
SDB as a file. Security-control methods 
should be based on the fact that an SDB is 
a database in which interrelated data about 
various types of populations are included. 
In this respect, the conceptual approach 
provides a useful framework. Extensive 
study of this approach is still required 
before wide-scale application is feasible. 

(3) For dynamic online SDB environ- 
ments, perturbation-based methods are 
well suited. There is a need to develop bias- 
correction mechanisms that would help 
overcome the bias problem that was 
pointed out in Matloff [ 19861. The fixed- 
data-perturbation method [Warner 19651, 
which results in zero bias, is suitable for 
SDBs where there is only one confidential 
categorical attribute. Despite the fact that 
the random-sample-queries method [Den- 
ning 19801 has a low level of consistency, it 
is a viable alternative for SDBs where sev- 
eral dependent attributes are involved. The 
major problem with this method, however, 
is the small query-set size that could result 
in a partial disclosure or even exact disclo- 
sure in the case of a query set of size 1. 

Auditing and partitioning are two secu- 
rity-control methods whose practical 
application to dynamic online SDB envi- 
ronments needs further study. The combi- 
nation of partitioning and perturbation 
methods has been briefly investigated in 
Chin and ijzsoyoglu [ 19791. 

(4) For a static online SDB environ- 
ment, data swapping is potentially a suit- 

able security-control method; however, the 
issues raised in Section 4.2.1 have to 
be resolved first. Both the probability- 
distribution method [Liew et al. 19851 and 
the fixed-data-perturbation method [Traub 
et al. 19841 could be applied to such an 
environment once the bias problem has 
been resolved. 

(5) Although cell suppression has been 
widely used for static offline SDB environ- 
ment, it suffers from attacks such as the 
regression-compromise-based method. The 
random-sample-queries method [Denning 
19801 could be applied to such an environ- 
ment. 

(6) The new type of threat discussed in 
Section 6 raises several issues that no one 
has yet resolved. We hope that research 
work in the area of securing SDBs will 
address these new types of threats. 

(7) Finally, to date there is no single 
security-control method that prevents both 
exact and partial disclosures. There are, 
however, few methods (fixed-data pertur- 
bation [Traub et al. 19841, fixed-data per- 
turbation for categorical data [Warner 
19651, random sample queries [Denning 
19801, and varying-output perturbation 
[Beck 19801) that prevent exact disclosure 
and enable the DBA to exercise “statistical- 
disclosure control.” Some of these methods 
suffer from the bias problem discussed in 
Section 4.1 and/or the 0 or 1 query-set-size 
problem (i.e., partial disclosure is possible 
in case of null query set or a query set of 
size 1). Dalenius [ 19771 says (and we agree) 
that researchers should discard the notion 
of elimination of both exact and partial 
disclosures and focus their research efforts 
on the notion of statistical-disclosure con- 
trol for the following reasons: “(i) It would 
be unrealistic to aim at elimination: such a 
goal is not operationally feasible; (ii) it 
would place unreasonable restrictions on 
the kind of statistics that can be released, 
it may be argued that elimination of disclo- 
sure is possible only by elimination of sta- 
tistics.” Thus, we recommend directing 
future research efforts toward developing 
new methods that prevent exact disclosure 
and provide statistical-disclosure control 
and at the same time do not suffer from the 
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bias problem and the 0, 1 query-set-size 
problem. Furthermore, efforts directed to- 
ward developing a bias-correction mecha- 
nism and solving the general problem of 
small query-set size would help salvage few 
of the current perturbation based methods. 
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