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Abstract

Covert channels have been topic of discussion within both academic
and non-academic communities for more than two decades now. Tradi-
tionally, research on this topic focussed on storage and timing channels
within singular systems. As more systems became interconnected in the
last decade, the scope expanded to network-based covert channels. Nu-
merous designs and implementations of such covert channels have been
suggested, altogether leaving the world with valuable pieces of knowledge
scattered around the Internet. By aggregating the essentials and repre-
senting them in a structured format, we attempt to provide clarity on the
current state of research. In addition, a (non-exhaustive) overview of con-
temporary trends in network-based covert channels is given, explaining
common channels within IP, TCP, ICMP, HTTP and DNS. Lastly, sev-
eral implementations were evaluated to gain insight in their efficiency and
performance, and the influences to which they’re prone. We conclude that
they pose a security issue that needs proper attention when defining and
enforcing security policies, and expect more sophisticated covert channels
to appear in the future.
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1 Preface

As part of our Master of Science study in the field of System and Network Engi-
neering, at the University of Amsterdam, we have done research on the topic of
digital covert channels. The research was performed on behalf of KPMG Infor-
mation Risk Management [1], Amstelveen, under supervision of Eric Nieuwland.

2 Research Goal

The goal of our research was to obtain insight into the possibilities and limita-
tions of setting up covert channels within corporate infrastructures, effectively
subverting policy-enforcing controls such as firewalls and content filters.

Due to language peculiarities, a lack of use of formal methods and the simple
fact that it’s very hard to completely and unambiguously postulate a mind con-
cept, protocol specifications often allow for uses in unanticipated or unintended
ways. They allow for differences in implementation and often include optional
and extendable elements which are not explicitly disallowed to be included in
conversation states in which they have no real use. In those cases, covert chan-
nels may be established whilst adhering to the specification; the resulting traffic
cannot be considered anomalous, hence the difficulty of detecting such channels.

For example, a network administrator may employ a transport-layer packet
filter to prevent the establishment of TCP connections to arbitrary systems in
external domains such as the Internet. However, if this packet filter would allow
outgoing ICMP traffic, adversaries might be able to violate the security pol-
icy by tunneling TCP connections within ICMP traffic. The establishment of
arbitrary connections to the Internet which can’t (easily) be monitored, effec-
tively negates the security services provided by, for example, perimeter-based
anti-virus controls, anti-spyware controls and content-filters.

An example of the application of covert channels is data smuggling. Depend-
ing on the situation, even a one-way channel may suffice to covertly exfiltrate
confidential company documents which should not leave the intranet perimeter.

3 Research Scope

Although the topic “covert channels” may include non-technical subjects such as
social engineering and definition of security policies, our research was focussed
on the implementation of network-based covert channels. Examples of such
channels include hiding data in unused fields of RFC-defined protocols like IP,
TCP, ICMP and HTTP. We acknowledge the existence and value of the mostly
theoretical seven-layer OSI networking model, but will only refer to the four-
layer TCP/IP model for reasons of clarity and simplicity [2].
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4 Related work

Previous work on the topic of covert channels is primarily divided into four
fields [3]: explanation, identification, measurement and mitigation. Research is
focused on both techniques and modeling.

The first time the topic of ‘covert channels’ was used within the context of
computer systems probably was a note from Butler Lampson, published by ACM
in 1973 [4]. The topic reappeared in a major publication of the US Department
of Defense in 1985 [5]. Techniques of concealing of knowledge within regular
TCP/IPv4 traffic have been discussed and demonstrated as early as 1996 [6],
but more recent work is known, also discussing channels within IPSec [7, 8]. The
security community has produced proof-of-concept code for establishing covert
channels over several common protocols, most notably TCP/IPv4 [6, 9, 10],
ICMP [11, 12, 13], HTTP [14, 15, 16, 17] and DNS [18, 19, 20]. In [7] it is
shown that covert channels depending on ‘näıve’ algorithms to encode data
within protocol headers are easily detectable. An algorithm is presented to
detect such channels within TCP/IPv4 headers. Lastly, a more sophisticated,
steganographic approach is presented, yielding TCP sequence numbers and IP
ID numbers indistinguishable from those normally generated by several operat-
ing systems, thus making detection much more difficult.

With regards to modeling covert channels, work has recently been done on
classification [24]. Whereas covert channels have traditionally been categorized
in storage and timing channels [5], a further differentiation into value-based and
transition-based paradigms was suggested.

A related topic of discussion has been the reasoning on legitimate purposes
of covert channels, such as battling censorshop [25].

5 Introduction to Covert Channels

For the purposes of this research, the concept covert channel is defined as fol-
lows [5, 6]:

A covert channel is a communication channel that allows a pro-
cess to transfer information in a manner that violates the system’s
security policy.

Although the above definition includes covert channels within single systems,
such as within Multi-Level Security (MLS) systems [42], this report focuses on
network-based covert channels, as described in section 3. Some of the techniques
that will be discussed in section 7 require the use of raw sockets. Most operat-
ing systems (Windows 2000/2003/XP, UNIX, Linux) require root/administrator
rights to use raw sockets, thus requiring the adversary to compromise a system
before being able to establish such channels. Other techniques, however, only
require privileges which are typically granted to ‘average users’, e.g. outbound
HTTP access (perhaps through some proxy).
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Covert channels may exist within both user or kernel space. Most implemen-
tations comprise user-space processes, but work on kernel-based covert channels
has already been published. Joanna Rutkowska presented an implementation of
a passive TCP-based covert channel in a Loadable Kernel Module for Linux[29]
and suggested a Windows NT kernel-based channel as part of the Stealth Win-
dows Rootkit [30]. The typical scenario for the covert channels discussed in this
paper is shown in figure 1.

Figure 1: A typical covert channel

5.1 Nomenclature

Although previous work is known on the topic of analyzing and modeling covert
channels, there is no well-defined ontology. We have chosen to apply the classi-
fication model presented in [24]. This classification is based on the dimension in
which data is encoded (time, space), but also captures the character encoding
paradigm (value-based, transition-based). In short:

value-based spatial channel This class encodes data within a spatial con-
tainer. Example: covertly communicating the letter ‘A’ by using it’s 32-
bit representation from a Unicode character set as a TCP Initial Sequence
Number.

transition-based spatial channel This class encodes data by representing it
as changes between spatial containers, therefore using at least N+1 spatial
containers to encode N characters. Example: covertly communicating the
letter ‘A’ by crafting one TCP packet with the source port set to ‘1234’,
waiting, and then crafting a second TCP packet with it’s source port set to
‘6464’ (the transition from ‘1234’ to ’6464’ would represent the character
‘A’).

value-based temporal channel This class encodes data by modulating the
occurrence of events (time dimension). Example: using network packet
arrival times to implement a binary channel.
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transition-based temporal channel This class encodes data by modulating
intermediate delays on the occurrence of events, therefore using N + 1
events to encode N characters. Example: using network interpacket ar-
rival times (jitter) to implement a binary channel.

The following additional terms of characterization are used in the remainder of
this report:

behaviour (how is the carrier protocol used for sending data?)

active The covert channel generates it’s own traffic;

passive The covert channel piggybacks on traffic generated by other pro-
cesses (and therefore, as a side note, depends on external events in
order to be of any use).

path (what route lies between the sender and receiver?)

direct The sender communicates directly to the receiver;

indirect The sender communicates to the receiver through intermediate
hops, which either forward or bounce traffic. This is more stealthy
than the former;

spread The sender splits data to multiple (logical) intermediate hops,
after which the data is converged to the receiver. Alternatively, the
sender can send the data to a single host with multiple IP addresses.
This path is the most stealthy of all.

efficiency (how much data can be sent per carrier unit?)

space Depending on the other properties, this is expressed as the number
of bits/bytes per packet (spatial channels) or the number packets per
bit/byte (temporal channels);

time Depending on the other properties, this is expressed as the number
of bits/bytes per second (spatial channels) or the number of seconds
per bit/byte (temporal channels).

Lastly, it may be possible to characterize channels by their synchronization
mechanism (or absence thereof), possibilities of multiplexing covert streams
and the difference between control and data channels [28]. Those terms are not
used in this report, however, because their usage would require a deterministic
effort beyond the scope of our current research.

5.2 Quality attributes

At least two quality attributes of covert channels are acknowledged [25, 26]:
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Plausibility Usage of a covert channel should be invisible to both systems and
humans. For example, it’s usage should not influence the regular workings
of the carrier protocol and should not result in obvious anomalies in either
spatial (packet size, bandwidth usage) or temporal (rate of occurrence)
properties of it’s carrier in the target network. In terms of the previous
section, passive behaviour and indirect or spread path seem to comply most
with this aspect;

Robustness The covert channel should be reliable. For example, an error de-
tection (and correction) facility should be available to cope with latency
and congestion issues, and the reliability should not depend on assump-
tions of sequence, path or time of packet delivery.

It is important to realize that the quality of a covert channel not only depends
on it’s design, but also it’s usage. This will be illustrated for both attributes by
examples based on Craig Rowland’s covert tcp.c [6]. In it’s original form, this
proof of concept code bluntly uses each byte of input as a TCP sequence number
and is therefore attributed neither plausibility (non-random sequence numbers
are evidently anomalous from normal sequence numbers) nor robustness (no
guarantee is given that all bytes will arrive, nor that they will arrive in the right
order).

As for plausibility, as said, the TCP sequence numbers used in packets gen-
erated by covert tcp are evidently anomalous from normal sequence numbers
generated by the Pseudo Random Number Generator1, or PRNG, of any oper-
ating system. However, a steganographic algorithm has already been suggested,
providing sequence numbers which are indistinguishable from those generated
by the operating system [7]. At the time of writing, it is practically impossible
to detect such channels through sequence number analysis — thereby providing
better plausibility for an otherwise easily detectable channel.

As for robustness, the basically unreliable channel provided by covert tcp can
be turned into a (more) reliable channel by implementing integrity checks and
retransmission facilities within the covert data stream2. This is demonstrated
by Joanna Rutkowska in [29].

In summary, combining Rowland’s original ideas [6] (dating back to 1996)
with those presented in [7, 29] (dating from 2004) allows for the creation of a
covert channel which is both robust and hard to detect — and thus meets the
quality requirements of a good covert channel.

1 A Pseudo Random Number Generator may be explained as ‘an algorithm that generates a
sequence of numbers, the elements of which are approximately independent of each other’ [31].

2 One may also ‘improve reliability’ by using an increased delay between packets, such
as the 1 second delay Rowland used in his proof of concept. This cannot be considered
‘reliability’, however: the channel still depends on the assumption that packets will arrive in
the same order they were sent.
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5.3 Logical flows

From an abstract perspective, covert channels may consist of either, or both of
the following logical channels: a control channel and a data channel. Neither
of these terms have an academic definition, but we adhere to the semantics
presented in [27]3:

“We may state that control channels carry the information re-
quired to handle the data flows from one point to another: establish-
ing communication flows and keeping them up while taking care of
bandwidth, latency and stealthiness parameters. (...)”

“The data channels are reliable communication channels that can
be used to transfer information from one side to another. (...)”

In addition, the above definitions also comply with the semantics apparently
used in the specification of Firewall-Friendly FTP [36]. Some exemplary flows
are shown in figure 2, 3 and 4.

Figure 2: Example flows in a single-carrier covert channel

Figure 3: Example flows in a multi-carrier covert channel

3 The authors of the referred source are considered very knowledgeable on this topic and
have published several well-known tools, among which Skeeve, cctt, apf and MsnShell.
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Figure 4: Example flows in a multi-carrier, spliced covert channel

5.4 Synchronization

For both spatial and temporal channels, some form of synchronization is needed
to establish resistance to jitter, congestion and similar issues. As explained
in section 5.1, temporal channels convey data by modulating the (time and
perhaps order of) occurrence of some kind of event. In [10], an example design
is presented in which the arrival pattern of packets is used as a signaling event.
In their design, both sender and receiver agree on a timing interval. Within
that interval, either a packet is received (posing a 1) or not (posing a 0). Due
to jitter and other issues, a situation may occur in which the sender transmits
a packet within interval N , but the packet only arrives at interval N + jitter

interval ,
mistakenly causing an extra 0-bit to be inserted at the receiver. This is shown
in figure 5 (which is a rough copy of an illustration from [10]).

Figure 5: The synchronization problem of temporal channels

A similar problem exists for spatial channels, in which the order of arrival
is critical for correct data transfer. There is no guarantee that packets arrive
in the same order they were sent, thus allowing a situation to occur in which
packets are accidently swapped around. This is shown in figure 6.

The solution to both problems is the use of a synchronization mechanism.
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Figure 6: The synchronization problem of spatial channels

Such mechanisms may be taken from control theory, in which, for example,
the so-called Proportial-Integral-Derivative, or PID controller, is defined. As
suggested in [10], a Phase-Locked Loop, or PLL controller (algorithm), might be
used to establish resistance against jitter. In the context of covert channels, the
PLL would continuously monitor the sending and arrival times and adjust the
sending rate to cope with anomalies. A working implementation has yet to be
given, though; in addition, it may be clear that some of the (probably scarce)
covert channel bandwidth will need to be dedicated for this purpose. Obviously,
this decreases the efficiency of any channel. In absence of any synchronization
mechanism, the channel will need to be subjected to some ‘presumed save’,
fixed delay interval between sending packets. As will be discussed in section 7.1
and 7.2, we have done some empirical evaluation on this, using covert tcp [6]
and Ozyman [20]. The results are available in Appendix B - Measurements.

6 Adversary Goals

In order to qualify the extent to which covert channels are usable to adversaries,
several realistic use cases were compared against the possibilities of different
covert channeling techniques. Each use case represents a different adversary
goal, implicitly imposing certain requirements on the covert channel. To qualify
the feasibility of using a certain channeling technique for a certain goal, per-
formance measurements were made and compared against a set of presupposed
requirements for each scenario. The results should be applicable for most of to-
days corporate infrastructures due to the fact that most of the examined covert
channels depend on protocols which are commonly found in corporate networks
nowadays. It is acknowledged that the actual performance of a covert channel
may vary between infrastructures as a result of latency, bandwidth utilization
and such factors as adversary-defined thresholds to improve stealthiness. Some

Page 10 of 43



Research Report for RP1: Covert Channels

example purposes of covert channels are listed in table 1. VoIP4 and VNC5 were
explicitly included to clarify some typical targets in today’s networks; other ex-
amples might include eavesdropping or controlling Microsoft Terminal Services,
capturing and exfiltrating credentials or other valuable data related to busi-
ness applications, remotely injecting malicious Javascript within webpages sent
through a compromised proxy, et cetera. Although such attacks may obviously
require exploitation of additional attack vectors, adversaries may employ covert
channels to prevent them from being noticed while maintaining illicit activities
afterwards.

Adversary goals
Continuous data Block data

Inbound System control Data infiltration
Outbound VOIP, VNC leaking Data exfiltration

Arbitrary TCP
Arbitrary UDP

Table 1: Example purposes of covert channels

The exact requirements imposed on a covert channel during an attempt to
fulfill a goal depends on situational variables such as the size and volatility
of the data that needs to be transported. Real-time stock information, for
example, is only useful when exfiltrated timely, while historic marketing data
won’t devaluate whilst being exfiltrated over a couple of months. As another
example, to establish and maintain arbitrary TCP connections over a covert
channel, a covert channel needs to be capable of maintaining the TCP connection
and coping with timeouts.

In order to {in,ex}filtrate streaming data, the covert channel needs to be
capable of carrying that data stream and hence must provide a certain band-
width. Leaking a VoIP stream, for example, will require a covert channel to
support a bandwidth between approximately 8Kb/s and 64Kb/s. Leaking VNC
and RDP will require it to support bandwidths between approximately 50Kb/s
and 1Mb/s. One side note: the adversary will evidently be less stealthy when
utilizing more bandwidth. In both examples, the adversary will need to make a
tradeoff between bandwidth usage (speed) and stealthiness, taking the volatility
and size of the data to transfer into account. The following use cases have been
examined in Appendix B - Measurements:

1. Using a covert channel to smuggle confidential data outside;

2. Using a covert channel to establish unauthorized TCP-connections.
4 VoIP is an acronym for Voice over IP, which addresses the use of IP-networks as an

alternative speech-carrier for telephony.
5 VNC is an acronym for Virtual Network Computing and addresses the concept of remote

system control (or visual eavesdropping, depending on how it’s used).
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7 Piggybacking on Common Protocols

In the next subsections, a non-exhaustive summary is given of known techniques
to establish covert channels over several common protocols. It is considered
likely that other ways of concealing data within these and other protocols exist.
For each mechanism discussed, countermeasures are suggested. We give an
estimation of the theoretical efficiency of each mechanism and provide empirical
observations for some of them. Due to technical problems and a limited time-
frame for our research, we have not been able to perform sufficient measurements
on DNS-based channels. Alas, we only provide theoretical estimations on that
carrier.

7.1 IP

7.1.1 Mechanisms

Version 4 of the Internet Protocol, or IPv4, is a network-layer protocol. It
is deployed widely across the globe, providing both private and public (in-
ter)networking connectivity over packet-switching networks. Evidently, IPv4
is an interesting carrier for covert channels. The header of an IPv4 datagram is
depicted in 7, as specified in RFC 791 [32] (some fields of interest are marked):

Figure 7: IPv4 header from RFC 791

Field IP Identification

Concealment The 16-bit Identification field (byte 5-6) is used to uniquely iden-
tify an IP datagram within a flow of datagrams sharing the same source
and destination four-tuple (source IP, source port, destination IP and des-
tination port). The value for this field should be chosen randomly by the
source, but can also contain a non-random value without disrupting the
IP mechanism. That is, an adversary may conceal 16 bits of data in this
field and send it to any other networked system.

Field IP Flags
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Concealment The 3-bits Flags field is optional for each IP datagram. It is used
to handle fragmentation issues. As explained in [22], the ‘Don’t Fragment’
(DF) flag may actually be considered to be a redundant bit and thus may
inherently be set or unset without any influence on the IP delivery process.
Hence it is an interesting carrier target for covert channels, even though
it can only hold one bit per IP packet.

Field IP Options

Concealment The 24-bits Options (byte 11 and MSB of byte 12) are optional
for each IP datagram and “provide for control functions needed or useful
in some situations but unnecessary for the most common communications.
The options include provisions for timestamps, security, and special rout-
ing.” [32]. Some valid values for this field are specified in RFC 1700 [37],
but adversaries may use it to transfer data as well.

Field IP Padding

Concealment The 8-bit Padding field (LSB of byte 12) is used to pad the
Options a to 32-bits block. This field should only contain zeros, but ad-
versaries may use it to transfer data as well.

Some implementations of value-based spatial channels using IPv4 are known [6,
9]. Recently, a design and implementation of an IPv4-based temporal channel
was proposed (in both value-based and transition-based variations) [24]. Fig-
ure 8 shows a unidirectional channeling process over the IP Identification field.
We have performed some empirical evaluations on IP ID-based channels; the re-
sults are available in Appendix B - Measurements. During our tests, we tuned
the interpacket delay until we got a constant ‘reliability’6 of 100%, yielding a
maximum throughput of 974 bytes/s.

Figure 8: Covert channel using the IP Identification field

IPv4 will eventually be replaced by version 6 of the Internet Protocol, or IPv6.
The header of an IPv6 datagram, as specified in RFC 2460 [40], is depicted in
figure 9.

6 ‘Reliability’ is quoted here for reasons explained in section 5.2.
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Figure 9: IPv6 header from RFC 2460

We believe that it might be possible to use the following fields as a carrier for
covert channels:

Reserved Quote from RFC 2460: “8-bit reserved field. Initialized to zero for
transmission; ignored on reception.”. It might be possible to hide 8 bits
of data in this field;

Extension headers Quote from RFC 2460: “With one exception, extension
headers are not examined or processed by any node along a packet’s de-
livery path, until the packet reaches the node (or each of the set of nodes,
in the case of multicast) identified in the Destination Address field of the
IPv6 header. There, normal demultiplexing on the Next Header field of the
IPv6 header invokes the module to process the first extension header, or
the upper-layer header if no extension header is present. The contents and
semantics of each extension header determine whether or not to proceed
to the next header. Therefore, extension headers must be processed strictly
in the order they appear in the packet; a receiver must not, for example,
scan through a packet looking for a particular kind of extension header and
process that header prior to processing all preceding ones.”;

IPv6-addresses With the upcoming IPv6, every person in the world could
theoretically be assigned one billion IP addresses. With such a large ad-
dress space, modulating destination addresses to covertly communicate
data may become a viable approach.

Although only little previous work is known on the possibilities of covert chan-
neling within IPv6, there has been at least one proof of concept, by Thomas
Graf [43]. His implementation uses the Destination options field as a carrier.
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In addition, Kamran Ahsan has done research on using IPSec headers as a
carrier [8].

7.1.2 Countermeasures

To protect against covert channels which depend (either partially or fully) on
crafting IP headers, one could do the following:

• analyze IPv4 IDs to recognize possible patterns (or anomalies, if it’s pos-
sible to establish a trusted baseline);

• sanitize the IPv4 Don’t Fragment bit to either 0 or 1, e.g. through a traffic
normalizer;

• sanitize the IPv4 Padding bits to 0, e.g. through a traffic normalizer;

• define a policy on the use of IPv4 Option flags and enforce that policy
through a IP-aware traffic normalizer;

• create a baseline of IPv4 and IPv6 traffic patterns and monitor for anoma-
lies.

Due to the rather unexplored area of IPv6-based covert channels, no IPv6-
specific measures are suggested at this time.

7.2 TCP

7.2.1 Mechanisms

The Transmission Control Protocol, or TCP, is a transport-layer protocol used
for reliable data transmission. It considered to be an equally evident carrier
target for covert channels as IPv4 and IPv6 (and for the same reasons). The
header of a TCP packet, as specified in RFC 793 [34], is depicted in figure 10.

Field TCP sequence number

Concealment The 32-bit sequence number field (byte 5-8) is used as a identifi-
cation number to provide for packet (re)ordering on arrival at the receiver
and to aid reliability through requests for retransmittal of individual pack-
ets. The first packet of a TCP session (a SYN packet) contains a random
initial sequence number, or ISN. The receiving host typically acknowledges
it’s receival by responding with a SYN/ACK packet, using ISN+1 as an
acknowledgment number. In stead of using a random ISN, however, this
field can also contain a non-random value without disrupting the TCP
mechanism. An adversary may conceal up to 32 bits of data in this field
and send it to any other networked system.

Field TCP acknowledgment number
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Figure 10: TCP header from RFC 793

Concealment The 32-bit acknowledgment number field (byte 9-12) is used to
acknowledge the receival of a TCP packet to it’s source. This field must
always contain the sequence number of the sender, increment by 1. It has
been demonstrated that adversaries may spoof the sender IP of a TCP
packet, making the receiving host acknowledge to an arbitrary host with
the (incremented) input bytes encoded into this field.

Several implementations of value-based spatial channels using TCP are known [6,
9, 23]. Some example scenario’s are shown in figures 11 and 12. We have
performed some empirical evaluations on covert tcp; the results are available
in Appendix B - Measurements. During our tests, we tuned the interpacket de-
lay until we got a constant reliability of 100%, yielding a maximum throughput
of 1948 bytes/s for the scenario presented in figure 11 and 1321 bytes/s for the
scenario presented in figure 12.

Figure 11: Covert channel using TCP sequence numbers
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7.2.2 Countermeasures

To protect against covert channels which depend (either partially or fully) on
crafting TCP headers or packets, one could do the following:

• employ measures to block IP-spoofing;

• employ a traffic analyzer which is able to recognize (patterns in) failing
and uncompleted TCP-handshakes (e.g. through TCP-state machines);

• route all TCP traffic through a proxy device which establishes a TCP-
connection to the endpoint on behalf of the originator, but depending on
it’s own, ‘trusted’ sequence number generator;

• create a baseline of TCP traffic patterns and monitor for anomalies.

7.3 ICMP

7.3.1 Mechanisms

The Internet Control Message Protocol, or ICMP, is a network-layer protocol
used for generating informational, error and test messages related to IP-based
communication. It’s availability is essential for both diagnosing network prob-
lems and regular IP-based networking. ICMP type 3 messages, for example, are
used for reporting ‘destination unreachable’ when an attempt is made to send
UDP packets to a closed port. ICMP is specified in separate RFCs for IPv4
and IPv6: ICMP for IPv4 (ICMPv4) is defined in RFC 792 [33], ICMP for IPv6
(ICMPv6) is defined in RFC 1885 [38]. The header of an ICMPv4 packet, as
specified in RFC 792, is depicted in figure :

Figure 13: ICMPv4 header from RFC 792

Daniel Stødle’s ptunnel [12] and Thomer Gil’s icmptx [13] are based on ICMPv4
type 8 and 0 (resp. echo request, echo reply) messages. Skeeve [11] changes
the IP Protocol field of incoming TCP packets to ‘1’ to make them look like
ICMP packets. Lastly, Graf’s IPv6 channel, which was already referred to in
section 7.1, also uses ICMPv6 for some of it’s functions. We have performed
some empirical evaluations on ptunnel; the results are available in Appendix B -
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Measurements. During our tests, ptunnel showed a constant reliability of 100%
with an average throughput of 65.89 KB/s.

7.3.2 Countermeasures

To protect against covert channels which depend (either partially or fully) on
crafting ICMP headers or packets, one could do the following:

• block outgoing ICMPv4 and ICMPv6 echo request/response traffic to the
Internet, or implement a throttle tool to limit such traffic;

• analyze the payload field of ICMP traffic for known magic numbers, such
as ‘0xD5200880’ which is a default in ptunnel (although savvy adversaries
will obviously change any such magic numbers);

• sanitize the Data bits to 0, e.g. through a traffic normalizer;

• define a policy on the use of both ICMPv4 and ICMPv6 headers and pack-
ets and enforce that policy through a ICMPv4/6-aware traffic normalizer.

7.4 HTTP

7.4.1 Mechanisms

The Hyper-Text Transport Protocol, or HTTP, is an application-layer protocol
used to transfer information over the Internet. Like TCP/IPv4, it’s ubiquitous-
ness makes it an interesting target for covert channeling. HTTP is based on syn-
chronous communication using request-response message pairs. Although it’s
specification in RFC 1945 [39] contains six request types, most real-life HTTP
traffic consists of GET and POST pairs. Figure 14 shows the specification of a
HTTP/1.0 request message.

Figure 14: Specification of a HTTP/1.0 request

Field HTTP request {General,Request,Entity}-Header
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Concealment HTTP request messages may contain multiple headers. Com-
mon examples include “User-Agent:”, “Referer:” and “Cookie:”. Ad-
versaries may use headers to convey arbitrary data as well, for example
“Foobar: secret”.

Field HTTP request Entity-Body

Concealment The Entity-Body normally is only present in POST requests, as
it has no use for other types of requests. However, RFC 1945 doesn’t ex-
plicitly exclude this field from being present in other requests; adversaries
may thus convey data through an Entity-Body in any request type (POST,
GET(!), ...).

Figure 15 shows the specification of a HTTP/1.0 response message.

Figure 15: Specification of a HTTP/1.0 response

Field HTTP response {General,Response,Entity}-Header

Concealment HTTP response messages may contain multiple headers. Com-
mon examples include “Server:”, “Content-Type:” and “Expires:”.
Adversaries may use the response headers in the same way as request head-
ers; combining this field with one of the aforementioned fields in HTTP
request messages allows creation of a synchronous channel.

Field HTTP response Entity-Body

Concealment Except in response to HEAD-requests, the Entity-Body is al-
ways present in HTTP responses. Again, combining this field with one of
the aforementioned fields in HTTP request messages allows creation of a
synchronous channel.

Several implementations of HTTP-based covert channels are known [14, 15,
17]. We have performed some empirical evaluations on Firepass; the results are
available in Appendix B - Measurements. During our tests, Firepass showed a
reliability varying between 96% and 99,2% with an average throughput of 253.32
KB/s.
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7.4.2 Countermeasures

Implementations of HTTP-based tunnels have a natural tendency to generate
traffic which is rather anomalous from ‘human traffic’. In [21] an analysis is
presented of such anomalies, and a number of detection filters are suggested
based on metrics such as request regularity, bandwidth usage, interrequest delay
time and transaction size. To protect against covert channels which depend
(either partially or fully) on crafting HTTP headers or packets, one could do
the following:

• define a policy on the use of HTTP headers (if possible) and enforce that
policy through a HTTP-aware proxy;

• throttle outbound and inbound HTTP traffic using the metrics suggested
in [21];

• when using a HTTP(S) proxy, disallow CONNECTs to ports other than
443 (and be aware that adversaries may just as well have a SSH-daemon
listen on that port);

• create a baseline of HTTP traffic patterns and monitor for anomalies (or at
least employ URL white- or blacklisting as either a preventive or reactive
measure).

7.5 DNS

7.5.1 Mechanisms

The Domain Name System, or DNS, is a transport-layer protocol used for storing
and querying information of domain names in a distributed database. DNS is
well-known, widely deployed and provides for the (reverse) translation of domain
names to IP addresses and delivery of mail to mailboxes with the use of exchange
records.

Like HTTP, DNS is based on synchronous communication using request-
response pairs. As described in RFC 1035, communication through the domain
protocol takes place with the use of messages [35]. Both request and response
messages contain the ‘message header’ described in RFC 1035, which is shown
in figure 16.

Field ID

Concealment The 16-bit IDentification field is meant to keep track of different
queries made. An adversary could come up with an algorithm that uses
a smaller space for identifying individual queries, so that the remaining
space may be uses to hide up to 16 bits of data.

Field QDCOUNT
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Figure 16: DNS message header from RFC 1035

Concealment The 16-bit QDCOUNT field is meant to specify the amount of
entries in the questions section that appears after this header. An adver-
sary with control over a rogue DNS server can use this field to hide up to
16 bits of data.

Field ANCOUNT

Concealment The 16-bit ANCOUNT field is meant to specify the amount of
resource records in the answer section that appears after this header. An
adversary with control over a rogue DNS server can use this field to hide
up to 16 bits of data.

Field NSCOUNT

Concealment The 16-bit NSCOUNT field is meant to specify the amount of
name server resource records entries in the answer section that appears
after this header. An adversary with control over a rogue DNS server can
use this field to hide up to 16 bits of data.

Field ARCOUNT

Concealment The 16-bit ARCOUNT field is meant to specify the amount of
entries in the questions section that appears after this header. An adver-
sary with control over a rogue DNS server can use this field to hide up to
16 bits of data.

On a side-note; an adversary must add the proper amount of queries and
answers in the messages after this header as marked in the QDCOUNT, AN-
COUNT, NSCOUNT and ARCOUNT fields. By using some sort of algorithm,
the adversary can use these fields as a carrier for channels, instead of only using
it to point out how many queries or answers will be after this header, as long
as the number of queries and answers matches these fields. When a DNS query
is made, the message header is followed by the headers shown in figure 17.
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Figure 17: DNS query header from RFC 1035

Field QNAME

Concealment This field represents the string of text entered as the actual
query and should be in the form of the Full Qualified Domain Name, or
FQDN. The QNAME field is limited to the maximum length of a FQDN,
thus an adversary can use up to 255 bytes as long as it complies to the
limit of 63 octets per label in the FQDN. Depending on the various im-
plementations of the DNS protocol, an adversary can ignore these limits
and use larger packets.

Every answer to a query consists of the message and query headers, appended
with the answer headers as shown in figure 18. This message is the same for the
answer, authority and additional sections.

Figure 18: DNS answer header from RFC 1035

Field NAME

Concealment This field represents the a FQDN to which the resource record
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pertains. As with the QNAME field in the query message, the NAME field
also has to comply to the rules of a FQDN.

The DNS protocol has multiple potential carriers for covert channels. Tools
that make use of some of these carriers have been around for some time now;
one of the more popular tools, designed by Dan Kaminsky, is Ozyman. In
it’s current implementation, data is hidden within QNAME and NAME fields,
by mimicking queries of CNAME and TXT records [20]. We have performed
some empirical evaluations on Ozyman; the results are available in Appendix
B - Measurements. During our tests, Ozyman showed a somewhat varying
reliability, with the interpacket delay being a strong factor of influence (similar
to covert tcp). For the 100KB data set, we got a constant reliability of 100%
when using a delay of 0.5s, meaning a throughput of ∼108 bytes/s.

7.5.2 Countermeasures

There are a couple of ways to identify the use of a covert channel within the
DNS protocol. The most obvious way is to compare the use of DNS from a
specific host with the average use of DNS in the network. The result of this
comparison will be even more easy to spot than with HTTP or IP because of
the lesser use of DNS in a ‘normal’ network setup. Additional questions that
may be answered when attempting to identify a DNS-based covert channel are
these:

• Is the queried DNS server off-site?

• Is the queried DNS server only used by one or two host in the network?

• Does the length of queries and responses outreach the average length?

• Are the queries and responses real words?

• Do the queries and responses contain mixed cases?

• Is there excessive use of a particular record that normally isn’t used (e.g.
TXT)?

Although a small number of positive answers to the above questions shouldn’t
make a host suspect as a rule, it should be clear that with the number of ques-
tions answered with ‘yes’, also the likeness of identifying a covert channel in-
creases. If the next two questions are answered with ‘no’, it may be considered
highly likely that one is dealing with a covert channel:

• Do replayed lookups through that DNS server provide the same result?

• Do replayed lookups through another DNS server provide the same result?

To protect against covert channels which depend (either partially or fully)
on crafting DNS headers or packets, one could do the following:
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• block outbound queries to rogue DNS servers (i.e. use a hardened forward-
ing/caching server located on the intranet, or disallow querying non-local
domains at all);

• create a baseline of DNS traffic patterns and monitor for anomalies (this
technique is also used for detection for worms [41]).

8 Future work

Research on the topic of covert channels seems to have reached a level of ma-
turity in which it is ready for, or rather, needs, a well-defined ontology. As this
report progressed, we ran into an increasing number of different dimensions,
or characteristics, of covert channels. This resulted in a change of perspective
several times. Furthermore, it would be interesting to see proof of concepts
for IPv6-based covert channels, e.g. building upon the work done by Graf [43]
and Ahsan [8]. Lastly, it would be interesting to merge the ideas (separately)
presented in [6, 7, 29]; the result might be a reliable and highly undetectable
TCP-ISN based covert channel.

9 Conclusion

The area of covert channels has been topic of research for more than two decades
now [3], and it is highly likely that new techniques and tools will be published
by both the academic and non-academic communities. Given the current state
of research, we state the following.

As long as any form of inbound or outbound Internet7 access is allowed,
there is a good chance that adversaries may be able to establish covert channels.
Whether or not they will be able to fulfill their goals depends on two things:
the requirements a goal imposes on the covert channel, and finding a match
between those requirements, the traffic profile of the target network and the
covert channeling technique(s) known to them.

Traffic normalizers and protocol-aware inspection can be useful to cripple
some common types of covert channels, but might be difficult to employ cor-
rectly for two reasons: the performance hit typically associated with multi-layer
inspection and the increasing ‘deperimeterization’ of contemporary infrastruc-
tures (think WiFi, Bluetooth). Establishing traffic baselines in preparation for
anomaly detection may prove difficult due to the dynamic environment of a
modern-day office (e.g. employees working at home, consultants dropping in
for short projects). Generally speaking, each of the aforementioned measures
provides a reasonable additional layer of security. Worst case scenario, however,

7 ‘Internet’ may be freely substituted with ‘extranet’, ‘remote networks’, et cetera. In more
general terms, one might even state that there is a chance of covert channels between any set
of interconnected domains.
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an adversary would employ a passive (ref. section 5.1, ‘behaviour’) covert chan-
neling technique which adheres to the protocol specification and doesn’t leave
a detectable fingerprint in either the network or the systems it traverses.

10 Copyrights and ownership

All documents which were created during our research are licensed under the
Creative Commons 2.5 Attribute license [44]. All source and object code which
was produced is licensed under the revised BSD license [45], which can be found
in Appendix D - The BSD license for this project.
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Appendix B - Measurements

We have performed several tests to gain insight into the performance of several
different covert channeling techniques under ideal circumstances. By evaluat-
ing them under ideal circumstances, i.e. very low latency and no congestion,
we purposely excluded most bottlenecks not directly related to the channeling
mechanism. We aimed to learn something about the efficiency and maximum
capacity of the different techniques.

Two systems were used throughout all tests, both running Slackware 10.1
with dualboot 2.4.29 and 2.6.10 stock kernels. In addition, a MacOS X 10.4.4
iBook and similar Powerbook were used for sniffing traffic and acting as bounce
hosts. All systems were connected using a NetGear DS108, 100Mbit hub, though
for each test we disconnected unused systems. We performed the following
activities:

1. A baseline measurement;

2. Scenario 1: Data exfiltration with covert tcp;

3. Scenario 2: Tunneling TCP over HTTP with Firepass;

4. Scenario 3: Tunneling TCP over ICMP with ptunnel;

5. Scenario 4: Tunneling STDIN/STDOUT over DNS with Ozyman.

We chose to use 8-bit ASCII encoded data for all tests. During early tests, we
observed some peculiarities when using ‘binary’ data. Most of these peculiarities
traced back to issues in source code. Since one can easily convert binary data to a
‘simpler’ encoding, e.g. Base64, we believed that demonstrating the channeling
concept using 8-bit ASCII data would implicitly demonstrate it for binary data
as well. We generated test data using Perl:

# 1KB

perl -e ’print "ABCDEFGHIJKLMNO\n"x64’

# 10KB

perl -e ’print "ABCDEFGHIJKLMNO\n"x640’

[...]

# 100MB

perl -e ’print "ABCDEFGHIJKLMNO\n"x6400000’

Baseline measurement

We used iperf to measure the maximum throughput of our network setup.
Despite the trivial setup, we wanted to be sure about the exact throughput.
The following command was executed on one system:

iperf -s
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And this on the other:

iperf -c 172.16.16.11

This yielded the following results:

------------------------------------------------------------

Server listening on TCP port 5001

TCP window size: 64.0 KByte (default)

------------------------------------------------------------

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.12 port 32980

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.0 sec 82.8 MBytes 69.4 Mbits/sec

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.12 port 32981

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.0 sec 81.9 MBytes 68.6 Mbits/sec

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.12 port 32982

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.0 sec 82.5 MBytes 69.2 Mbits/sec

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.12 port 32983

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.0 sec 82.8 MBytes 69.4 Mbits/sec

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.12 port 32985

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.0 sec 82.5 MBytes 69.2 Mbits/sec

From this, we concluded the maximum throughput was 69 Mbit/s. We con-
cluded that any scenario in which this throughput would be approximated would
have to be tested on a faster network. None of the channels we tested came any-
where near it, though.

Scenario 1: Data exfiltration with covert tcp

Craig Rowland has published a proof of concept program demonstrating the use
of TCP sequence/acknowledgment numbers and the IP IDentification field for
covert transport of data. None of the demonstrated mechanisms are inherently
reliable, since they all depend on packets arriving in the same order they were
sent. The proof of concept sends 1 byte per packet and uses a fixed 1 second
delay between packets. We modified Rowland’s code to call nanosleep() and
accept a parameter-specified delay, in stead of calling sleep() with the afore-
mentioned fixed delay. This allowed us to experiment with more fine grained
delays. The modifications are available in Appendix C - Patch for covert tcp.c.
After sending a file, we compared checksums to verify integrity of the received
data.

Sending 1KB of ASCII-data in the IP ID field:

--------------------------------------------------------------------------

Delay Total time Checksum Comment

--------------------------------------------------------------------------

Page 32 of 43



Research Report for RP1: Covert Channels

1s 1024.1s OK (1/1) All tests OK.

0.5s 512.1s OK (1/1) All tests OK.

0.1s 104.5s OK (3/3) All tests OK.

0.05s 53.3s OK (3/3) All tests OK.

0.01s 12.3s OK (3/3) All tests OK.

0.005s 7.2s OK (3/3) All tests OK.

0.001s 3.1s OK (3/3) All tests OK.

0.0005s 2.1s OK (3/3) All tests OK.

0.0001s 2.1s OK (3/3) All tests OK. <-- MAXIMUM SPEED!!!

none 1.1s NOK (3/3) All failed; 15-20% packet loss.

--------------------------------------------------------------------------

Conclusion

The maximum rate is 1024/2.1s = 487 packets/s. Since the IP ID field size is
2 bytes, the maximum throughput of this channel is 974 bytes/s (under ideal
circumstances).

Sending 1KB of ASCII-data in the TCP sequence number field:

--------------------------------------------------------------------------

Delay Total time Checksum Comment

--------------------------------------------------------------------------

1s 1024.1s OK (1/1) All tests OK.

0.5s 512.1s OK (1/1) All tests OK.

0.1s 104.5s OK (3/3) All tests OK.

0.05s 53.3s OK (3/3) All tests OK.

0.01s 12.2s OK (3/3) All tests OK.

0.005s 7.2s OK (3/3) All tests OK.

0.001s 3.1s OK (3/3) All tests OK.

0.0005s 2.1s OK (3/3) All tests OK.

0.0001s 2.1s OK (3/3) All tests OK. <-- MAXIMUM SPEED!!!

none 1.1s NOK (3/3) All failed; 15-20% packet loss.

--------------------------------------------------------------------------

Conclusion: the maximum rate is 1024/2.1s = 487 packets/s. Since the TCP
sequence number field size is 4 bytes, the maximum throughput of this channel
is 1948 bytes/s (under ideal circumstances).

Sending 1KB of ASCII-data in the TCP acknowledgment field through a bounce host:

--------------------------------------------------------------------------

Delay Total time Checksum Comment

--------------------------------------------------------------------------

1s 1024.1s OK (1/1) All tests OK.

0.5s 512.1s OK (1/1) All tests OK.

0.1s 104.4s OK (3/3) All tests OK.

0.05s 53.3s OK (3/3) All tests OK.

0.01s 12.3s OK (3/3) All tests OK.
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0.005s 7.2s OK (3/3) All tests OK.

0.0025s 4.1s OK (3/3) Extra tests, all OK.

0.0015s 3.1s OK (3/3) All tests OK. <-- MAXIMUM SPEED!!!

0.00125s 3.1s NOK (3/3) All tests FAILED (missing 2-5 bytes).

0.001s 3.1s NOK (3/3) All tests FAILED (missing 2-5 bytes).

0.0005s 2.1s NOK (3/3) All tests FAILED.

0.0001s 2.1s NOK (3/3) All tests FAILED.

none 1.1s NOK (3/3) All tests FAILED.

--------------------------------------------------------------------------

Conclusion

The maximum rate is 1024/3.1s = 330 packets/s. Since the TCP acknowledg-
ment field size is 4 bytes, the maximum throughput of this channel is 1321
bytes/s (under ideal circumstances).

Scenario 2: Tunneling TCP over HTTP with Firepass

Alex Dyatlov, member of the Gray-World.net team, has published Firepass, a
covert channeling tool for using HTTP POST request/response pairs for con-
veying TCP-connections. It consists of two parts: a CGI-script which needs to
be placed on some rogue webserver from which outbound TCP is allowed, and
secondly a script that needs to be run on the system from which the adversary
wants to set up TCP connections.

We downloaded the Firepass tarball from [15] on the two Linux systems. On
one of the systems we extracted the fpserver directory to /var/www/, verified
permissions and ownership issues and added this line to httpd.conf:

ScriptAlias /fpserver/ /var/www/fpserver/

The default conf/{fpserver,fpclient}.{conf,allow} files sufficed; we didn’t
need to change them. On the client, we added one line to conf/fpclient.rules
(for iperf):

5002 tcp 172.16.16.11 tcp 5001

The above line boils down to this: when fpclient is started, it will listen for in-
coming connections on 127.0.0.1:5002/tcp. Incoming connections will establish
a tunnel through the parameter-specified webserver to 172.16.16.11:5001/tcp,
the third system in our setup. On the latter system, we started iperf in server
mode:

iperf -s

Second, we started fpclient:

perl ./fpclient.pl conf/fpclient.conf http://172.16.16.13/fpserver/fpserver.cgi

Thirdly, we started iperf in client mode to measure the maximum throughput:
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iperf -p 5002 -c 127.0.0.1

This yielded the following results:

------------------------------------------------------------

Server listening on TCP port 5001

TCP window size: 64.0 KByte (default)

------------------------------------------------------------

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.13 port 32818

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.1 sec 2.68 MBytes 2.23 Mbits/sec

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.13 port 32819

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.1 sec 2.68 MBytes 2.23 Mbits/sec

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.13 port 32820

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.1 sec 2.68 MBytes 2.23 Mbits/sec

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.13 port 32821

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.1 sec 2.68 MBytes 2.23 Mbits/sec

[ 4] local 172.16.16.11 port 5001 connected with 172.16.16.13 port 32822

[ ID] Interval Transfer Bandwidth

[ 4] 0.0-10.1 sec 2.68 MBytes 2.23 Mbits/sec

Remark: iperf uses a TCP Windows Size of 64KB by default. While ex-
perimenting with larger window sizes, we noticed a noteworthy performance
improvement: 64KB yielded ∼2Mb/s, while 128KB yielded ∼3Mb/s. The max-
imum throughput for our further testing was assumed to be ∼2.23 Mbit/s, thus
∼278.75 KB/s. We proceeded to evaluate the reliability of the channel using
our 1MB and 10MB data sets, transferring them using netcat. This yielded the
following results:

-----------------------------------------------------------------------------------------

Data size Run Time Packet# Throughput Checksum/Comment

-----------------------------------------------------------------------------------------

1MB #1 4.04s 810 253.46 KB/s NOK - 983040 of 1024000 bytes (-40960)

#2 4.28s 692 239.25 KB/s NOK - 983040 of 1024000 bytes (-40960)

#3 4.27s 660 239.81 KB/s NOK - 983040 of 1024000 bytes (-40960)

10MB #1 38.89s 6793 263.31 KB/s NOK - 10158080 of 10240000 bytes (-81920)

#2 39.26s 7454 260.83 KB/s NOK - 10158080 of 10240000 bytes (-81920)

#3 38.90s 6994 263.24 KB/s NOK - 10158080 of 10240000 bytes (-81920)

-----------------------------------------------------------------------------------------

Conclusion

We were surprised to see that none of the test runs resulted in a complete file
transfer, and moreover, that the number of missing bytes consistently was a
power of two. We have not been able to figure out what caused this (none of
the systems showed symptoms of high load, Apache was started with plenty of
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StartServers to process simultaneous incoming requests and we didn’t recognize
flaws in our m.o.). The 1MB test runs showed a constant reliability of 96%, the
10MB test runs an equally constant reliability of 99.2%. The overall throughput
averaged 253.32 KB/s.

Scenario 3: Tunneling TCP over ICMP with ptunnel

In 2005, Daniel Stødle published ptunnel, alias PingTunnel. It basically dis-
guises TCP traffic as ICMP traffic, thereby attempting to subvert packet filters
which only have rulesets for TCP and UDP. Again, we performed a performance
test using iperf:

root@172.16.16.11# ./iperf -s

root@172.16.16.13# ./ptunnel

root@172.16.16.12# ./ptunnel -p 172.16.16.13 -lp 5002 -da 172.16.16.11 -dp 5001

root@172.16.16.12# ./iperf -c 127.0.0.1 -p 5002

This yielded the following results:

------------------------------------------------------------

Server listening on TCP port 5001

TCP window size: 85.3 KByte (default)

------------------------------------------------------------

[ 6] local 172.16.16.12 port 5001 connected with 172.16.16.13 port 32979

[ ID] Interval Transfer Bandwidth

[ 6] 0.0-12.1 sec 784 KBytes 530 Kbits/sec

[ 6] local 172.16.16.12 port 5001 connected with 172.16.16.13 port 32980

[ ID] Interval Transfer Bandwidth

[ 6] 0.0-12.1 sec 784 KBytes 530 Kbits/sec

[ 6] local 172.16.16.12 port 5001 connected with 172.16.16.13 port 32981

[ ID] Interval Transfer Bandwidth

[ 6] 0.0-12.1 sec 784 KBytes 530 Kbits/sec

[ 6] local 172.16.16.12 port 5001 connected with 172.16.16.13 port 32982

[ ID] Interval Transfer Bandwidth

[ 6] 0.0-12.1 sec 784 KBytes 530 Kbits/sec

[ 6] local 172.16.16.12 port 5001 connected with 172.16.16.13 port 32983

[ ID] Interval Transfer Bandwidth

[ 6] 0.0-12.1 sec 784 KBytes 531 Kbits/sec

From the above we conclude that the maximum throughput of our tunnel was
∼530 Kb/s, thus ∼66 KB/s. We proceeded to evaluate the reliability of the
channel using our 1MB and 10MB data sets, transferring them using netcat.
This yielded the following results:

----------------------------------------------------------------------

Data size Run Time # Packets Throughput Checksum/Comment

----------------------------------------------------------------------

1MB #1 15.17s 957 67.50 KB/s OK

#2 15.19s 971 67.41 KB/s OK

Page 36 of 43



Research Report for RP1: Covert Channels

#3 15.16s 961 67.55 KB/s OK

10MB #1 159.90s 9586 64.04 KB/s OK

#2 158.55s 9522 64.59 KB/s OK

#3 159.41s 9405 64.24 KB/s OK

----------------------------------------------------------------------

Conclusion

It appears ptunnel experienced a higher throughput in the 1MB test runs
(∼67KB/s) than we expected from our baseline measurement with iperf (∼66KB/s),
but we don’t believe this to have any significance. During our tests, ptunnel
showed a constant reliability of 100%, which may be attributed to it’s built-in
acknowledgement, ordering and retransmission facilities. The overall through-
put averaged 65.89 KB/s.

Scenario 4: Tunneling STDIN/STDOUT over DNS with
Ozyman

In 2004, Dan Kaminsky published Ozyman, a covert channeling tool using DNS
TXT records as a carrier, through which it is possible to relay STDIN/STDOUT
from/to any system which is able to communicate with rogue DNS servers.
Although it’s source code states Ozyman to provide “Reliable DNS Transport
for standard input/output”, we observed ‘reliable’ to be somewhat relative.

We downloaded Ozyman from [20] to both Linux systems, called client and
server1, and had netcat listening on the MacOS 10.4 iBook. Since Ozyman
actually relays STDIN/STDOUT over DNS, rather than e.g. TCP, we could
not use iperf for a preliminary performance test. Instead, we started of with
tunneling SSH over DNS (we did not change any of the files, and had added
172.16.16.13 as the primary nameserver in /etc/resolv.conf on both systems):

root@server1# ./nomde.pl -i 172.16.16.13 nstx.koot.biz

root@client# ssh -C -o ProxyCommand=’perl ./droute.pl sshdns.nstx.koot.biz’ mrkoot

This worked; Ozyman provided us with a working STDIN/STDOUT-over-DNS
flow to/from a TCP connection set up by nomde.pl to 172.16.16.13 (note: indeed,
the actual SSH session was a local TCP connection from server1 to server1).
We proceeded with our somewhat more ‘raw’ tests in which we attempted to
evaluate the actual reliability of the Ozyman mechanism itself.

root@server1# perl -pi -e "s/sshdns:127.0.0.1:22/netcat:172.16.16.11:1234/" nomde.pl

root@server2# nc -l -p 1234 > output.txt

root@server1# ./nomde.pl -i 172.16.16.13 nstx.koot.biz

root@client# cat input.txt | perl ./droute.pl netcat.nstx.koot.biz

This yielded the following results:

-----------------------------------------------------------------------------

Delay Data size Run Time #Packets Throughput Checksum/Comment
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-----------------------------------------------------------------------------

0.01s 1KB #1 0.81s 11 1264 B/s OK

#2 0.85s 11 1205 B/s OK

#3 0.90s 13 1138 B/s OK

10KB #1 5.82s 65 1759 B/s OK

#2 5.86s 61 1747 B/s OK

#3 5.69s 63 1800 B/s OK

100KB #1 56.11s 569 1822 B/s NOK (101850 of 102400)

#2 56.20s 565 1822 B/s NOK (101630 of 102400)

#3 56.15s 565 1824 B/s NOK (101410 of 102400)

-----------------------------------------------------------------------------

Average throughput: 1598 B/s

0.05s 1KB #1 1.41s 17 726 B/s OK

#2 1.39s 17 736 B/s OK

#3 1.42s 17 721 B/s OK

10KB #1 11.48s 117 892 B/s OK

#2 11.52s 119 889 B/s OK

#3 11.55s 119 887 B/s OK

100KB #1 112.10s 1128 913 B/s NOK (101850 of 102400)

#2 110.10s 1123 930 B/s NOK (101850 of 102400)

#3 112.13s 1129 913 B/s NOK (101740 of 102400)

-----------------------------------------------------------------------------

Average throughput: 845 B/s

0.1s 100KB #1 204.97s 1865 500 B/s NOK (102180 of 102400)

#2 204.90s 1865 500 B/s NOK (102180 of 102400)

#3 205.00s 1865 500 B/s NOK (102180 of 102400)

-----------------------------------------------------------------------------

Average throughput: 500 B/s

0.4s 100KB #1 763.60s 1869 134 B/s OK

#2 763.62s 1867 134 B/s NOK (102290 of 102400)

#3 764.06s 1867 134 B/s OK (!)

-----------------------------------------------------------------------------

Average throughput: 134 B/s

0.5s 100KB #1 950.41s 1869 108 B/s OK

#2 949.75s 1869 108 B/s OK

#3 949.95s 1869 108 B/s OK

-----------------------------------------------------------------------------

Average throughput: 108 B/s

-----------------------------------------------------------------------------

Conclusion

We are not sure what knowledge may be extracted from the above; Ozyman is
built to provide reliability over UDP, but it appears that any such reliability
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is subject to other influences - even within the presumed-ideal circumstances
of our testing bed. For exfiltrating a 100KB file, an interpacket delay of 0.5s,
thus a throughput of 108 B/s, appears to be a save choice. The fact that SSH
seemed to work reliable during our first test might be attributed to the reliability
facilities provided by SSH itself, rather than the mechanism of Ozyman (or at
least, it’s current implementation).

Appendix C - Patch for covert tcp.c

--- covert_tcp.c 2006-02-02 12:57:24.000000000 +0100
+++ covert_tcpX.c 2006-02-02 13:06:49.000000000 +0100
@@ -1,4 +1,4 @@
-/* Covert_TCP 1.0 - Covert channel file transfer for Linux
+/* Covert_TCP 1.0.1 - Covert channel file transfer for Linux
* Written by Craig H. Rowland (crowland@psionic.com)
* Copyright 1996 Craig H. Rowland (11-15-96)
* NOT FOR COMMERCIAL USE WITHOUT PERMISSION.

@@ -25,6 +25,25 @@
* Small portions from various packet utilities by unknown authors
*/

+/*
+* WARNING
+*
+* This code is slightly modified from the original covert_tcp.c:
+*
+* - this version does NOT print sent/received data to the screen
+* for performance reasons;
+*
+* - this version expects -sec and -nsec parameters, since sleep(1)
+* has been replaced by nanosleep(your_struct). This change was
+* made to be able to measure reliability with various intervals;
+*
+* - IP ID can no longer be zero (which was the case for 0x00
+* input bytes in the original code).
+*
+* - VERSION was updated :-)
+*
+* Matthijs Koot and Marc Smeets (contact us at http://www.os3.nl/)
+*/
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

@@ -37,11 +56,11 @@
#include <linux/ip.h>
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#include <linux/tcp.h>

-#define VERSION "1.0"
+#define VERSION "1.0.1"

/* Prototypes */
void forgepacket(unsigned int, unsigned int, unsigned short, unsigned

- short,char *,int,int,int,int);
+ short,char *,int,int,int,int,int,long int);
unsigned short in_cksum(unsigned short *, int);
unsigned int host_convert(char *);
void usage(char *);

@@ -53,6 +72,8 @@
int ipid=0,seq=0,ack=0,server=0,file=0;
int count;
char desthost[80],srchost[80],filename[80];

+ int sec=1;
+ long int nsec=0;

/* Title */
printf("Covert TCP %s (c)1996 Craig H. Rowland (crowland@psionic.com)\n",VERSION);

@@ -66,7 +87,7 @@
}

/* Tell them how to use this thing */
- if((argc < 6) || (argc > 13))
+ if((argc < 6) || (argc > 20))

{
usage(argv[0]);
exit(0);

@@ -102,6 +123,10 @@
ack=1;

else if (strcmp(argv[count],"-server") == 0)
server=1;

+ else if (strcmp(argv[count],"-sec") == 0)
+ sec=atoi(argv[count+1]);
+ else if (strcmp(argv[count],"-nsec") == 0)
+ nsec=atol(argv[count+1]);

}

/* check the encoding flags */
@@ -176,14 +201,15 @@

/* Do the dirty work */
forgepacket(source_host, dest_host, source_port, dest_port

- ,filename,server,ipid,seq,ack);
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+ ,filename,server,ipid,seq,ack,sec,nsec);
exit(0);
}

void forgepacket(unsigned int source_addr, unsigned int dest_addr, unsigned
short source_port, unsigned short dest_port, char *filename, int server, int ipid

-, int seq, int ack)
+, int seq, int ack, int sec, long int nsec)
{

+ struct timespec ts; /* used by nanosleep() */
struct send_tcp
{

struct iphdr ip;
@@ -236,7 +262,10 @@
/* semi-reliable transport of messages over the Internet and will not flood */
/* slow network connections */
/* A better should probably be developed */

-sleep(1);
+/* sleep(1); */
+ts.tv_sec = sec;
+ts.tv_nsec = nsec;
+nanosleep(&ts, NULL);

/* NOTE: I am not using the proper byte order functions to initialize */
/* some of these values (htons(), htonl(), etc.) and this will certainly */

@@ -256,7 +285,8 @@
if (ipid == 0)

send_tcp.ip.id =(int)(255.0*rand()/(RAND_MAX+1.0));
else /* otherwise we "encode" it with our cheesy algorithm */

- send_tcp.ip.id =ch;
+ /* send_tcp.ip.id =ch; */
+ send_tcp.ip.id =ch+1;

send_tcp.ip.frag_off = 0;
send_tcp.ip.ttl = 64;

@@ -326,7 +356,7 @@
send_tcp.tcp.check = in_cksum((unsigned short *)&pseudo_header, 32);
/* Away we go.... */
sendto(send_socket, &send_tcp, 40, 0, (struct sockaddr *)&sin, sizeof(sin));

- printf("Sending Data: %c\n",ch);
+ /* printf("Sending Data: %c\n",ch); */

close(send_socket);
} /* end while(fgetc()) loop */

@@ -370,14 +400,14 @@
/* The ID number is converted from it’s ASCII equivalent back to normal */
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if(ipid==1)
{

- printf("Receiving Data: %c\n",recv_pkt.ip.id);
- fprintf(output,"%c",recv_pkt.ip.id);
+ /* printf("Receiving Data: %c\n",recv_pkt.ip.id - 1); */
+ fprintf(output,"%c",recv_pkt.ip.id - 1);

fflush(output);
}
/* IP Sequence number "decoding" */
else if (seq==1)
{

- printf("Receiving Data: %c\n",recv_pkt.tcp.seq);
+ /* printf("Receiving Data: %c\n",recv_pkt.tcp.seq); */

fprintf(output,"%c",recv_pkt.tcp.seq);
fflush(output);
}

@@ -421,21 +451,21 @@
/* The ID number is converted from it’s ASCII equivalent back to normal */
if(ipid==1)
{

- printf("Receiving Data: %c\n",recv_pkt.ip.id);
- fprintf(output,"%c",recv_pkt.ip.id);
+ /* printf("Receiving Data: %c\n",recv_pkt.ip.id - 1); */
+ fprintf(output,"%c",recv_pkt.ip.id - 1);

fflush(output);
}
/* IP Sequence number "decoding" */
else if (seq==1)
{

- printf("Receiving Data: %c\n",recv_pkt.tcp.seq);
+ /* printf("Receiving Data: %c\n",recv_pkt.tcp.seq); */

fprintf(output,"%c",recv_pkt.tcp.seq);
fflush(output);
}
/* Do the bounce decode again... */
else if (ack==1)
{

- printf("Receiving Data: %c\n",recv_pkt.tcp.ack_seq);
+ /* printf("Receiving Data: %c\n",recv_pkt.tcp.ack_seq); */

fprintf(output,"%c",recv_pkt.tcp.ack_seq);
fflush(output);
}
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Appendix D - The BSD license for this project

Copyright (c) 2006, Marc Smeets and Matthijs Koot
All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the University of Amsterdam nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
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