Materials on Hill cipher
1. Matrix inversion (for Hill ciphers)

 - ?

 n=10
detA=45+84+96-105-48-72=225-225=0
It means that inverse of the matrix does not exist
Condition: detA<>0 mod n, and gcd(detA,n)=1 (relative primality)

2. Matrix inversion

-? n=10

	(1)

where - is a determinant of sub matrix of A, obtained by deletion of i-th row and j-th column, det(A) – determinant of A. Taking into account that we work with integers on modulo n, we rewrite (1):

	(2)
det(A) =40+84+96-105-64-48=220-217=3
From (2):

Thus, we get

and
[image:]
3. Euclud’s algorithm
(3rd century B.C., from Alexandria)
One of the basic techniques of number theory is Euclid’s algorithm, which is a simple procedure for determining the greatest common divisor of two positive numbers.
Greatest common divisor
We will use notation gcd(a,b) to mean the greatest common divisor of a and b. The positive integer c is said tob the greatest common divisor of a and b if
1. c is a divisor of a and of b
2. any divisor of a and b is a divisor of c
An equivalent definition is the following:
gcd(a,b)=max[k, such that k|a and k|b]
Because we require that the greatest common divisor be positive, gcd(a,b)=gcd(a,-b)=gcd(-a,b)=gcd(-a,-b). In general, gcd(a,b)=gcd(|a|,|b|).
gcd(60,24)=gcd(60,-24)=12
Also, because all nonzero integers divide 0, we have gcd(a,0)=|a|.
We stated that two integers are relatively prime if their only common positive integer factor is 1. This is equivalent to saying that a and b are relatively prime if gcd(a,b)=1.
8 and 15 are relatively prime because the positive divisors of 8 are 1,2,4, and 8, and the positive divisors of 15 are 1,3,5, and 15, so 1 is the only integer on both lists.
Finding the greatest common divisor
Euclid’s algorithm is based on the following theorem: For any nonnegative integer a and any positive integer b,
gcd(a, b)=gcd(b, a mod b)		(4.3)
gcd(55,22)=gcd(22, 55 mod 22) = gcd(22,11) = 11
To see, that (4.3) works, let d=gcd(a,b). Then, by the definition of gcd, d|a and d|b. For any positive integer b, a can be expressed in the form

a = kb+rr mod b
a mod b = r
with k, r integers. Therefore, (a mod b) = a-kb for some integer k. But because d|b, it also divides kb. We also have d|a. Therefore, d|(a mod b). This shows, that d is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b and (a mod b), then d|kb and thus d|[kb+(a mod b)], which is equivalent to d|a. Thus, the set of common divisors of a and b is equal to the set of common divisors of b and (a mod b). Therefore, the gcd of one pair is the same as the gcd of the other pair, proving the theorem.
Equation (4.3) can be used repetitively to determine the greatest common divisor:
gcd(18,12)=gcd(12,6)=gcd(6,0)=6
gcd(11,10)=gcd(10,1)=gcd(1,0)=1
Euclid’s algorithm makes repeated use of (4.3) to determine the greatest common divisor, as follows. The algorithm assumes a>b>0. It is acceptable to restrict the algorithm to positive integers because gcd(a,b) = gcd(|a|,|b|)
EUCLID’S ALGORITHM
EUCLID(a,b)
1. A:=a; B:=b
2. if B=0 return A=gcd(a,b)
3. R=A mod B
4. A:=B
5. B:=R
6. goto 2
The algorithm has the following progression:
A1=B1xQ1+R1
A2=B2xQ2+R2
A3=B3xQ3+R3
To find gcd(1970,1066)
1970=1x1066+904	gcd(1066,904)
1066=1x904+162	gcd(904,162)
904=5x162+94		gcd(162,94)
162=1x94+68		gcd(94,68)
94=1x68+26		gcd(68,26)
68=2x26+16		gcd(26,16)
26=1x16+10		gcd(16,10)
16=1x10+6		gcd(10,6)
10=1x6+4		gcd(6,4)
6=1x4+2			gcd(4,2)
4=2x2+0			gcd(2,0)
Therefore, gcd(1970,1066)=2
This process should terminate, otherwise we would get an endless sequence of positive integers, each one is strictly smaller than the one before, and this is clearly impossible.
4. Finding the Multiplicative Inverse mod m
If gcd(m,b)=1, then b has a multiplicative inverse modulo m. That is, for positive integer b<m, there exists a b-1<m such that b b-1=1 mod m. Euclid’s algorithm can be extended so that, in addition to finding gcd(m,b), if the gcd is 1, the algorithm returns the multiplicative inverse of b.
EXTENDED EUCLID(m,b)
1. (A1,A2,A3):=(1,0,m); (B1,B2,B3):=(0,1,b);
2. if B3=0 return A3=gcd(m,b); no inverse
3. if B3=1 return B3 = gcd(m,b); B2= b-1 mod m
4.
Q=
5. (T1,T2,T3):=(A1-QB1, A2-QB2, A3-QB3)
6. (A1,A2,A3):= (B1,B2,B3)
7. (B1,B2,B3):= (T1,T2,T3)
8. goto 2
Throughout the computation, the following relationships hold:
mT1+bT2=T3 mA1+bA2=A3 mB1+bB2=B3
To see that algorithm correctly returns gcd(m,b), note that if we equate A and B in Euclid’s algorithm with A3 and B3 in the extended Euclid’s algorithm, then the treatment of the two variables is identical. Note also that if gcd(m,b)=1, then on the final step we would have B3=0 and A3 =1. Therefore, on the preceding step, B3=1. But if B3=1, then we can say the following:
mB1+bB2=B3
mB1+bB2=1
bB2=1-mB1

bB21 mod m
Hence, B2 is the multiplicative inverse of b.

Table 4.4 is an example of the execution of the algorithm. It shows that gcd(550,1759)=1 and that the multiplicative inverse of 550 is 355; that is, 550x3551 mod 1759.
[bookmark: _GoBack][image:]
5.
oleObject3.bin

image4.wmf
÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

-

33

23

13

32

22

12

31

21

11

1

a

a

a

a

a

a

a

a

a

A

oleObject4.bin

image5.wmf
÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

8

6

3

8

5

2

7

4

1

A

oleObject5.bin

oleObject6.bin

oleObject7.bin

oleObject8.bin

image6.wmf
)

det(

/

)

1

(

1

A

D

A

ji

j

i

ij

+

-

-

=

oleObject9.bin

image7.wmf
ij

D

oleObject10.bin

image8.wmf
n

D

A

A

ji

j

i

ij

mod

)

1

(

)

det(

1

+

-

-

=

oleObject11.bin

image9.wmf
4

,

10

mod

2

10

mod

8

48

40

3

1

11

1

11

=

=

-

=

-

=

-

-

A

A

oleObject12.bin

image10.wmf
0

,

10

mod

0

10

mod

10

)

42

32

(

3

1

21

1

21

=

=

=

-

-

=

-

-

A

A

oleObject13.bin

image11.wmf
9

,

10

mod

7

10

mod

3

35

32

3

1

31

1

31

=

=

-

=

-

=

-

-

A

A

oleObject14.bin

image12.wmf
6

,

10

mod

8

)

24

16

(

3

1

12

1

12

=

=

-

-

=

-

-

A

A

oleObject15.bin

image13.wmf
9

,

10

mod

7

10

mod

3

10

mod

13

21

8

3

1

22

1

22

=

=

-

=

-

=

-

=

-

-

A

A

oleObject16.bin

image14.wmf
2

,

10

mod

6

)

14

8

(

3

1

32

1

32

=

=

-

-

=

-

-

A

A

oleObject17.bin

image15.wmf
9

,

10

mod

7

10

mod

3

15

12

3

1

13

1

13

=

=

-

=

-

=

-

-

A

A

oleObject18.bin

image16.wmf
2

,

10

mod

6

)

12

6

(

3

1

23

1

23

=

=

-

-

=

-

-

A

A

oleObject19.bin

image17.wmf
9

,

10

mod

7

10

mod

3

8

5

3

1

33

1

33

=

=

-

=

-

=

-

-

A

A

oleObject20.bin

image18.wmf
÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

-

9

2

9

2

9

6

9

0

4

1

A

oleObject21.bin

image19.wmf
÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

=

÷

÷

÷

ø

ö

+

+

+

+

+

+

+

+

+

+

+

+

ç

ç

ç

è

æ

+

+

+

+

+

+

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

-

1

0

0

0

1

0

0

0

1

10

mod

151

100

40

130

81

30

100

70

31

10

mod

72

16

63

54

10

36

27

4

9

16

72

42

12

45

24

6

18

6

72

0

28

54

0

16

27

0

4

9

2

9

2

9

6

9

0

4

8

6

3

8

5

2

7

4

1

1

AA

image20.wmf
º

oleObject22.bin

image21.wmf
ú

û

ú

ê

ë

ê

3

3

B

A

oleObject23.bin

image22.wmf
º

image1.wmf
÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

9

6

3

8

5

2

7

4

1

A

oleObject24.bin

oleObject25.bin

image23.png

oleObject1.bin

image2.wmf
1

-

A

oleObject2.bin

image3.wmf
E

n

AA

=

-

mod

1

