Database Security Control Measures
We follow Elmasrı R., Navathe S.B., Fundamentals of Database Systems, 5th Ed., Pearson, 2007, Chapter 23
There are four main control measures that are used to provide security of data in databases:

· Access control

· Inference control

· Flow control

· Data encryption

Access control we have already considered and we shall extend it. Inference control measures are used to prevent extraction (inference) of private information from publicly available statistical databases such as salary summary in universities’ departments. Flow control prevents information from flowing in such a way that it reaches unauthorized users. Channels that are pathways for information to flow implicitly in ways that violate the security policy of an organization are called covert channels. A final control measure is data encryption. We have also touched this issue.
Database Security and the DBA

The database administrator (DBA) is the central authority for managing a database system. The DBA’s responsibilities include account creation (access control as a whole), granting/revoking privileges to/from users (discretionary authorization control) and classifying users and data in accordance with the policy of the organization (mandatory authorization control). The DBA has a DBA account, sometimes called a system or super-user account, which provides powerful capabilities that are not made available to regular database accounts and users.

Access Protection, User Accounts, and Database Audits

Each valid user gets from DBA an account number and password, which are used for user authentication when he logs in the system. For each login session, the DBMS can record the user’s account number and associate it with the terminal from which the user logged in. All operations applied from the terminal are attributed to the user’s account until the user logs off. It is particularly important to keep track of update operations that are applied to the database so that, if the database is tampered with, the DBA can understand which user did the tampering. If any tampering of the database is suspected, a database audit is performed, which consists of reviewing the
Access Protection, User Accounts, and Database Audits (Cont 1)

log file (audit file) to examine all accesses and operations applied to the database during a certain time period.

Discretionary Access Control Based on Granting and Revoking Privileges

There are two levels for assigning privileges to use the database system:
· The account level. At this level, the DBA specifies the particular privileges that each account holds independently of the relations in the database (e.g., CREATE SCHEMA and CREATE TABLE privileges)

· The relation (table) level. At this level, the DBA can control the privilege to access each individual relation or view in the database (user access control matrix, where the rows represent subjects (users, accounts, programs) and the columns represent objects (relations, records, columns, views, operations)

To control the granting and revoking of relation privileges, each relation R in a database is assigned an owner account, which is typically the account that was used when the relation was created. The owner of the relation is given all privileges on that relation. The owner account holder can pass privileges on any of the owned relations to other users by granting privileges to their accounts. In SQL the following types of privilege can be granted on each individual relation R:
· Select privilege

· Modify privilege

· References privilege

To create a view, the account must have SELECT privilege on all relations in the view definition.

The mechanism of views is an important discretionary authorization mechanism in its own right. It can be used to restrict access to particular fields and tuples.
Privileges can be propagated using the GRANT OPTION, for example,

GRANT SELECT ON EMPLOYEE, DEPARTMENT TO A3 WITH GRANT OPTION

User A3 can now propagate the privilege to other accounts by using GRANT.
Discretionary Access Control Based on Granting and Revoking Privileges (Cont 1)

GRANT SELECT ON EMPLOYEE TO A4

does not give propagation right to A4.

REVOKE SELECT ON EMPLOYEE FROM A3

revokes select privilege on Employee from A3.
Limits on propagation of privileges can be implemented in two ways. Limiting horizontal propagation to an integer number i means that an account B given the GRANT OPTION can grant the privilege to at most i other accounts. Vertical propagation is more complicated; it limits the depth of the granting of privileges. Granting a privilege with a vertical propagation of zero is equivalent to granting the privilege with no GRANT OPTION. If account A grants a privilege to account B with the vertical propagation set to an integer number j>0, this means that the account B has the GRANT OPTION on that privilege, but B can grant the privilege to other accounts only with vertical propagation less than j. In effect, vertical propagation limits the sequence of grant options that can be given from one account to the next based on a single original grant of the privilege.
Mandatory Access Control
In addition to discretionary access control, in many applications, it is necessary to classify data and users based on security classes. This is known as mandatory access control. The commonly used model for multilevel security, known as the Bell-LaPadula model, classifies each subject and object into one of the security classifications such as TS (top-secret), S (secret), C (confidential), or U (unclassified), with TS>=S>=C>=U. Two restrictions are enforced on data access: no read-up (simple security property), and no write-down (star property, *-property). These we have considered earlier also.

To incorporate multilevel security into the relational database model, it is common to consider attribute values and tuples as data objects. Hence, each attribute A is associated with a classification attribute C in the schema, and each attribute value in a tuple is associated with a corresponding security classification. In addition, in some models, a tuple classification attribute TC is added to the relation attributes to provide a classification for each tuple as a whole. Hence, a multilevel relation schema R with n attributes would be represented as
Mandatory Access Control (Cont 1)

R(A1,C1,A2,C2,..,An,Cn,TC)

where each Ci represents the classification attribute associated with attribute Ai.

The value of the TC attribute in each tuple t – which is the highest of all attribute classification values within t – provides a general classification for the tuple itself, whereas each Ci provides a finer security classification for each attribute value within the tuple. The apparent key of a multilevel relation is the set of attributes that would have formed the primary key in a regular (single-level) relation. A multilevel relation will appear to contain different data to subjects (users) with different clearance levels. In some cases, it is possible to store a single tuple in the relation at a higher classification level and produce the corresponding tuples at a lower-level classification through a process known as filtering. In other cases, it is necessary to store two or more classification tuples at different classification levels with the same value for the apparent key. This leads to the concept of poly-instantiation, where several tuples can have the same apparent key value but have different attribute values for users at different classification levels.
We illustrate these concepts with the simple example of a multilevel relation shown in Figure 23.2 (a), where we display the classification attribute values next to each attribute’s value. Assume that the Name attribute is the apparent key, and consider the query
SELECT * FROM EMPLOYEE.
A user with security clearance S would see the same relation shown in Figure 23.2(a), since all tuple classifications are less than or equal to S.
Mandatory Access Control (Cont 2)

(a) Employee – the original tuples

	Name
	Salary
	JobPerformance
	TC

	Smith U
	40000 C
	Fair S
	S

	Brown C
	80000 S
	Good C
	S

(b) Employee – after filtering for classification C users

	Name
	Salary
	JobPerformance
	TC

	Smith U
	40000 C
	NULL C
	C

	Brown C
	NULL C
	Good C
	C

(c) Employee - after filtering for classification U users

	Name
	Salary
	JobPerformance
	TC

	Smith U
	NULL U
	NULL U
	U

(d) Employee – poly-instantiation of the Smith tuple

	Name
	Salary
	JobPerformance
	TC

	Smith U
	40000 C
	Fair S
	S

	Smith U
	40000 C
	Excellent C
	C

	Brown C
	80000 S
	Good C
	S

Figure 23.2 A multilevel relation to illustrate multilevel security

However, a user with security clearance C would not be allowed to see values for salary of ‘Brown’ and JobPerformance of ‘Smith’, since they have higher classification. The tuples would be filtered to appear as shown in Figure 23.2(b), with Salary and JobPerformance appearing as null. For user with security clearance U, the filtering allows only the Name attribute of ‘Smith’ to appear, with all other attributes appearing as null (Figure 23.2(c)). Thus, filtering introduces null values for attribute values whose security classification is higher than the user’s security clearance.
In general, the entity integrity rule for multilevel relations states that all attributes that are the members of the apparent key must not be null and must have the same security classification within each individual tuple. Additionally, all other attribute values in the tuple must have a security classification greater or equal to that of the apparent key. This constraint ensures that a user can see the key if the user is permitted to see any part of the tuple. Other integrity rules, called null integrity and inter-instance integrity, informally ensures that if a tuple value at some security level can be filtered (derived) from a higher-classified tuple, then it is sufficient to store the higher classified tuple in the multilevel relation.
Mandatory Access Control (Cont 3)

To illustrate poly-instantiation further, suppose that a user with security clearance C tries to update the value of JobPerformance of ‘Smith’ in Figure 23.2 to ‘Excellent’; this corresponds to the following SQL update being used:

UPDATE EMPLOYEE
SET JobPerformance=’Excellent’

WHERE Name=’Smith’

Since the view provided to users with security clearance C (see Figure 23.2(b)) permits such an update, the system should not reject it; otherwise, the user could infer that some non-null value exists for the JobPerformance attribute of ‘Smith’ rather than the null value that appears. This is an example of inferring information through what is known as a covert channel, which should not be permitted in highly secure systems. However, the user should not be allowed to overwrite the existing value of JobPerformance at the higher classification level. The solution is to create a poly-instantiation for the ’Smith’ tuple at the lower classification level C, as shown in Figure 23.2(d). This is necessary since the new tuple cannot be filtered from the existing tuple at classification S.

The basic update operations INSERT, DELETE, UPDATE must be modified to handle this and similar situations, but we do not consider these issues here.

Comparing Discretionary Access Control (DAC) and Mandatory Access Control (MAC)
DAC policies are characterized by a high degree of flexibility, which makes them suitable for a large variety of application domains. The main drawback of DAC models is their vulnerability to malicious attacks such as Trojan horses embedded in application programs (we have already seen it previously). MAC policies ensure a higher degree of protection – in a way, that prevents any illegal flow of information. The drawback of MAC is that it is too rigid: it requires a strict classification of subjects and objects into security levels, and therefore, they are applicable to very few environments, as military applications. In many practical situations, DAC is preferred because it offers a better trade-off between security and applicability.

Role-Based Access Control (RBAC)

RBAC emerged in 1990s as a proven technology for managing and enforcing security in large-scale enterprise-wide systems. Its basic notion is that permissions are associated with roles, and users are assigned to appropriate roles. Roles can be created using the CREATE ROLE and DESTROY ROLE commands. The GRANT and REVOKE commands discussed previously can then be used to assign and revoke privileges from roles.
[image: image1.png]88 « S.Osbornetal.

ROLE
HIERARC

PERMISSION
ASSIGNMENT

PERMISS-
IoNs

USER

ADMINISTRATIVE
USER
ASSIGNMENT ARH

[INISTRATIVE

ADMINISTRATIVE PERMISSION
ROLE ASSIGNMENT
HIERARCHY

Fig. 1. The RBAC96 model

Figure 1 is taken from [Osborn S., Sandhu R., Munawer Q., Configuring role-based access control to enforce mandatory and discretionary access control policies. – ACM Transactions on Information and System Security, Vol. 3, No. 2, May 2000, 85-106, https://staff.emu.edu.tr/alexanderchefranov/Documents/CMPE552/CMPE552%20Fall2021/OsbornACMTISS00.pdf]
Role-Based Access Control (Cont 1)

[image: image2.png]Definition 1. The RBAC96 model has the following components:
® U, a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP, disjoint sets of (regular) permissions and administrative
permissions
S, a set of sessions
® PAC P X R, a many-to-many permission to role assignment relation
APA C AP X AR, a many-to-many permission to administrative role
assignment relation

[image: image3.png]® UA C U X R, a many-to-many user to role assignment relation
AUA C U X AR, a many-to-many user to administrative role assign-
ment relation

® RH C R X R, a partially ordered role hierarchy
ARH C AR X AR, partially ordered administrative role hierarchy
(both hierarchies are written as = in infix notation)

® user: S — U, a function mapping each session s, to the single user
user(s,) (constant for the session’s lifetime),
roles : S — 2RUAR maps each session s, to a set of roles and administrative
roles roles(s;) C {r | (3r' = r)[(user(s,), r') € UA U AUA]} (which
can change with time)
session s, has the permissions U, o) {p | (3 = r)[(p, 1) € PA U
APAT}

@ there is a collection of constraints stipulating which values of the various
components enumerated above are allowed or forbidden.

RBAC appears to be a viable alternative to traditional DAC and MAC. It ensures that only authorized users are given access to certain data or resources. Users create sessions during which they may activate a subset of roles to which they belong. Each session can be assigned to many roles, but it maps to one single user or a subject only. Many DBMS have allowed the concept of roles, where privileges can be assigned to roles (e.g., Oracle).
Role hierarchy in RBAC is a natural way to organize roles to reflect the organization’s lines of authority and responsibility. By convention, junior roles at the bottom are connected to progressively senior roles as one moves up hierarchy. The hierarchy diagrams are partial orders, so they are reflexive, transitive, and anti-symmetric:
Role-Based Access Control (Cont 2)

[image: image4.wmf])

)(

,

(

)

)(

,

,

(

)

)(

(

x

y

y

x

y

x

y

x

z

x

z

y

y

x

z

y

x

x

x

x

j

j

j

j

j

j

®

Ù

¹

"

®

Ù

"

"

Another important consideration in RBAC systems is the possible temporal constraints that may exist on roles, such as the time and duration of role activations, and triggering of a role by an activation of another role. Using an RBAC model is a highly desirable goal for addressing the key security requirements of Web-based applications. Roles can be assigned to workflow tasks so that a user with any of the roles related to a task may be authorized to execute it and may play a certain role for certain duration only.
Introduction to Statistical Database Security

Statistical databases are used mainly to produce statistics about various populations. The database may contain confidential information about individuals, which should be protected from user access. However, users are allowed to retrieve statistical information about the populations, such as averages, sums, counts, maximums, minimums, and standard deviations. We will illustrate the problem with a simple example. Various techniques are discussed, for example, in [Adam N.R., Wortmann J.C., Security-Control Methods for Statistical Databases: A Comparative Study, - ACM Computing Surveys, Vol. 21, No. 4, December 1989, 515-556, https://staff.emu.edu.tr/alexanderchefranov/Documents/CMPE552/CMPE552%20Fall2021/AdamACMCS89.pdf]
We use Person relation with a schema
	Name
	Ssn
	Income
	Address
	City
	State
	Zip
	Sex
	Last degree

A population is a set of tuples of a relation (table) that satisfy some selection condition. Hence, each selection of the Person relation will specify a particular population of Person tuples. For example, the condition Sex=’M’ specifies the male population; the condition ((Sex=’F’) and (Last_degree=’M.S.’ or Last_degree=’Ph.D’)) specifies the female population that has an M.S. or Ph.D. degree as their highest degree; and the condition City=’Houston’ specifies the population that lives in Houston.
Statistical database security technique must prohibit the retrieval of individual data. This can be achieved by prohibiting queries that retrieve attribute values and by allowing only queries that involve statistical aggregate functions. Such queries are sometimes called statistical queries.

It is the responsibility of a database management system to ensure the confidentiality of information about individuals, while still providing useful
Introduction to Statistical Database Security (Cont 2)

statistical information to users. Violation of privacy can be illustrated by the following example.

In some cases it is possible to infer the values of individual tuples from a sequence of statistical queries. This is particularly true when the conditions result in a population consisting of a small number of tuples. As an illustration, consider the following statistical queries:
Q1: SELECT COUNT(*) FROM PERSON

 WHERE <condition>

Q2: SELECT AVG(Income) FROM PERSON

 WHERE <condition>

Now suppose that we are interested in finding the salary of Jane Smith, and we know that she has a Ph.D. degree and that she lives in the city of Bellaire, Texas. We issue the statistical query Q1 with the following condition:

(Last_degree=’Ph.D.’ and Sex=’F’ and City=’Bellaire’ and State=’Texas’)

If we get a result of 1 for this query, we can issue Q2 with the same condition and find the salary of Jane Smith. Even if the result of Q1 on the preceding condition is not 1 but is a small number – say 1 or 2 – we can issue statistical queries using functions MIN, MAX, and AVG to identify the possible range of values for the salary of Jane Smith.

The possibility of inferring individual information from statistical queries is reduced if no statistical queries are permitted whenever the number of tuples in the population specified by the selection condition falls below some threshold. Another technique is to prohibit sequences of queries that refer repeatedly to the same population of tuples. It is also possible to introduce slight inaccuracies or noise into the results of statistical queries deliberately, to make it difficult to deduce individual information from the results. Some approaches to statistical database security are shown on the following figure from Adam and Wortmann:

Introduction to Statistical Database Security (Cont 3)

[image: image5.png]Security Control Method For Databases = 51

(restricted) Queries
— e
DB
Exect responses
— Duedrepowe
o denials

@

PR
Perturbated o
portaion SDB.
T

responses

 ctad) Qs
B
o vewsew
T e

@

Figur

1. () Query sot renriction; b) data perturbation; () output perturbation,

Flow Control
Flow control regulates the distribution or flow of information among accessible objects. A flow between object X and object Y occurs when a program reads values from X and writes values into Y. Flow controls check that information contained in some objects does not flow explicitly or implicitly into less protected objects. Thus, a user cannot get indirectly in Y what he or she cannot get directly in X. Active flow control began in the early 1970s. Most flow controls employ some concept of security class; the transfer of information from a sender to receiver is allowed only if the receiver’s security class is at least as privileged as the sender’s.

Flow Control (Cont 1)
A flow policy specifies the channels along which information is allowed to move. The simplest flow policy specifies just two classes of information: confidential (C) and non-confidential (N), and allows all flows except those from class C to class N. This policy can solve the confinement problem that arises when a service program handles data such as customer information, some of which may be confidential. For example, an income-tax computing service might be allowed to retain a customer’s address and the bill for services rendered, but not the customer’s income or deductions.
Access mechanisms are responsible for checking user’s authorizations for resource access: only granted operations are executed. Flow controls can be enforced by an extended access control mechanism, which involves assigning a security class (usually called a clearance) to each running program. The program is allowed to read a particular memory segment only if its class is as low as that of the segment. This automatically ensures that no information transmitted by the person can move from a higher to a lower class. For example, a military program with a secret clearance can only read from objects that are unclassified and confidential and can only write into objects that are secret or top secret.

Covert channels can be classified into timing (temporal) and storage (spatial) channels. One way to think of the difference between covert timing channels and covert storage channels is that covert timing channels are essentially memoryless, whereas covert storage channels are not. With a timing channel, the information transmitted from the sender must be sensed by the receiver immediately, or it will be lost. However, an error code indicating a full disk which is exploited to create a storage channel may stay constant for an indefinite amount of time, so a receiving process is not as constrained by time.
Covert Channels in Networks

Further examples are taken from [Smeets M., Koot M., Research Report: Covert Channels. - https://rp.os3.nl/2005-2006/p27/report.pdf]

In Figure 5, if a packet is received in the time window, then bit is 1, otherwise, it is 0. There may be problems related with delivery delays.
Covert Channels in Networks (Cont 1)
[image: image6.png]Synchronization problem
for temporal channels

T (encen Time Gecaiven
o[———>[o.] | } receive wincow
oo f—— o,
oy,
o
25 [————"817 [}~ protlem: skipped one wincon,

recaivod two pakets in next

- Ly window.

The synchronization problem of temporal channels

[image: image7.png]‘Synchronization problem
for spatial channels.

Orerofsending Orcor of roconal

— wrong bt order!

Figure 6: The synchronization problem of spatial channels

In Figure 6, packets may arrive not in the original order that results in swapping of bits.
Covert channels using IPv4 are discussed below.
Covert Channels in Networks (Cont 2)
[image: image8.png]] 1 2 3
81234567898123456789812345678901

Destination Address |

Wersionl T [Type of Service] Toual Loagth i
RS ST
[Time to Lve | Protoral | esder Chevkvan |
P

|

Figure 7: IPv4 header from RFC 791

Format shows bit numbers.

Version = 4 (4 bits)
Internet Header Length (4 bits) – Length of header in 32-bit words. The minimum value is five, for a minimum header length of 20 octets (8 bit bytes), the maximum is 15.
Type of Service (8 bits) – Provides guidance to end system IP modules and to routers along the packet’s path, in terms of packet’s relative priority

Total Length – Total IP packet length, in octets

Identification – A sequence number that, together with the source address, destination address, and user protocol, is intended to identify a packet uniquely. Thus, the identifier should be unique for the packet’s source address, destination address, and user protocol for the time during which the packet will remain in the internet.

Flags – Only two of the bits are currently defined. When a packet is fragmented, the More bit indicates whether this is the last fragment in the original packet. The Don’t Fragment bit prohibits fragmentation when set.

Fragment Offset – Indicates where in the original packet this fragment belongs, measured in 64-bit units. This implies that fragments other than the last must contain a data field that is a multiple of 64 bits in length.

Time to Live – Specifies how long, in seconds, a packet is allowed to remain in the internet. Every router that processes a packet must decrease it by at least one, so the TTL is somewhat similar a hop count
Protocol – Indicates the higher level protocol, which is to receive the data field at the destination; thus, this field identifies the type of the next header in the packet after the IP header.

Covert Channels in Networks (Cont 3)
Header Checksum – An error detecting check code applied to the header only. Because some header fields may change during transit (e.g., time to live), this is re-verified and recomputed at each router. For purposes of computation, the checksum field is itself initialized to a value of zero.
Source Address – Coded to allow a variable allocation of bits to specify the network and the end system attached to the specified network.

Destination Address – Same characteristics as source address
Options (variable) – Encodes the options requested by the sending user; these may include security label, source routing, record routing, and time-stamping.

Padding (variable) – Used to ensure that the packet header is a multiple of 32 bits in length

[image: image9.png]Field IP Identification

Concealment The 16-bit Identification field (byte 5-6) is used to uniquely iden-
tify an IP datagram within a flow of datagrams sharing the same source
and destination four-tuple (source IP, source port, destination IP and des-
tination port). The value for this field should be chosen randomly by the
source, but can also contain a non-random value without disrupting the
IP mechanism. That s, an adversary may conceal 16 bits of data in this
field and send it to any other networked system.

[image: image10.png]Intranet

Worksttin

'
ey TCP VN packst (P10: W)
[p——

L —

|

TGP SYN packet (P1D: 1) — o)
1

=

X |
rchsmpe (P !

[rep— packs (P 13- 1) 1

.

L S —

Internet

p—x

Advoreary
Server

Figure 8: Covert channel using the IP Identification field

Covert Channels in a Computer
Another examples:
[image: image11.png]Example: Disk Arm Covert Channel

R recds frack 55, then reases
£

S reads rack 53 (0 send) or-
rack 7 (1 sond 1), hen
Felasas (P,

R requests foread track 51.end
$rock 83 Smaanealy

R checks whichreading
Fincnes st 1 ok 51is
et ne beeres he
Fecensz 2. otnerwisea L

T cisk arm has two routes to
folow

[image: image12.png]Example: Inter-quantum-time Covert Channel

S transnits information 0@ by encoding symbols (0 and 1) witin
he fm between o sucesse G20 quanta

S anc R pre-sgree on et fines for sending nformation

T strategy i for fo executeaf fme . if the it bit s 1 and
10 black 381 1 the -1n i i£ 0.

T receivercan el whether th serder execates o tm 1_i
because e reciver camat execute at the same fime.

Example from http://www.list.gmu.edu/infs762/infs762su04ng/l1-access-control.ppt :

Given 5MB pool of dynamically allocated memory

HIGH PROCESS

bit = 1 => request 5MB of memory

bit = 0 => request 0MB of memory

LOW PROCESS

request 5MB of memory

if allocated then bit = 0 otherwise bit = 1

Covert Channels in Databases
Example is from http://ieeexplore.ieee.org/iel2/1114/7667/00318449.pdf?arnumber=318449 :
[image: image13.png]PAY_INFO PAY_INFO

ewpLovEE WORK INFO
EMPLOYEE WORK_INFO

Figure 2: Proposed solution for a secure payroll
database.
Figure 1: Objects in payroll database.

	[image: image14.png]‘The main program calls the employes method in EM-
PLOYEE object (in C:t-+ look alike pscudocode):

ployes ()

{

PAY_INFO.pay();
WORK_INFO.rese

1y_hours();

The pay method in turn.

o
WORK_INFO. get_hours ();

	[image: image15.png]in conventional programming sense (ie., If there
is uparallelism Detween PAY_INFO.pay() and
WORK INFO.reset weekly-hours (), the correctness of
the program is guaranteed by

executing VORK INFO. resat weakly houra() after
PAY_INFO. pay) is executed (see figure 1),

If the same transaction is performed in a secure system,
where PAY.INFO is high object and EMPLOYEE
and WORKINFO are low objects, then the above so-
lution is not acceptable because the acknowledgement
(4) from PAY_INFO (High) to EMPLOYEE (Low) can
be'used as o overt iming chaninel by PAY INFO mod-
erating the time at which the acknowledgement, (1) is
sent to EMPLOYEE.

Covert Channels in Databases (Cont 1)
	[image: image16.png]© The transaction is_initiated by EMPLOYEE
by sending the PAY message to PAY_INFO. I
PAY INFO can send an acknowledgernent back to
EMPLOYEE then a potential covert timing chan-
nl cxists. Hence, the mesage fier sends NIT
right away and blocks any response from High to
Low.

o PAY.INFO,
in turn, sends GET_HOURS to WORK_INFO to
read Hours.vorked WORKINFO should not
know when or by whom its information is read’
(if it knows then this. information can be used as
a covert channel).

o ln the meantime, EMPLOYEE sends RE-
SET.WEEKLY_HOURS to WORK INFO to reset
Hours worked. WORK.INFO can send DONE to
EMPLOYEE because they are at the same level

o To guarantee that GET-HOURS reads the value of
Hours worked before RESET.WEEKLY-HOURS
is executed, WORKINFO uses a multiple version
scheme. In other words, WORK_INFO always
makes a new version whenever its information is
updated so that High can read appropriate (but
potentially old) versions of Hours_worked.

Audit
We follow [Hassan A. Afyouni, Database security and auditing, Thomson, 2006, Chapter 7]
The auditing practice that is most often publicized is the review of an organization’s documents such as the financial statements to make sure that every change to the account is recorded and is accurate. An audit also assures that all company transactions comply with government regulations and laws. Most importantly, an audit can be conducted as a review of the enforcement of security policies and procedures. All audits take place in an auditing environment (database auditing environment), which includes:

· Objectives – An audit without a set of objectives is useless. Objectives usually are set by the organization, industry standards, or government regulations and laws

· Procedures – To conduct an audit, step-by-step instructions and tasks must be documented ahead of time.
· People – Every auditing environment must have an auditor, even in the case of automatic audit. Other people involved in the audit are employees, managers, and anyone being audited

· Audit entities – This include people, document, processes, systems, activities, or any operations that are being audited

· Database – Database activities, data changes, data accuracy, data files, and operating system

Security measures are inseparable from auditing.

Auditing Process

The Auditing process (AP) ensures that the system is working and complies with the policies, standards, regulations, or laws set by the organization, industry, or government. It differs from Quality assurance (QA) and Performance monitoring (PM). The QA process is active during the development phase of the product and before implementation of the system. It is aimed to assure that product is working correctly. The PM process is active when the product is commissioned into production and is aimed to monitor response time. The AP is active after product is commissioned into production but is aimed on verification that the product or system complies with policies, laws, and standards.
Auditing Process (Cont 1)
The AP has the following phases:

In system development life cycle (SDLC), - when the system is planned, analyzed, developed, tested, and implemented, - policies, laws, and industry standards must be incorporated as part of the system requirements and specifications. After the system is in production, the AP starts. The first phase is to understand the objectives of the audit and plan a procedure to execute the AP. In this phase you are identifying what should happen. The second phase is to review, verify, and validate the system according to the objectives set in the previous phase. Divergence from the auditing objectives is documented. In this phase you are observing what is happening. The last phase is to document the results of the audit and recommend changes to the system. In this phase you are identifying the changes that are needed.
Auditing Objectives

Here are the top ten database auditing objectives:

· Data integrity

· Application users and roles – Ensure that user are assigned roles that correspond to their responsibilities and duties

· Data confidentiality – Identify who can read data and what data can be read

· Access control – Ensure that the application records time and duration when a user logs onto the database or application

· Data changes – Create an audit trail of all data changes

· Data structure changes – Ensure that the database logs all data structure changes
· Database or application availability – Record the number of occurrences and duration of application or database shutdowns (unavailability) and all startup times. Also, record all reasons for any unavailability

· Change control – Ensure that a change control mechanism is incorporated to track necessary and planned changes to the database or application

· Physical access – Record the physical access to the application or the database where the software and hardware resides

· Auditing reports – Ensure that reports are generated on demand or automatically, showing all auditable activities

Audit Classification

Internal – is conducted by a staff member of the company being audited

External – is conducted by a party outside the company that is being audited

Automatic – is prompted and performed automatically

Manual – is performed completely by humans

Hybrid – is a combination of automatic and manual audits

Audit Types

Financial, Security, Compliance (checks compliance with standards), Operational (verifies that an operation is working according to the policies of the company), Investigative (performed in response to an event, request, threat, or incident to verify the integrity of the system), Product (to ensure that the product complies with the industry standards), Preventive (to identify problems before they occur).
Benefits and side effects of auditing

Benefits:

· Enforces company policies and government regulations and laws
· Lowers the incidence of security violations

· Identifies security gaps and vulnerabilities

· Provides and audit trail of activities

· Provides another means to observe and evaluate operations of the audited entity

· Provides a sense or state of security and confidence in the audited entity

· Identifies or removes doubts

· Makes the organization being audited more accountable

· Develops controls that can be used for purposes other than auditing

Side effects

Frequent audits can cause the following:

· Performance problems due to preoccupation with the audit instead of the normal work activities

· Generation of many reports and documents that may not be easily or quickly disseminated

· Disruption to the operations of the audited entity

· Consumption of resources, and added costs from downtime
· Friction between operators and auditor

· From a database perspective, could degrade the performance of the system; might also generate a massive number of logs, reports, and data that require a system purge

Auditing Models

[image: image17.png]i gt
ST
s
| s |

ES

IR s oudiing fowchart
ot regiseed ndicstes tht thesudited enity (s bl colurnas
orscion) s ot fund nthe sudiing reposon.
]

For cxample suppose that MAAN i the user performing an UPDATE staement on the
EVPLOYEE table. The auditing proccsschecks whether MAAN i being audited 14
he processcontnues o check whether MAAN i being audite forupdates Aginf
A s bein audied for update, the processchecks whetherthe EMPLOYEE obect
betng audited. 1t s, the sate of the row(s)being modified is tord i anothertble
e scion i secorded with the data being tored What s sored depends on the 30d%
cequizements.

If audited entity is registered in the auditing repository, the following are recorded:

· State of the object before the action was taken along with the time of the action

· Description of the action that was performed

· Name of the user who performed action

Auditing Models (Cont 1)
[image: image18.png]‘The first auditing model is called “simple” because it is easy to understand and develop.
T ol eiters st cntsies i he kit odel repository to hronclogically
rack atvities performee on o by these ctites. An entity can be user, tableor col-
umn, and an actviy can be a DML transaction o logon an off imes. The rository is
used by the auditing process to check i the use, sction, and objctar o be audied:
Figure 7-6 llstraesthis model.

s n
e
_fEREAR).
A
B

ETIRZEY 0t ol o arepostory o imple sdiin model 1

Before you procesd it the ustration ofsmple uditng model 1, you should

laok st Tubles 7-2 and 7-3 for bref descripions ofth tbles an colums presented
in this model

AEEE Descrption of ables presented n simpe sudiing model 1
Table Deseripion
APr_ENTITY Hokd the name of the eniy o b audtd:an ety conbe .

e of er, name ofa able, or name of the column
APP_AUDIT_ACTION Holds ntiie and the actions that are audied

APP_ACTION_TYPE Holds thesctions tobesudited n cton can be UPDATE,

DELETE, INSERT, LOGIN, or LOGOUT
APP_AUDITDATA Holds audit il duta generated by the audi

Auditing Models (Cont 2)
[image: image19.png]Description of columns presented in simpie suditing moce ©
Column Decrption

ACTION_TYPEDESC Name or description o the audied action such as UPDATE|
INSERT, DELETE, LOGIN, o LOGOUT

ACTIONTYPEID Ui dentifaton number of APP_ACTION.TYPE e
genetted sutomatcally b the spplcation

AUDITAGTIONID Ui demificton number of APP_AUDIT_ACTION i
senerated sutomatcally by the pplcation

AUDIT_DATA i dat sl generatd b the udiin procss

AUDIT_DATA_ID Urique identication number of APP_AUDIT_DATA e
genensted atomatcllybythe appicaion

AUDIT_START_DATE Dateand ime when th auit on a spciic iy and

AUDIT_EXPIRE_DATE Dataand time when the udit on a spcic ety and
acionends

ENTITY.ID nique entifction numbr of APP_ENTITY e encrul
automatclly by the aplcation

ENTITY_NAME Name ofthe e, tabie o column 10 b audited

ENTITY_TYPE Type o theentiyto b auditeds a ype can be e, bl o
cohumn

Youare probably wondering sbout contrl columas—what they arcand how hey
arc used. A contrlcolumn s & placeholder for data tht the application inerts ut-
maticaly when a ecord i createdor updated. Tpiclly.a contrl column sores dita
bout the current record,such s date and tme the record s resed and updatd.
There ae sevral naming comventons foecontl columns.Some compancs o ok
istinguishthes clumns wth prefx (CTL).For example,instad of naming th o
i CTL INS, DT, they may use DATE_ CREATED or oher simiar name. This
ook highty recommends uing pref o distnguish these control olurs from the
e dta columns. prefix couldbe CTL forcontrl o AUD fo audit nd s0 o0
Tbe 7-4 st control columns tht you may have s or might s inth fture.

Desciption of control columns

Columa Stands for Descritionofthe Control ot

CTLARCFIAG CONTROLARCHIVEFLAG _ Indictes whether current <or!
can be archivedor ot posie
esare Yesand No

CTLLAUD_END CONTROLAUDIT END. Storesaudit end dte and e
curentrecord

CTLAUD_FLAG CONTROLAUDIT FLAG Indicaes whether current s

sudied or ot possble VS 5%
Yesand No.

Auditing Models (Cont 3)
[image: image20.png]e Stands for_ Description of the Control Column

CTLAUD_START CONTROLAUDITSTART | Storesaudi st doe and i for
current record

CTLLINS_DTTM CONTROLINSERT DATETIME _Stoes the date andtme the ecord

screned

CTLINSUSER CONTROLINSERT USER Stores the username tht created
herecord

CTLPURFIAG CONTROLPURGEFLAG Indicates whethercurent record
can e purgedornot; psible val.

e are Y and No

GTLREC_STAT CONTROLRECORDSTATUS Store hestausofthe cureent
recordrecod starus could be A
for acive, D fordeleted,or Lfor

(CIL_SEC_LEVEL CONTROLSECURITY LEVEL I e todein security ccess
levl for current record

(CTL_UPD_DTTM CONTROL UPDATE DATE TIME Stres the date an tmeof the
mostecent updat o the current
reord

CTL.UPD_USER CONTROLUPDATEUSER Stores the user namethat crested or

pertormed he st update on he
record

Considerthe following 1 llustrte how smple suditing model 1 works, Suppose
your businessrequiemens dicate that il updateson the SALARY tabl and all DML
ions by the user SAM mustbe auditd. T this case you st nsert records 0 the

epositoryas outined i Table 75,

‘Sanple dataforsmple suditing model

bl New Records
vy 0. 5AM,USERC A
1L SALARY TABLE, A
APEACTION.TYPE 1,UPDATE.A
2INSERT A
5.DELETE A

APP_AUDITACTION 1,10,1,10-MAY.2005, 10JUN.2005, 15 APR 2005, NULL, DESEC, A
210,210 MAY 2005, 0 JUN- 205, 5 APR. 2005 NULL, DBSEC, A
3110,310-MAY-2005,10JUN 2005, 15 APR 2005, NULL DBSEC. A
111 10-MAY 2005 10JUN 2005, 15 APR 2005 NULL DBSEC. A

PAGE
13

_1227531279.unknown

