
BRUTEPRINT: Expose Smartphone Fingerprint
Authentication to Brute-force Attack

Yu Chen
Xuanwu Lab, Tencent

Yiling He
Zhejiang University

Abstract—Fingerprint authentication has been widely adopted
on smartphones to complement traditional password authentica-
tion, making it a tempting target for attackers. The smartphone
industry is fully aware of existing threats, and especially for
the presentation attack studied by most prior works, the threats
are nearly eliminated by liveness detection and attempt limit.
In this paper, we study the seemingly impossible fingerprint
brute-force attack on off-the-shelf smartphones and propose
a generic attack framework. We implement BRUTEPRINT to
automate the attack, that acts as a middleman to bypass attempt
limit and hijack fingerprint images. Specifically, the bypassing
exploits two zero-day vulnerabilities in smartphone fingerprint
authentication (SFA) framework, and the hijacking leverages the
simplicity of SPI protocol. Moreover, we consider a practical
cross-device attack scenario and tackle the liveness and matching
problems with neural style transfer (NST). A case study shows
that we always bypasses liveness detection and attempt limit
while 71% spoofs are accepted. We evaluate BRUTEPRINT on
10 representative smartphones from top-5 vendors and 3 typical
types of applications involving screen lock, payment, and privacy.
As all of them are vulnerable to some extent, fingerprint brute-
force attack is validated on on all devices except iPhone, where the
shortest time to unlock the smartphone without prior knowledge
about the victim is estimated at 40 minutes. Furthermore, we
suggest software and hardware mitigation measures.

Index Terms—fingerprint authentication, brute-force attack,
off-the-shelf smartphones

I. INTRODUCTION

Biometric technology has advanced rapidly in recent years.
Since Apple introduced Touch ID in 2013, the modern-day
fingerprint sensor revolution begins, and fingerprints have be-
come the most preferred biometric traits on smartphones [25].
Nowadays, Smartphone Fingerprint Authentication (SFA) is
used in a variety of applications ranging from unlocking the
device to authorizing payments. As a result, the security of
SFA is extremely important.

The presentation attack has long been identified as a
severe threat to the security of fingerprint authentication
systems [27]. The attack impersonates a target victim by
presenting artefacts (e.g., silica gel fingers) to the fingerprint
sensor and has a chance of success with careful fabrication.
Prior works [31], [38], [43] focus a lot on developing presen-
tation attack detection (PAD) algorithms, most typically for
liveness detection. However, when it comes to smartphone,
such spoofing becomes much more difficult. Firstly, some
security strategies, especially the strict limit on the maximum
number of failed attempts (hereinafter “attempt limit”), leave

Work done during an intership at Tencent XuanWu Lab.

adversaries with rare opportunities for refining an artefact to be
ambiguous for a target SFA system. While, on the other hand,
the refinement highly relies on the collection of victim-specific
fingerprints and requires much expert efforts [40]. Secondly,
the commonly adopted liveness detection, that directly rejects
non-live fingerprint images by material indicators such as
texture and intensity [44], increases the burden in artefact
fabrication. Therefore, the attack cannot be put at any scale.

In another aspect, although several software vulnerabilities
in SFA systems have been disclosed [23], [29], they only
affect specific smartphone models and operating system (OS)
versions. Those newly patched vulnerabilities can be divided
into two categories. (a) Unwary fingerprint authentication
algorithms: some textures on top of fingerprint scanners in-
terfere with the algorithms (e.g., screen protector problems
in Samsung [4], [8]), making a zero-effort attempt possible
to match. Nevertheless, these vulnerabilities are accidentally
exploitable when the textures trigger fingerprint template
update in the algorithm. (b) Improper implementations with
software: these vulnerabilities are not actually exploitable
without certain permissions [6]. For instance, Leftover Debug
Code found on OnePlus 7 Pro before 10.0.3.GM21BA [7]
allows fingerprint image interception only when the attacker
gains root access and the victim cooperates in finger-pressing
without consciousness.

Given these situations, is authenticating with fingerprints
secure enough on our smartphones? This work gives a brand
new threat that large-scale fingerprint brute-force attack is
practical on off-the-shelf smartphones. We discover Cancel-
After-Match-Fail (CAMF) and Match-After-Lock (MAL) vul-
nerabilities in SFA, and either of them can be exploited
to bypass attempt limit. Instead of an implementation bug,
CAMF and MAL leverage logical defects in the authentication
framework. Therefore, it exists across various models and
OSs. We make the exploitation on 10 popular smartphone
models with the latest OS versions. Results show that attempts
are made three times over the attempt limit on Touch ID
while unlimited attempts are achieved on all Android devices.
The unlimited attempts motivate us to perform automatic
fingerprint brute-force attacks.

We find the insufficient protection of fingerprint data on
the Serial Peripheral Interface (SPI) of fingerprint sensors,
and thus come up with a hardware approach to do man-in-
the-middle (MITM) attacks for fingerprint image hijacking.
We design the adversarial equipment to be compatible with
different smartphone models and show an implementation that

ar
X

iv
:2

30
5.

10
79

1v
1

 [
cs

.C
R

]
 1

8
M

ay
 2

02
3

is low-cost and novice-friendly. We propose using neural style
transfer (NST) techniques to make arbitrary outer fingerprint
image database adoptable for brute-forcing. Experiments show
that the proposed method bypasses liveness detection as well
as reserving enough fingerprint features to pass fingerprint
matching. We check the feasibility of fingerprint image hijack-
ing and the practicality of fingerprint brute-force attacks on the
10 smartphones. The affected smartphones cover fingerprint
sensors of commercially available types, i.e., optical (ultra-thin
included), capacitive, and ultrasonic. To illustrate, we show
that our attacks can be used to unlock screen locks, authorize
payments, and unlock privacy apps.
Contributions. This paper has three major contributions:
• We discover software and hardware vulnerabilities on off-

the-shelf smartphone fingerprint authentication systems.
We exploit the vulnerabilities to bypass the attempt
limit in OS and hijack fingerprint images on SPI. We
propose fingerprint brute-force attack on smartphones and
leverage neural style transfer to ease the attack.

• We validate attempt limit bypassing and fingerprint image
hijacking on 10 prevalent smartphone models with vari-
ous OS versions and fingerprint sensors. For bypassing,
we achieve infinite attempts on Android/HarmonyOS
devices while making 10 additional attempts on iOS
devices. For hijacking, fingerprint image interception and
replacement are achieved on all devices except iPhone.

• We implement BRUTEPRINT with low-cost equipment
and show a complete fingerprint brute-force attack pro-
cess on a OnePlus 7 Pro. We demonstrate how the attack
is practical on other devices and confirm that 3 typical
types of fingerprint applications are affected.

II. BACKGROUND

In this section, we introduce background on current SFA
systems concerning authentication process, security enhance-
ment, and evaluation metrics.

Fig. 1: The workflow of state-of-the-art SFA systems.

A. Authentication Process

Fingerprint authentication process on smartphones consists
of four main stages, namely Acquisition, Compensation, Anti-
faking, Matching, as illustrated in Figure 1.

(a) Acquisition starts fingerprint sensing when SFA systems
receive fingerprint authentication requests. If a finger-pressing
is sensed, the image acquisition module captures one or
multiple raw fingerprint images.

(b) Compensation processes the raw fingerprint images to
boost image quality, where some fixed textures are reduced

through a pre-calculated base image. The base image contains
fixed pattern noise (FPN) caused by screen pixels, screen
protectors, charge transfer, etc, and the processed fingerprint
image is gained through an additive operation.

(c) Anti-faking checks the quality of processed images and
applies liveness detection in order to prevent presentation
attacks. SFA systems integrate the liveness detection through
image analysis. As fake fingers are made with fabrication
materials and lead to different behaviors of finger-pressing,
the methods are intuitive that identify outliers with features
including material textures and ridge-valley contrast [45].

(d) Matching is to measure the similarity between query and
enrolled fingerprints. To minimize the damage of fingerprint
leakage, the enrolled fingerprints are stored as irreversible
templates (e.g., mathematical representations) rather than fin-
gerprint images. Thus, the similarity calculation is done on
the processed fingerprint images and the enrolled fingerprint
templates. To maintain the security of small mobile sensors
and improve user experience [37], fingerprint matching al-
gorithms in SFA systems also evolve significantly to handle
partial fingerprint images.

B. Security Enhancement

Besides the anti-faking, security enhancement in SFA in-
corporates risk control strategies. The strategies prohibit fin-
gerprint authentication and require passcode under exceptional
circumstances. Three typical examples are that (a) the number
of unrecognized fingerprint attempts in a row exceeds the at-
tempt limit; (b) the time passed from the last device unlocking
is longer than the idle timeout; (c) the smartphone restarts.

Trusted Execution Environment (TEE) is used to isolate
fingerprint sensor driver, fingerprint authentication logic, and
fingerprint data in a secure environment. With this design, the
fingerprint authentication process stays secure even if Rich
Execution Environment (REE) is compromised. In the case of
smartphones, the REE runs OSs such as Android and iOS.
Since Android 6, Google enforces moving all fingerprint data
manipulation into TEE [24], and most smartphone manufactur-
ers adopt TrustZone-based TEE solutions. At nearly the same
time, Apple uses another solution called Secure Enclave [3].

C. Evaluation Metrics

The error rate in a SFA system is measured with two
metrics [26]. (a) False Accept Rate (FAR): proportion of
authentication transactions with wrongful claims of identity
that are incorrectly confirmed. (b) False Reject Rate (FRR):
proportion of authentication transactions with truthful claims
of identity that are incorrectly denied.

FRR at fixed levels of FAR are used to determine if a
system has sufficient accuracy for a specific use case. [12]
To ensure the security, SFA systems should have a FAR not
higher than 1/50000 [24]. Computing FAR uses collected
fingerprint databases, where multiple fingerprint images are
collected from each subject to make the collection efficient.
A common practice is to set the minimum subject num-
ber, the finger number per subject and the sample image

2

number per finger to 24, 4 (left thumb, left index, right
thumb, right index) and 50, respectively. This setting makes
(24×4−1)×50×(24×4) = 456000 wrongful claims for the
FAR evaluation, and a qualified system should give incorrect
confirmations 9 times at most.

III. ATTACK FRAMEWORK

A. Threat Model

We consider fingerprint brute-force attack on smartphones.
The goal is to make unlimited submission of fingerprint
images and eventually guess a fingerprint correctly. Unlike
traditional password authentication, fingerprint authentication
decides a match with a reference threshold instead of a specific
value. Therefore, fingerprint brute-force attack can succeed by
leveraging the FAR of a target system. The success rate at time
t can be estimated as

1− (1− r · FAR)
FIPS·t (1)

where r is the number of enrolled fingerprints on a victim
device, and FIPS defines the number of submitted fingerprint
images per second. In theory, the attack is successful if two
requirements are satisfied: the number of attempts and the de-
nominator of the FAR are in the same order of magnitude (R1);
the submitted fingerprints are totally controllable (R2). Two
main threats of a successful attack are that attackers can get
(similar) fingerprints of the victim (T1) and gain authorization
in many apps on the victim device (T2).

Assumption. We assume that the targeted smartphone sup-
ports fingerprint authentication. Adversaries can have physical
access to the victim device, but they cannot root it and know
nothing about the owner. To launch the attack, they need to
own a fingerprint database and an adversarial equipment that
hijacks data sent by fingerprint sensor.
• Physical Access. Adversaries can remove the rear cover of

the smartphone and place the adversarial equipment for
several hours. This would be possible when the victim
device is lost, stolen, temporarily deposited, unattended
during owner’s sleep, etc.

• Adversarial Equipment. The adversarial equipment is
mainly a printed circuit board (PCB), which is inex-
pensive and universal. For specific smartphone models,
adaptive flexible printed circuit (FPC) is required. The
equipment costs around 15 dollars in total.

• Fingerprint Database. The database can originate from
any sources and have fingerprint images captured by arbi-
trary sensors. The images can be gathered from academic
dataset [18], [41], data breaches [47], and self-collection.
It’s possible for adversaries to have a database containing
fingerprints of millions of identities [46].

B. Attack Overview

We implement BRUTEPRINT system to crack SFA and
achieve fingerprint brute-force attack. As shown in Figure 2,
there are two kinds of brute-force attackers who exploit CAMF
and MAL vulnerabilities. Specifically, BRUTEPRINT acts as a
middleman between fingerprint sensor and TEE. Two attacks

Fig. 2: The attack overview of BRUTEPRINT.

are firstly implemented to reach ultimate fingerprint brute-
force attack. Attempt limit bypassing attack exploits either
of the two vulnerabilities to meet R1. Typically, a CAMF ex-
ploitation invalidates the checksum of transmitted fingerprint
data, and a MAL exploitation infers matching results through
side-channel attacks. Fingerprint image hijacking attack
meets R2, which has the capability to decode the intercepted
fingerprint data and encode replaced data for injection. To
increase the success rate of brute-forcing, BRUTEPRINT addi-
tionally propose a fingerprint dictionary generation method
that trains a neural style transfer network to transfer available
fingerprint database into valid styles.

IV. METHODOLOGY

A. Attempt Limit Bypassing

1) CAMF Vulnerability: CAMF is based on the fault-
tolerant mechanisms in SFA systems, where collecting multi-
ple samples in a single authentication attempt is considered
as one of the best practices [32]. Two key points of the
mechanisms are related with the vulnerability:
• Multi-sampling. To tolerate the false rejection of fin-

gerprint matching algorithms, an attempt can pass the
authentication if one sample passes.

• Error-cancel. To tolerate some minor errors (e.g., caused
by a temporary hardware malfunction), a failed attempt
will be canceled if certain error signals are received.

Fig. 3: Explanation of CAMF vulnerability and exploitation.

As shown in Figure 3, the authentication for an attempt
acquires and authenticates samples in a loop until a sample
result is Error/Success/Non-live or the sample number reaches
the maximum M . Only a Failed authentication result decreases
the remaining attempt number restricted by attempt limit.

Therefore, attackers can make unlimited attempts if the last,
i.e., M -th, sample of each attempt goes into the Error-cancel

3

branch. The attempt is either successful or canceled, depending
on whether a matched sample is in the first (M − 1) samples.
The Failed authentication result is avoided through cancelling
after (M − 1) unmatched sample results.

2) MAL Vulnerability: MAL refers to the vulnerability that
attackers can make attempts to infer authentication results of
fingerprint images (called the “inference attempt”) in lockout
mode. The lockout mode is defined in Google’s biometric
framework to penalize too many failed attempts, where no
fingerprint authentication can be launched in a certain period
of time or permanently. Listing 1 shows how the mode affects
the authentication. A finger-pressing is not supposed to get
any response in lockoutMode since the method startAuthen-
tication is directly returned without startClient. However, a
pseudo lockout state is introduced in some smartphone models
in order to improve user experience when waking up the
locked screen. The highlighted code snippet is the modification
made by a smartphone manufacture, where lockout mode is
ignored for Keyguard process that handles the screen lock.

1 @over r ide / / com . a n d r o i d . s e r v e r . b i o m e t r i c s .
B i o m e t r i c S e r v i c e B a s e

2 p r i v a t e vo id s t a r t A u t h e n t i c a t i o n (
A u t h e n t i c a t i o n C l i e n t I m p l c l i e n t , S t r i n g
opPackageName) {

3 . . .
4 i n t lockoutMode = getLockoutMode () ;
5 i f (lockoutMode != A u t h e n t i c a t i o n C l i e n t .

LOCKOUT NONE) {
6 + i f (i g n o r e L o c k o u t (onPackageName)) {

/ * i s K e y g u a r d : do n o t h i n g . * / }
7 e l s e { / * Lockout mode : d i s a l l o w i n g

a u t h e n t i c a t i o n and r e t u r n . * / }
8 }
9 / * C a l l s HAL t o s w i t c h t o t h e t a s k . * /

10 s t a r t C l i e n t (c l i e n t , t r u e) ;
11 }

Listing 1: Explanation of MAL vulnerability

Although the lockout mode is further checked in Keyguard to
disable unlocking, the authentication result has been made by
TEE. As Success authentication result is immediately returned
when a matched sample is met, it’s possible for side-channel
attacks to infer the result from behaviors such as response time
and the number of acquired images.

The pseudo lockout mode as well as the side-channel
information enable MAL-based attackers to make unlimited
submission of fingerprint samples to find a match. Also, the
matched fingerprint can be reused in a normal mode to unlock
the device. Compared with CAMF, MAL only exist in the
screen lock application and may has extra time cost (see
Section VI-C), but it have an advantage that the exploitation
can be made even if fingerprint authentication is permanently
locked on the victim device (e.g., after the idle timeout or
being restarted).

B. Fingerprint Image Hijacking

MITM Attack on SPI. In SFA systems, Serial Peripheral
Interface (SPI) is used for synchronous serial communica-
tion between fingerprint sensor and smartphone processor.
Specifically, the SPI is a four-wire bus consisting of master

input/slave output (MISO), master output/slave input (MOSI),
a serial clock (SCLK), and a chip select (CS) pin, where
processor is the single master and sensor is the single slave.
Typically, the SCLK has a medium frequency range of
8˜50 MHz, and thus checksum is required for resisting external
disturbance. However, to the best of our knowledge, SFA
sensors except Touch ID do not encrypt any data and lack
mutual authentication. Together with the frequency that is
possible for injection, the situation leads SFA vulnerable to
MITM attack on SPI.

BRUTEPRINT designs the MITM attack as in Figure 4.
The adversary acts as a fake slave to receive MOSI A signal
and send MISO A signal, which is controlled by two Sin-
gle Pole Double Throw (SPDT) switches. The initial state
for switch S0 and S1 is (0, 0) that listens for fingerprint
data acquisition (FDA) for specific attacks. Based on this
implementation, possible attacks includes (a) glitch attack:
randomly change the state to (0, 1) for an instant during
fingerprint data transmission to inject a glitch; (b) fingerprint
image eavesdropping: intercept fingerprint data with the
state (1, 0) and decode it to get a raw fingerprint image;
(c) fingerprint image replacement: with the state (1, 1),
intercept the original data and inject a replaced raw fingerprint
image that is correctly encoded.

Fig. 4: MITM Attack on SPI. Different status of SPDTs are
explained in Table I.

TABLE I: Function of the two SPDT switches.
Switch Status Function

S0 0 Identify the FDA command from the MOSI signal.
1 Intercept fingerprint data from the MISO S signal.

S1 0 Keep the original connection from MISO S to MISO M.
1 Inject fake fingerprint data from MISO A to MISO M.

Raw Image Decoding and Encoding Fingerprint image
hijacking is implemented to achieve both fingerprint image
eavesdropping and replacement. Besides the MITM attack
framework, functions for decoding and encoding raw finger-
print images are specialized for smartphone models. The two
functions are inverses and fit the reverse engineered fingerprint
data transmission protocol to deal with image shape, pixel
representation, byte sequence, checksum, and frame structure.
For instance, necessary steps for encoding include pixel adap-
tation to unify bits per pixel (bpp), byte reordering to compress
adjacent pixels, checksum attachment to verify image data, and
frame alignment to separate and add header to frames.

4

C. Fingerprint Dictionary Generation

Fingerprint brute-force attack can only be launched with
inputs acceptable to the SFA system. Raw fingerprint images
acquired by SFA sensors have a finite resolution and non-
negligible FPN (see Figure 9). Therefore, suppose an attacker
gets a fingerprint image database from open sources such as
FVC [2], he should transfer the image style into the sensor-
specific style to generate a fingerprint dictionary for brute
force. We use neural style transfer techniques to accomplish
two purposes: (a) the authentication will not be terminated
ahead by image-level liveness detection, i.e., not go into the
non-live branch in Figure 3; (b) the transferred images are able
to remain enough fingerprint features for matching algorithms
and pass the authentication.

Style Alignment. The problem is formalized as learning
the mapping G : X → Y that translates the source domain X
of open source fingerprint images to the target domain Y of
the sensor-captured images that are specific to a smartphone
model. We address three main issues as follows:
• Non-uniform sources. We unify the images from X to

eliminate the differences among source devices, espe-
cially to align the period of a ridge/valley cycle with
the targets. The difference is brought by the Dots per
Inch (DPI) of devices, so we can scale each source image
with the DPI ratio of source device to target device.
In addition, we remove unnecessary space from around
images and crop the central area to get the pre-processed
images that have congruent shape with the targets.

• Unpaired translation. Attackers can acquire the target
domain images themselves by using the hijacking equip-
ment, and thus the training data from X and Y is
unpaired. We adopt the idea from CycleGAN [51] that
addresses the highly under-constraint training problem
with a coupled inverse mapping.

• Inflexible targets. Since SFA have compensation module
to remove FPN, any delicate alteration may trigger a
rejection decision. We must be cautious that the target
images for training should stay unchanged. That is to
say, we cannot perform image transformations on them,
e.g., cropping, resizing and flipping. As the generator of
CycleGAN accepts only square inputs like most models,
we adapts the stride and padding of some convolutional
layers to meet the rectangle shape for Y .

Fig. 7 illustrates how source images are unified and translated.
To make the training process easier, target images are some-
times refined to get the pure fingerprint area, which we will
discuss in the next section.

V. BRUTE-FORCE ATTACK: A CASE STUDY

In this section, we show the whole process of brute-forcing
a OnePlus 7 Pro (called the “victim device” throughout the
section) and give experimental results. We explain choosing
the victim device that (a) it runs close to the stock version
of Android OS, which is open-source and the most popular,
making it representative for studying SFA; (b) the embedded

fingerprint sensor uses the advanced optical in-display technol-
ogy that has become a built-in feature of many mid-end and
high-end Android devices. As ScreenLock is where fingerprint
authentication is the most frequently used and protects other
applications, we do experiments on it to achieve the harmful
brute-forcing effect of screen unlocking.

A. Unlimited Attempt Limit Bypassing

We find CAMF vulnerability on the victim device and make
exploitation with checksum error-cancel. Results show that
unlimited attempts can be made with the exploitation. We
further dig into the code flow and reason the unlimited attempt
limit bypassing as follows.

Android SFA Framework. The victim device uses Android
OS that has a fingerprint authentication framework with four
layers as in Figure 5(a). Each mobile application has its
own manager for fingerprint authentication to communicate
with the fingerprint service in system process. The service is
implemented in the class FingerprintService that belongs to
Android Open Source Project (AOSP) code. It connects to
fingerprint Hardware Abstraction Layer (HAL) with finger-
print Hardware Interface Definition Language (HIDL) to send
command to vendor-specific libraries and fingerprint sensor.
Vendors protect their core fingerprint authentication functions
in TEE, where TEE kernel communicates with fingerprint
sensor through SPI and fingerprint Trusted Application (TA)
is responsible for algorithms including compensation, anti-
faking, and matching. Three important callbacks are origi-
nally defined by the framework in HIDL interface to return
asynchronous results from TEE in response to user actions on
fingerprint sensor:
• onAcquired. sent when a fingerprint image is acquired by

the sensor and notifies a acquiredInfo message about the
image quality; a vendor-specific message vendorCode is
validate when acquiredInfo is set to 6;

• onAuthenticated. sent when a fingerprint is authenti-
cated and notifies an authentication result;

• onError: sent when a fingerprint error occurs and notifies
a error message; a vendor-specific message vendorCode
is validate when error is set to 8.

The behavior of the callbacks are implemented in Finger-
printService, where attempt limit is monitored by the variable
mFailedAttempt and can only be modified when onAuthen-
ticated is called back. This will happen when fingerprint TA
sends an event for HAL to notify authentication results. If
the authentication result is false, the mFailedAttempt will
be increased by one, which decreases the remaining number
of available attempts (i.e., attempt limit - mFailedAttempt).
Therefore, a successful attack should ensure not calling onAu-
thenticated back. An alternative is to trigger an event relevant
to the callback onError.

Checksum Error-cancel. As checksum is highly required
by SPI transmission protocols and is initially attached to
detect accidental changes in raw fingerprint data, it could
be natural for vendors to regard a checksum error event
as a cancelable state for authentication. To bypass attempt

5

(a) SFA framework in Android. (b) Sequence diagram for attempt limit bypassing.

Fig. 5: Explanation of attempt limit bypassing attack in the case study. In Android biometric framework, fingerprint
authentication is closely related to four roles, i.e., fingerprint TA, fingerprint HAL, fingerprint service, and mobile application.
The interactions between them under our attack is represented with a sequence diagram.

limit for ScreenLock on the victim device, we invalidate
the checksum of the fourth sample’s fingerprint data and
successfully trigger Error-cancel. To reason the exploitation,
we extract critical control flow in Android SFA framework
through Logcat and show it in Figure 5(b). Once fingerprint
HAL receives an authentication request, it will send command
to wake up sensor and notify the onAcquired callback.
Then the authentication loop goes through image capturing
and image authentication for each sample until the last one,
which notifies the onError callback with a vendor-specific
message after image capturing. It’s worth mentioning that
under our attack, the loop never ends with a unmatched sample
result to notify onAuthenticated with a failed authentication
result. Moreover, if a sample is matched in the first three
authentication process, the HAL will notify onAcquired with
FINGERPRINT ACQUIRED GOOD message, send a
success authentication result to onAuthenticated, and directly
break the loop.

B. Successful Fingerprint Image Hijacking

Fingerprint image hijacking observes the sensor’s SPI pro-
tocol for fingerprint data. We find the data not encrypted and
successfully infer the FDA command as well as how the
fingerprint image is encoded. We make a hardware imple-
mentation of the SPI MITM and use it to locate fingerprint
data, recover fingerprint image from the data, and replace the
original data with the re-encoded image. Experiments show
that authentication results are returned without influence, that
is, the replaced data of a registered finger can still unlock
the victim device. Next, we describe the detailed hardware
implementation and the reverse engineered SPI protocol.

Implementation of SPI MITM. The hardware implementa-
tion of Figure 4 requires a fake SPI slave and the SPDTs. There
are plenty of approaches to fake the slave, but we carefully
consider the price and choose to use the SPI peripheral of a
MCU with slave configuration. Moreover, it should satisfy the
25 MHz fingerprint transmission rate on the victim device. For
the SPDTs, the switching time should be less than the 206 µs
interval between identifying FDA on MOSI and the beginning
of fingerprint data transmission on MISO. Therefore, we
choose a high bandwidth dual-channel SPDT chip.

Reverse Engineered Protocol. We capture SPI signals
through a logic analyzer and locate those dense signals on
MISO to identify FDA. As the data is not encrypted, we
could try out the encoding method within several inference
attempts. For example, the image shape can be guessed
through factoring the total number of pixels, and adaption can
be made according to the periodic offset of outlier values (i.e.,
values such as checksum other than image pixels). For the
victim device, the first sample is transmitted in 4 frames
while the last three use the same format with 13 frames. Each
last frame is short since it transmits the remained fingerprint
data. The FDA commands are identified before every frame.
Taking the first sample for example, the FDA commands are
always 0xF08800, and we show the structure (frame separator
omitted) of fingerprint data in Figure 6. The structure is not
complicated that the gray-scale image is stored in 16 bpp, and
for each line, a serial number and a CRC16 checksum are
attached at both ends.

C. Effective Dictionary Generation for Brute-force
Based on the aforementioned CAMF exploitation and hi-

jacking equipment, we can perform fingerprint brute-force

6

Fig. 6: Example of reverse engineered SPI protocol for finger-
print data on MISO and MOSI.

attack on the victim device. Considering a weak assumption
of attack scenario, that adversaries own a fingerprint database
acquired and processed by sensors totally different from the
victim device’s sensor, we stimulate the scenario and evaluate
the fingerprint dictionary generation method as follows.

Experimental Setup. We use a capacitive touch fingerprint
sensor (FPC1020, called “source device”) to obtain source
domain images. As shown in Figure 7, the image style is quite
different from the target domain images captured by the optical
in-display fingerprint sensor embedded on the victim device.
We use 3 534 source domain images and 1 507 target domain
images to train a CycleGAN, and generate the fingerprint
dictionary with other images from the source domain. The raw
target domain images have dark borders that hardly contain
fingerprint features. We remove the border before training
and get the single channel source input that are 218 px in
height and 178 px in width. The source device has a DPI 1.25
times of the victim device’s fingerprint sensor and outputs
192×192 px images. We unify them to coordinate with the
source input. For the network architecture in CycleGAN,
we use a patch-level discriminator [28] and adopt the 9-
block ResNet generator [30]. In order to make the generator
outputs 218×178 px images, we modify the padding of its last
downsampling layer and first upsampling layer to 0.

We use M (200) matched fingerprints and N (1000) un-
matched fingerprints from the source domain to generate a
dictionary and brute-force the victim device. In this experi-
ment, the attack only inject images at the first sample (i.e.,
triggers Error-cancel at the second FDA), and the victim
device has only one fingerprint enrolled. We measure the
effect of the generated dictionary with two metrics: (a) E: the
number of times an error (retry prompt) occurs when injecting
images generated from the N source images; (b) M′/M: the
spoof (device unlocked) rate of injecting images generated
from the M source images. Note that the possible error here
is not raised by failed authentication results. Instead, the
authentication is terminated ahead (most likely) by liveness
detection. Therefore, the brute-force is only feasible when this
error is hardly triggered. Moreover, experiments are done to
study the influence of different training epochs including zero,
i.e., without style alignment.

Results. The upper right corner of Figure 7 illustrates the
effect of style alignment, where the transferred images below
look much alike the refined target image in style and the
fingerprint characteristics are visually reserved. The evaluation

on brute-forcing is shown in Table II. The victim device
raises error at each attempt if no style alignment is performed
while the transferred images give no error. Results also show
that the style alignment is the most useful with 80 epochs
of training, where the time cost can be affordable and has
a spoof rate at 71%. In conclusion, fingerprint brute-force
attack with the proposed dictionary generation method can
always pass security strategies including liveness detection.
More importantly, it reserves fingerprint features and have
much chance to successfully spoof the SFA system.

Fig. 7: Style alignment from capacitive (FPC1020) to optical
in-display (OnePlus 7P Pro).

TABLE II: The feasibility (E) and effectiveness (M′/M)
experiments on brute-forcing with the dictionary generation
method. The number of Epoch identifies the training epoch in
the style alignment .

w/o1 Epoch

20 40 60 80 100

E 1000 0 0 0 0 0
M′/M 0 0.45 0.63 0.66 0.71 0.44
1 w/o denotes the dictionary without style alignment.

D. Automatic Fingerprint Brute-force Attack

Adversarial Equipment. Figure 8 shows a snap photograph
of brute-forcing the victim device. The attacking board, which
is the core of the adversarial equipment, consists of four
major components: (a) STM32F412: the MCU that has a SPI
peripheral with ˜38 MHz transmission rate in slave mode, and
it controls the whole attack process, (b) RS2117: the SPDT
analog switch with 400 MHz bandwidth that switches between
attack modes, (c) SD flash: has a 8GB flash memory that
can accommodate around 200 000 8-bit gray-scale fingerprint
images, and (d) B2B connector: connects to the smartphone
motherboard and fingerprint sensor’s FPC on both sides. We
also complement the adversarial equipment with an auto-
clicker and an operating board to make the attack process
automatic and adjustable. The auto-clicker is used to wake up
the sensor automatically so that the large-scale attack can be
simplified as injecting a pre-prepared fingerprint dictionary in

7

the SD flash. It works at a speed controlled by the STM32F412
MCU and make a click every second in this case to provide
enough time for the FDA of each attempt. The operating
board offers a user interface for adversaries to update the
fingerprint dictionary, and also support switching between
collecting fingerprints and launching attacks. The total cost
of the equipment is around 15 dollars.

Fig. 8: Example of implementing automatic fingerprint brute-
force attack, which uses a suppressible attacking board, a
hardware auto-clicker, and an optional operating board.

The implementation is made suppressible that the attacking
board can be built-in. As in the figure, the connector connects
to the FPC with female header on the front side and connects
to the motherboard with male header on the back side. With
the suppressibility, we illustrate another attack vector that
adversaries can place the attacking board secretly to steal fin-
gerprint images. Consider the following scenario: the attacking
board is built-in on a smartphone that lure victims to use
fingerprint authentication, for example, when the smartphone
is supplied by black market smartphone sellers and fluky
fingerprint collection companies; those adversaries are capable
of gathering a myriad of fingerprint images that are directly
captured by SFA sensors. We propose that they may use the
gathered images to brute-force arbitrary devices even without
style alignment. We trial the possibility by capturing M +N
fingerprint images from another OnePlus 7 Pro to unlock the
victim device. Results are horrible that no error happens and
the success ratio is 100%. Though the assumption is stronger
than what we describe in Section V-C (called “zero-knowledge
adversaries” in this context), the damage is non-negligible.

Universal Attack Process. In summary, with the help
of BRUTEPRINT, a universal brute-forcing process for zero-
knowledge adversaries only involves 4 steps: (1) remove the
rear cover of a victim smartphone and cut off the connection of
fingerprint B2B to plant the adversarial equipment; (2) switch
the operating board to the state of collecting fingerprints
and make genuine attempts to collect raw fingerprint images;
(3) generate a fingerprint dictionary with the collected raw
fingerprint images and the fingerprint database that they own;
(4) use the operating board to import the fingerprint dictionary
into the SD flash and switch the state to launch automatic

fingerprint brute-force attack. The process is exactly what we
show in Figure 2. However, with an inexpensive implemen-
tation, BRUTEPRINT make the inner attack logic transparent.
Therefore, the threat is unprecedented that even a beginner
can launch fingerprint brute-force attack without any prior
knowledge about the victim.

VI. EXPERIMENTS ACROSS SFA SYSTEMS

The brute-force attack is based on the infinite bypassing
chances and the feasibility of fingerprint image hijacking. In
general, to bypass attempt limit, CAMF exploits the widely
accepted Multi-sampling and Error-cancel mechanisms while
MAL leverages some careless implementation for improving
user experience. Fingerprint image hijacking can be carried
out since the fingerprint data on SPI is insecure (e.g., un-
encrypted). In this section, we broadly analyze popular SFA
systems. We show the overall results in Section VI-A, discuss
some detailed approaches and findings in Section VI-B, and
estimate the success rate of BRUTEPRINT in Section VI-C.

A. Empirical Analysis

1) Experimental Setup: To extend the case study to gen-
eral SFA systems and different applications, BRUTEPRINT
addresses the following research questions:
• RQ1. For attempt limit bypassing, do CAMF and MAL

vulnerabilities exist in those latest versions of popular
(vendor-customized) OSs and are they exploitable?

• RQ2. For SPI MITM attack, is the hardware imple-
mentation compatible for attacking fingerprint sensors
embedded on different smartphone models?

• RQ3. For fingerprint data encoding and decoding, is it
feasible to reverse engineer the communication protocol
between sensor and processor on all smartphone models?

• RQ4. Besides the ScreenLock application, can fingerprint
brute-force attack be performed on high-level security
required Apps (i.e., for Payment and Privacy)?

For RQ1, CAMF is validated through the number of samples
within an attempt and the effect of possible Error-cancel
triggers (i.e., checksum modification, glitch attack); MAL is
examined by the feedback of fingerprint sensors in lockout
mode. For RQ2, we check the preliminary for SPI MITM
that hot plugging the fingerprint sensor is supported; the
adaption for different smartphone models depends on how the
fingerprint sensor is connected to the processor through FPC.
For RQ3, most of the protocols are not complicated and can be
guessed as in the case study; since the protocol design relies
more on the sensor (especially its type and manufacturer), we
validate the feasibility on five representatives.

The necessity of studying RQ4 is that a fingerprint gained
in ScreenLock (A1) may not pass the authentication for Pay-
ment (A2) and Privacy (A3) Apps. Reasons include that: the
matching algorithm may uses higher reference thresholds for
A2 and A3; some Apps use dedicated fingerprint enrollment,
for example, Secure Folder on the Samsung device. The attack
may also achieve different impacts on A2 and A3 since more
security strategies may be adopted inside Apps.

8

TABLE III: Basic information about the 10 experimental devices. The rmax is the maximum number of fingerprints that can
be enrolled on the device. The statistics of attempt limit is given for three typical types of fingerprint applications. Some values
represented with 5× x mean that a 30-second waiting period is enforced between x times of 5 unsuccessful attempts.

Device Sensor Attempt Limit

Manuf./Model OS/Ver. TEE rmax Manuf. Type ScreenLock1 Payment2 Privacy3

Xiaomi Mi 11 Ultra Android 11 QTEE 5 Goodix Optical (ultra-thin)* 5×4 5×4 5
Vivo X60 Pro Android 11 Kinibi 5 Goodix Optical* 5 ∞ 5
OnePlus 7 Pro Android 11 QTEE 5 Goodix Optical* 5 5 5

OPPO Reno Ace Android 10 QTEE 5 Goodix Optical* 5×4 5×4 5×4
Samsung Galaxy S10+ Android 9 Knox 4 Qualcomm Ultrasonic* 5×10 5 5×10

OnePlus 5T Android 8 QTEE 5 Goodix Capacitive 5×4 5×4 5×4

Huawei Mate30 Pro 5G HarmonyOS 2 TrustedCore 5 Goodix Optical* 5×4 5×∞ 5×∞
Huawei P40 HarmonyOS 2 TrustedCore 5 Novatek Optical* 5×4 5×∞ 5×∞

Apple iPhone SE iOS 14.5.1 Secure Enclave 5 AuthenTec Capacitive 5 5 5
Apple iPhone 7 iOS 14.4.1 Secure Enclave 5 AuthenTec Capacitive 5 5 5

* In-display fingerprint sensors that are incorporated under the screen.
1 A1: unlock the screen of the devices.
2 A2: make payments on pre-installed payment apps. Since OnePlus Pay is made exclusive to some countries, we use PayPal instead. For other models, the

specific apps are Mi Pay, Vivo Pay, OPPO Pay, Samsung Pay, Huawei Pay, and Apple Pay.
3 A3: login pre-installed privacy protection apps. Hidden Folders for Xiaomi, Secure Folder for Samsung, File Safe for Vivo, Privete Safe for OPPO,

LockBox for OnePlus, Safe for Huawei and Notes for Apple.

TABLE IV: Attributes related with the attacks, discovered vulnerabilities, and the influence of the attacks on the experimental
devices. The examined Attributes include Samples (the number of samples in Multi-sampling), Cancel (the existence of Error-
Cancel), Hot-Plug (support hot-plugging or not), Decode (can be decoded or not), fSPI (data transmission frequency on SPI).
Three Attacks, namely Bypassing (attempt limit bypassing), Hijacking (fingerprint image hijacking), and Brute-force (fingerprint
brute-force attack), are tested on the three types of applications. Except Hijacking of which the results do not differ among
applications, we represent the attack results with a tuple corresponding to the application A1, A2, and A3.

Attributes Attacks

Samples Cancel Hot-Plug Decode fSPI (MHz) Vulnerability Bypassing Hijacking Brute-force

Xiaomi Mi 11 Ultra 2 4 4 4 32 CAMF, MAL (∞,∞,∞) 4 (4,4,4)
Vivo X60 Pro 3 4 4 4 25 CAMF, MAL (∞,∞,∞) 4 (4,4,4)
OnePlus 7 Pro 4 4 4 4 25 CAMF (∞,∞,∞) 4 (4,4,4)
OPPO Reno Ace 3 4 4 4 25 CAMF (∞,∞,∞) 4 (4,4,4)
Samsung Galaxy S10+ 2∼4* 4 4 4 24 CAMF (∞,∞,∞) 4 (4,4,4)
OnePlus 5T 2 4 4 4 4.8 CAMF (∞,∞,∞) 4 (4,4,4)

HUAWEI Mate30 Pro 5G 2 N/A† 4 4 23 MAL (∞,∞,∞) 4 (4,4,4)
HUAWEI P40 2 N/A† 4 4 23 MAL (∞,∞,∞) 4 (4,4,4)

Apple iPhone SE 3 4 4 8 7.7 CAMF (15,15,15) 8 (8,8,8)
Apple iPhone 7 3 4 4 8 7.7 CAMF (15,15,15) 8 (8,8,8)
* The number is a range because it varies empirically, where 4 is the most frequent case.
† Not triggered by the tested Error-cancel triggers.

2) System Selection: Experiments are done on 10 off-the-
shelf smartphones, where we cover those latest OS versions
and fingerprint sensor types on the market with our best
effort. Basic information about the selected systems are given
in Table III. Besides the OnePlus discussed in case study,
we select devices from top-5 smartphone manufacturers [35],
i.e., Samsung, Xiaomi, Apple, OPPO, and Vivo. The specific
models are chosen according to their fingerprint sensors.
For the scanning technology of SFA sensors, the pioneer
is capacitive scanning. A representative is Touch ID, for
which we use two Apple models. To complement, we also
pick an Android model equipped with capacitive sensor. The
increasing applications of in-display techniques is the latest
trend, where Goodix dominates the market and adopts optical
scanning. We choose Mi 11 Ultra since it represents the most

current advance in ultra-thin optical sensor. A small branch
of in-display sensors adopt ultrasonic scanning developed by
Qualcomm, for which we choose a Samsung Glaxy S10+.
Two models from Huawei are also selected since they use the
recently released HarmonyOS and embed fingerprint sensors
supplied by different vendors.

Values of Attempt Limit. As shown in the table, limiting
5 fingerprint attempts in a period is common on off-the-
shelf smartphones. Many applications also follow Google’s
biometric framework to implement x times of the 5-attempt
period before permanently lock the fingerprint authentication,
where a 30-second waiting period of temporary lockout is
enforced between each of them. In the following paper, we
reference AOSP to represent the temporary lockout and the
permanent lockout with LOCKOUT TIMED and LOCK-

9

OUT PERMANENT, respectively.
3) Experimental Results: The overall results are given in

Table IV, showing that each targeted SFA system has at least
one vulnerability. Except for iPhone, fingerprint brute-force
attack is feasible on all the tested applications on all the
smartphones. Since the feasibility is based on infinite attempt
limit bypassing and successful fingerprint image hijacking, we
discuss the two attacks as follows.

Attempt Limit Bypassing. CAMF Vulnerability is found
on almost all devices while MAL affects four specific smart-
phone models. All the Android devices are exposed to un-
limited fingerprint attempts with our CAMF exploitation.
Specifically, they have Multi-sampling mechanism that ac-
quires ≥ 2 fingerprint images within one attempt, and Error-
cancel is validated with the triggers. On the iOS devices,
CAMF exploitation is used to bypass the attempt limit of
5 to allow ultimately 15 attempts. We infer that additional
strategies related with Error-cancel prevent us from unlimited
bypassing. For HarmonyOS, we are not sure if Error-cancel
holds because the tested triggers cannot bring a supposed can-
cellation. However, we make more than 90 additional attempts
by leveraging MAL in LOCKOUT TIMED. With another
improper implementation related with passcode lockout, we
further extend the numbers to infinity.

Fingerprint Image Hijacking. Fingerprint image hijacking
is feasible on all devices except for Apple, which is the
only one that encrypts fingerprint data on SPI. The hard-
ware implementation used in case study is compatible for
other smartphone models. First, we found all the smartphone
fingerprint sensors have hot-plug capabilities. Second, their
SPI buses all adopt the four-wire design with single master
and single slave, where the transmission speeds are less than
38 MHz. Note that the suppressibility is unnecessary in the
universal attack scenario, so connecting the attacking board to
the sensor with an extension FPC would be adoptable on all
devices. A slightly different connection found on the Samsung
device is that the FPCs of touch screen and fingerprint sensor
are integrated together, but the adversarial equipment still
works as both the screen and the sensor go back to normal
after hot plugging. As shown in Figure 9, for each type of
fingerprint sensor, we successfully get the fingerprint image
reverse engineered from the captured data. Moreover, as both
the Mate 30 Pro and the OnePlus 7 Pro use fingerprint sensors
provided by Goodix, we find the protocols share much in
common. Therefore, with a handful of smartphone fingerprint
sensor manufacturers on the market, we believe there won’t be
much work for the hijacking on untested smartphone models.

B. Details and Findings

1) MAL-based Bypassing: The Xiaomi, Vivo, and Huawei
devices are validated to have MAL vulnerability in A1. As the
Huawei devices only gets MAL, we take them for example to
illustrate the MAL-based bypassing.

The inference attempt is unlimited essentially but cannot get
chance to unlock the screen when fingerprint authentication
is in LOCKOUT PERMANENT. In this context, we call

(a) Capacitive (b) Optical (c) Ultra-thin (d) Ultrasonic

Fig. 9: Hijacked images for different types of fingerprint sen-
sor. The example smartphone model is OnePlus 5T, OnePlus 7
Pro, Xiaomi Mi 11 Ultra, Samsung Galaxy S10+, respectively.

the inference attempt made in LOCKOUT TIMED as valid
since a discovered matched fingerprint can be reused in the
next 5-attempt period to unlock the screen. We keep making
attempts in LOCKOUT TIMED and launch a side-channel
attack on SPI to infer the authentication results. The side-
channel information is related with the number of samples
within an attempt. The fingerprint sensor acquires 2 samples
unless the fingerprint matches and stops at the first acquisition.
Assuming that one attempt is made per second, we can make
30×(x−1) = 90 valid inference attempts. The number would
be larger if the attempt rate is increased. Therefore, the number
of available attempts is enlarged from 20 to more than 110.
Note that since Hijacking is feasible on the two devices, the
110 available attempts means that 220 fingerprint images can
be submitted.

2) Bypassing Touch ID: As Touch ID encrypts the data on
SPI and use a more secure TEE implementation (i.e., Secure
Enclave), we fail to achieve fingerprint image hijacking on
them. However, we speculate the Error-cancel mechanism in
the closed source iOS with glitch attack. The proposed CAMF
exploitation compromise the attempt limit of 5 and make the
actual number of available attempts 15.

TABLE V: The UI response (be unlocked, no retry prompt)
for an attempt on Touch ID. Different screen status includes
Sleep and Wake. Different modes for each attempt includes
pressing with a enrolled (n) or unenrolled (n) finger under
Normal circumstances and our Glitch attack.

Sleep Wake

Normal n 4* 4 4 4

n 8 8* 8 8

Glitch n 4* 4 4 4

n 8 4 8 8

* The UI responses display when less than 3 consecutive CAMF attempts
happen before the current attempt.

Sniff a Cancelable State. We firstly check whether the
Error-cancel mechanism exists in iOS. To trigger possible
cancellations, we consider the glitch attack discussed in Sec-
tion IV-B. Figure 12 in Appendix A is an example of a
successfully cancelled attempt. That is, we carefully inspects
the MISO signal and apply disturbance at the moments when
fingerprint data of a sample is being transmitted. Touch ID

10

acquires 3 samples at most, where we find an attempt is only
cancelable when the glitch is injected in 2 out of them.

We perform black-box testing and inspect the feedback on
the User Interface (UI) of iPhone. As shown in Table V, the in-
consistency appears when we authenticate with an unenrolled
finger on the Sleep device in Glitch mode, i.e., no retry prompt
displays while the device is still locked. As all other situations
in Glitch mode give the same feedback as Normal, we can infer
that this inconsistency is a case of Error-cancel. Thus, we call
the condition (Glitch, Sleep) where a failed attempt gets no
UI response a cancelable state.

Exploit CAMF. For CAMF exploitation, we further analyze
the cancelable state in order to fulfill two requirements:
• The count of failed attempts is increased if and only if

a retry prompt displays. The methodology is to count
the number of attempts between a successful one and the
last failed one that triggers passcode requirement, where a
CAMF attempt is performed in the middle. Results stably
show that 6 attempts with an unregistered finger can be
made before the passcode requirement.

• Matched fingerprints can still unlock the device after
CAMF attempts. We validate this by authenticating with
the enrolled finger after certain sequences of CAMF
attempts and failed attempts. Experiments suggest that
more than 2 consecutive CAMF attempts would lead to
a lazy status where any following authentication process
gives no response, especially for the Sleep screen con-
dition. For the Wake screen condition, the authentication
typically reopens after 1˜3 finger-pressings, and the status
can be reset once a Normal attempt occurs.

Therefore, we can infer that Touch ID is equipped with a
counter relevant to Error-cancel, which may possibly serve
to prevent ghost touches or minor hardware failures. We
successfully make 15 actual attempts, which is three times
as much as the attempt limit supposes. The whole process is
described in two sub-steps as (a) repeat the CAMF attempt
twice when the screen is Sleep; (b) make Normal attempts till
a UI response is given when the screen is Wake. A Success
authentication result in any of the two steps can break the
process. The second sub-step is spent to ensure that next
matched fingerprint can unlock the device, where adversaries
can repeat from the first step until reaching the attempt limit.

3) Shared Fail Counter: We give a finding that the counter
of failed fingerprint attempts is shared among applications for
each user. The trace can be found in AOSP as in Listing 2,
where the integer array mFailedAttempts and the Boolean
array mTimedLockoutCleared are updated for an userId.
The issue can be leveraged to undermine the fingerprint
authentication for Apps. Consider a scenario where an attacker
has the ability to unlock the victim device, for example, when
the passcode/fingerprint for screen lock (A1) is leaked. He may
submit unlimited fingerprint attempts to gain authorization in
apps by resetting the fail counter with a screen unlocking
attempt. We validate the method on all of the 10 devices:
at least one of A2 and A3 can be bypassed on each device
except for Samsung, while many third-party apps including

PayPal are bypassed on all the devices. In addition, the finding
helps with improving the speed of brute-forcing A2 and A3
on the Huawei devices. Recall that the two Huawei devices
is bypassed with MAL exploitation for A1, while the attempt
is originally unlimited in A2 and A3 except for the waiting
period. With the exploitation of the shared fail counter, the
waiting period is successfully bypassed.

1 @Override / / com . a n d r o i d . s e r v e r . b i o m e t r i c s .
f i n g e r p r i n t . F i n g e r p r i n t S e r v i c e

2 p r i v a t e vo id r e s e t F a i l e d A t t e m p t s F o r U s e r (
b o o l e a n c l e a r A t t e m p t C o u n t e r , i n t u s e r I d)
{ / * At tempt c o u n t e r s h o u l d on ly be
c l e a r e d when Keyguard goes away or when a

b i o m e t r i c i s s u c c e s s f u l l y a u t h e n t i c a t e d .
* /

3 . . .
4 i f (c l e a r A t t e m p t C o u n t e r) {
5 m F a i l e d A t t e m p t s . p u t (u s e r I d , 0) ;
6 }
7 mTimedLockoutCleared . p u t (u s e r I d , t r u e) ;
8 . . .
9 }

Listing 2: User relevant fail counter in AOSP.

C. Success Rate of Fingerprint Brute-force Attack

For brute-force hacking, the practicality is closely related
to the actual time it takes. In particular, as most Android
smartphone models observe 72-hour idle timeout before fall-
back to primary authentication, the fingerprint brute-force
attack must take no longer than that to succeed. For the 6
devices where the CAMF-based fingerprint brute-force attack
is feasible for A1, we estimate the success rate defined in
Equation 1. The FIPS in the equation is calculated with
1/Tatt, where Tatt represents the time cost of one CAMF-
based attempt. To minimize the time, we give priority to
the glitch attack in triggering Error-cancel if the fingerprint
acquisition is terminated at the glitch point. Therefore, the
attempt time can be estimated as

T̄att = t0 + (t̄1 + t̄2) · n+ t3 + d (2)

which consists of five components as in Figure 10: t0 is the
time between finger pressing and the first transmission of
fingerprint data; t1 and t2 sum up the time for transmitting
one of the n valid samples on MISO, which is spent on the
fingerprint data and the time interval, respectively; t3 stands
for the cost between the glitch (if exists) and the end of the
pressing; d is the time delay (e.g., response time of the auto-
clicker) between each attempt.

Results. We show the success rate over 36 hours of brute-
forcing the 6 devices in Figure 11. In the most difficult case
where the victim smartphone has only one fingerprint enrolled,
the expected values of the success time fall in a range of
2.9˜13.9 hours. Within an half of the idle timeout, nearly all
the tested devices can be unlocked with an approximate 100%
success rate. The Mi11 device is the only exception where the
success rate still achieves 92.51%. Under the situation where
the victim enrolls the maximum number of fingerprints, the
speed is greatly increased and the expected time ranges from

11

Fig. 10: Time cost of one CAMF-based attempt.

0.66 to 2.78 hours. To conclude, our attack is practical and
not limited by the design of the idle timeout.

Fig. 11: Success rate of fingerprint brute-force attack over
time. The number of enrolled fingerprints r is set to 1 for
the solid lines and rmax (see Table III) for the dash lines. The
E(T) is the expected value of the time (in hour) taken by a
successful attack.

VII. MITIGATION

We discuss defense strategies in terms of the software
framework and the hardware protocol as follows:

CAMF Check. To defend against the attempt limit by-
passing, we propose to detect CAMF exploits by setting an
additional limit for the error-cancel (see Algorithm 1). For
each attempt, we check whether a cancellation happens and
increase the security level once the historical cancel number
reaches a threshold. Specifically, the smartphone can only be
unlocked with matched fingerprint images when there is no
cancellation in an attempt (Lines 8-10). It’s worth noting that
the proposed method is more secure than what we inferred
from Touch ID in two ways: 1) the cancel counter cannot be
cleared with a failed attempt, 2) all fingerprint acquisitions
across a single attempt are checked even if a successful
matching has occurred. This design also balances usability
with security as the unlocking time is only increased by minor
cancel checks while the FRR is not influenced.

Secure Channel. To prevent MITM attacks, we suggest
that the vendors of fingerprint sensors and smartphones are
responsible to encrypt crucial data during communication.
Most importantly, the pin for SPI data input, i.e., MISO,
should carry high entropy messages. To protect from side-
channel attacks, we recommend that fingerprint acquisition
should behave consistently that no relevance to the matching
results can be inferred.

In other aspects, it’s also better to take precaution against
side-channel attacks in UI level. In fact, we find the animation
of fingerprint acquisition leaks the authentication results on
many smartphones, i.e., the animation time is shorter in a
matched case. Moreover, the MAL-based bypassing teaches
a lesson that the hardware implementation of actual authenti-
cation should strictly follow the software logic.

Algorithm 1: Attempt limit with CAMF check

1 attempt count← 0;
2 cancel count← 0;
3 while attempt count<ATTEMPT LIMIT do
4 F = AquireFingerprints();
5 if cancel count<CANCEL LIMIT then
6 if Verify(F) then
7 return UNLOCK
8 else
9 if Verify(F) and not CheckCancel(F) then

10 return UNLOCK
11 if CheckCancel(F) then
12 cancel count← cancel count+ 1;
13 else

// Prompt “Try Again”
14 attempt count← attempt count+ 1;

// Prompt “Passcode Requirement”
15 return LOCKOUT

VIII. DISCUSSION

We discuss more concerns about the proposed attack, in-
cluding the application, influence, and our future work.

Presentation Attack Enhancement. Besides fingerprint
brute-force attacks that require no prior knowledge about vic-
tims, the proposed method is also able to enhance traditional
presentation attacks. The first point is that attempt limit is
no longer a barrier for presentation attacks on smartphones.
Attackers can traverse different materials and printing tech-
niques to find the best for making artificial replicas. More
importantly, the laborsome fabrication process can be replaced
with image-level editions to some extend. The benefits are
gained in two ways. To relieve the presentation from real
objects, attackers can directly present a fingerprint latent image
to the system. In other words, the attack is performed at
the back-end transmission channel of the fingerprint sensor
rather than the front-end. To improve the attack performance,
attackers can transform the images acquired by the fingerprint
sensors. They can apply image rotations to simply bypass

12

the liveness detection guarded with a transformation matrix.
Another example is trying fingerprint image enhancement
algorithms, e.g., Gabor filter, with various hyper-parameters
to enhance the matching rate.

Other Biometric Authentication Systems. As Multi-
sampling mechanism is considered as one of the best practices
in biometric authentication systems, there is reason to suspect
that CAF also exists in other systems based on face, iris and
palm biometric. In fact, from AOSP code, we have already
found the integration of the biometric authentication frame-
work in android.hardware.biometrics.BiometricManager
and android.server.biometrics.BiometricServiceBase pack-
ages, where Error-cancel mechanism can also be seen. To
examine the vulnerability to brute-force attacks and make
exploitation, some hardware-related adaption should be made
as the transmission channel differs among biometric sensors.
Nevertheless, the proposed mitigation measures work with all
biometric systems.

Fingerprint Dictionary Generation. While DeepMaster-
Print [13] proposes that training a Generative Adversarial
Network (GAN) on real fingerprint image databases is possible
to generate a synthetic partial fingerprint dictionary for attacks,
they fail to consider the security level on off-the-shelf SFA
systems. Specifically, only 1.11% attacks are shown successful
on VeriFinger [1] when the FAR is cut down to 0.01%, but
the criterion is required to be 0.002% for SFA. Instead of
generating partial fingerprint images, we find another way
that use GAN to transfer the databases into styles that are
acceptable for SFA systems. The method is shown effective
on a real system, but there are two aspects where we aim
to improve in the future. Firstly, the brute-forcing time relies
on the fingerprint diversity of training databases, and we can
reduce the time through transferring synthetic fingerprints. The
idea from DeepMasterPrint can be borrowed to synthesize
fingerprints that trigger more collisions, and we believe it’s
also probable to successfully attack smartphones where the
attempt number is not enlarged to infinite. Secondly, we do
a case study to show the effectiveness of brute force with
the transferred dictionary due to the time limit. In our next
work, we plan to do large-scale experiments on the algorithm
vulnerabilities across SFA systems.

IX. RELATED WORK

Prior works have proposed different types of presentation
attacks that target traditional fingerprint authentication sys-
tems [14], [42], [49]. The most widely adopted methodology
is to impersonate a legitimate user via artefacts [27], such as
latent print images [15] and gummy fingers [10], [21], [33].
These works differ from each other mostly on the chosen
materials and printing techniques for fingerprint spoofing
in front of the sensor. In comparison, our work places an
attacking board in the sensor’s transmission channel to inject
arbitrary fingerprint images. In this way, we avoid delicate
crafts and enhance the attack through effortless image edition.

On off-the-shelf SFA systems, a few presentation attacks
were reported successful in industry [5]. For instance, the

CCC team [19] fabricated a latex sheet after photographing
a victim’s fingerprint and bypassed the iPhone 5S Touch ID.
A recent study from Cisco [39] selected fabric glue to make
3D printed fingers, which claimed to bypass 8 out of 13 tested
devices within 20 attempts. In order to succeed before reaching
the attempt limit, these attacks take skillful hackers laborious
efforts to collect and fake victim’s fingerprint. Zhang et al. [50]
study 4 types of security pitfalls on SFA that may be exploited
by malware and is the first (in 2015) to discuss the attacks
in view of the authentication framework. However, as the
software security in SFA is much enhanced especially with
securer TEE implementations, follow-on works hardly appear.
Our work discovers defects in SFA frameworks that affect
even the most advanced software and hardware techniques. We
make exploitation to achieve fingerprint brute-force attacks,
becoming free of prior knowledge about victim’s fingerprint.

Prior literature makes efforts to defeat presentation attacks
through liveness detection [17], [20], [22]. Hardware-based
methods use additional or specialized sensors to capture
biological characteristics [9], [11], [34], software-based ap-
proaches leverage features such as texture to separate live and
dummy fingerprint images [16], and many recent works are
learning-based [36]. Wu et al. [48] further propose to defend
puppet attacks by monitoring the acceleration and rotation
angle of mobile devices. In our experiments, we bypass the
liveness detection module on off-the-shelf smartphones with
the help of CycleGAN.

X. CONCLUSION

This paper proposes fingerprint brute-force attacks on off-
the-shelf smartphones. We discover vulnerabilities in SFA
ecosystem that the fault-tolerant mechanism / careless user-
friendly implementation can be exploited through the insecure
transmission on SPI to fool the unreliable authentication
algorithms. We validate the attacks on 10 representative smart-
phones, where all of them are affected to some extent.

With the proposed attack, adversaries can brute-force the
fingerprint authentication on arbitrary victim smartphone to
unlock the device and cheat many security apps. In addition,
the attack method can be used to enhance presentation at-
tacks and may also applies to other biometric systems. The
unprecedented threat needs to be settled in cooperation of both
smartphone and fingerprint sensor manufacturers, while the
problems can also be mitigated in OSs. We hope this work
can inspire the community to improve SFA security.

13

REFERENCES

[1] Verifinger. https://www.neurotechnology.com.
[2] Fvc2004 databases, 2004. http://bias.csr.unibo.it/fvc2004/databases.asp.
[3] About touch id advanced security technology, 2017. https://support.

apple.com/en-us/HT204587.
[4] CVE-2019-17668, 2019. http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2019-17668.
[5] Geekpwn, 2019. http://2019.geekpwn.org/en/index.html.
[6] CVE-2020-11600, 2020. http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-11600.
[7] CVE-2020-7958, 2020. http://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-7958.
[8] CVE-2021-22494, 2021. http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2021-22494.
[9] Athos Antonelli, Raffaele Cappelli, Dario Maio, and Davide Maltoni.

Fake finger detection by skin distortion analysis. IEEE Transactions on
Information Forensics and Security, 1(3):360–373, 2006.

[10] S. S. Arora, A. K. Jain, and N. G. Paulter. Gold fingers: 3d targets
for evaluating capacitive readers. IEEE Transactions on Information
Forensics and Security, 12(9):2067–2077, 2017.

[11] Denis Baldisserra, Annalisa Franco, Dario Maio, and Davide Maltoni.
Fake fingerprint detection by odor analysis. In International Conference
on Biometrics, pages 265–272. Springer, 2006.

[12] Precise Biometrics. Understanding biometric performance evaluation.
URL: https://precisebiometrics. com/wp-content/uploads/2014/11/White-
Paper-Understanding-Biometric-Performance-Evaluation. pdf (pristu-
pljeno: srpanj 2018.)[10], 2014.

[13] Philip Bontrager, Aditi Roy, Julian Togelius, Nasir Memon, and Arun
Ross. Deepmasterprints: Generating masterprints for dictionary attacks
via latent variable evolution. In 2018 IEEE 9th International Conference
on Biometrics Theory, Applications and Systems (BTAS), pages 1–9.
IEEE, 2018.

[14] Edwin Bowden-Peters, Raphael C-W Phan, John N Whitley, and David J
Parish. Fooling a liveness-detecting capacitive fingerprint scanner. In
Cryptography and Security: From Theory to Applications, pages 484–
490. Springer, 2012.

[15] Kai Cao and Anil K Jain. Hacking mobile phones using 2d printed
fingerprints. Dept. Comput. Sci. Eng., Michigan State Univ., East
Lansing, MI, USA, Tech. Rep. MSU-CSE-16-2, 2016.

[16] Tarang Chugh, Kai Cao, and Anil K Jain. Fingerprint spoof buster:
Use of minutiae-centered patches. IEEE Transactions on Information
Forensics and Security, 13(9):2190–2202, 2018.

[17] Tarang Chugh and Anil K Jain. Fingerprint spoof detector generalization.
IEEE Transactions on Information Forensics and Security, 16:42–55,
2020.

[18] Gregory Fiumara, Patricia Flanagan, Matthew Schwarz, Elham Tabassi,
and Christopher Boehnen. National institute of standards and technology
special database 301: Nail to nail fingerprint challenge dry run. Technical
Note 2002, National Institute of Standards and Technology, July 2018.

[19] Frank. Chaos computer club breaks apple touchid, 2013. https://www.
ccc.de/en/updates/2013/ccc-breaks-apple-touchid.

[20] Luca Ghiani, David A Yambay, Valerio Mura, Gian Luca Marcialis,
Fabio Roli, and Stephanie A Schuckers. Review of the fingerprint
liveness detection (livdet) competition series: 2009 to 2015. Image and
Vision Computing, 58:110–128, 2017.

[21] R Blanco Gonzalo, Barbara Corsetti, Ines Goicoechea-Telleria, Anas
Husseis, Judith Liu-Jimenez, Raul Sanchez-Reillo, Teodors Eglitis,
Elakkiya Ellavarason, Richard Guest, Chiara Lunerti, et al. Attacking a
smartphone biometric fingerprint system: A novice’s approach. In 2018
International Carnahan Conference on Security Technology (ICCST),
pages 1–5. IEEE, 2018.

[22] J. G. Herrero, Julian Fierrez, and J. Ortega-Garcia. Vulnerabilities in
biometric systems: Attacks and recent advances in liveness detection.
2007.

[23] Huawei. Security advisory - fingerprint unlocking vulnera-
bility on smartphones, 2018. https://www.huawei.com/br/psirt/
security-advisories/2018/huawei-sa-20180203-01-fingerprint-en.

[24] Google Inc. Android 6.0 compatibility definition, 2015. https://source.
android.google.cn/compatibility/6.0/android-6.0-cdd.pdf.

[25] Mordor Intelligence. Consumer biometrics market - growth, trends,
covid-19 impact, and forecasts (2021 - 2026). Technical report, Mordor
Intelligence, 2021.

[26] ISO/IEC. ISO/IEC 19795-1:2006 Information technology — Biometric
performance testing and reporting — Part 1: Principles and framework.
ISO/IEC, 2006.

[27] ISO/IEC. ISO/IEC 30107-1:2016 information technology: biometric
presentation attack detection - part 1: framework. ISO/IEC, 2016.

[28] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
image translation with conditional adversarial networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 1125–1134, 2017.

[29] Young-Hoo Jo, Seong-Yun Jeon, Jong-Hyuk Im, and Mun-Kyu Lee.
Security analysis and improvement of fingerprint authentication for
smartphones. Mobile Information Systems, 2016, 2016.

[30] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In European conference on
computer vision, pages 694–711. Springer, 2016.

[31] Jascha Kolberg, Marcel Grimmer, Marta Gomez-Barrero, and Christoph
Busch. Anomaly detection with convolutional autoencoders for finger-
print presentation attack detection. IEEE Transactions on Biometrics,
Behavior, and Identity Science, 3(2):190–202, 2021.

[32] Anthony J Mansfield and James L Wayman. Best practices in testing
and reporting performance of biometric devices. 2002.

[33] Tsutomu Matsumoto, Hiroyuki Matsumoto, Koji Yamada, and Satoshi
Hoshino. Impact of artificial ”gummy” fingers on fingerprint systems.
In Optical Security and Counterfeit Deterrence Techniques IV, volume
4677, pages 275–289. International Society for Optics and Photonics,
2002.

[34] Yaseen Moolla, Luke Darlow, Ameeth Sharma, Ann Singh, and Johan
Van Der Merwe. Optical coherence tomography for fingerprint presen-
tation attack detection. In Handbook of Biometric Anti-Spoofing, pages
49–70. Springer, 2019.

[35] Canalys Newsroom. Xiaomi becomes number two smartphone vendor
for first time ever in q2 2021, 2021. https://www.canalys.com/newsroom/
global-smartphone-market-q2-2021.

[36] Rodrigo Frassetto Nogueira, Roberto de Alencar Lotufo, and
Rubens Campos Machado. Fingerprint liveness detection using con-
volutional neural networks. IEEE transactions on information forensics
and security, 11(6):1206–1213, 2016.

[37] Unsang Park, Sharath Pankanti, and Anil K Jain. Fingerprint verification
using sift features. In Biometric Technology for Human Identification
V, volume 6944, page 69440K. International Society for Optics and
Photonics, 2008.

[38] PK Plotnikov. Solution for the motion of a symmetric euler gyroscope
for arbitrary initial values of the euler angles using epy kinematic
differential poisson equations. Advances in Theoretical and Applied
Mechanics, 7(2):91–111, 2014.

[39] Paul Rascagneres and Vitor Ventura. Fingerprint cloning:
Myth or reality, 2020. https://blog.talosintelligence.com/2020/04/
fingerprint-research.html.

[40] Eric Setterberg. Before the ink is dry: Correcting biometric spoofing
myths, 2020.

[41] Yahaya Isah Shehu, Ariel Ruiz-Garcia, Vasile Palade, and Anne James.
Sokoto coventry fingerprint dataset. arXiv preprint arXiv:1807.10609,
2018.

[42] Ctirad Sousedik and Christoph Busch. Presentation attack detection
methods for fingerprint recognition systems: a survey. Iet Biometrics,
3(4):219–233, 2014.

[43] Leonidas Spinoulas, Hengameh Mirzaalian, Mohamed E Hussein, and
Wael Abd Almageed. Multi-modal fingerprint presentation attack de-
tection: Evaluation on a new dataset. IEEE Transactions on Biometrics,
Behavior, and Identity Science, 2021.

[44] Bozhao Tan and Stephanie Schuckers. Comparison of ridge-and
intensity-based perspiration liveness detection methods in fingerprint
scanners. In Biometric Technology for Human Identification III, volume
6202, page 62020A. International Society for Optics and Photonics,
2006.

[45] Bozhao Tan and Stephanie Schuckers. Spoofing protection for fingerprint
scanner by fusing ridge signal and valley noise. Pattern Recognition,
43(8):2845–2857, 2010.

[46] SafetyDetectives Cybersecurity Team. Brazil: Millions of records leaked,
including biometric data, 2020. https://www.safetydetectives.com/blog/
antheus-leak-report/.

[47] vpnMentor. Report: Data breach in biometric security platform af-
fecting millions of users, 2019. https://www.vpnmentor.com/blog/
report-biostar2-leak/.

14

https://www.neurotechnology.com
http://bias.csr.unibo.it/fvc2004/databases.asp
https://support.apple.com/en-us/HT204587
https://support.apple.com/en-us/HT204587
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17668
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-17668
http://2019.geekpwn.org/en/index.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11600
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11600
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7958
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7958
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22494
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-22494
https://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
https://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
https://www.huawei.com/br/psirt/security-advisories/2018/huawei-sa-20180203-01-fingerprint-en
https://www.huawei.com/br/psirt/security-advisories/2018/huawei-sa-20180203-01-fingerprint-en
https://source.android.google.cn/compatibility/6.0/android-6.0-cdd.pdf
https://source.android.google.cn/compatibility/6.0/android-6.0-cdd.pdf
https://www.canalys.com/newsroom/global-smartphone-market-q2-2021
https://www.canalys.com/newsroom/global-smartphone-market-q2-2021
https://blog.talosintelligence.com/2020/04/fingerprint-research.html
https://blog.talosintelligence.com/2020/04/fingerprint-research.html
https://www.safetydetectives.com/blog/antheus-leak-report/
https://www.safetydetectives.com/blog/antheus-leak-report/
https://www.vpnmentor.com/blog/report-biostar2-leak/
https://www.vpnmentor.com/blog/report-biostar2-leak/

[48] Cong Wu, Kun He, Jing Chen, Ziming Zhao, and Ruiying Du. Liveness
is not enough: Enhancing fingerprint authentication with behavioral
biometrics to defeat puppet attacks. In 29th USENIX Security Symposium
(USENIX Security 20), pages 2219–2236. USENIX Association, August
2020.

[49] Mingfu Xue, Can He, Jian Wang, and Weiqiang Liu. Lopa: A
linear offset based poisoning attack method against adaptive fingerprint
authentication system. Computers & Security, 99:102046, 2020.

[50] Yulong Zhang, Zhaonfeng Chen, Hui Xue, and Tao Wei. Fingerprints on
mobile devices: Abusing and leaking. In Black Hat Conference, 2015.

[51] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks.
In Proceedings of the IEEE international conference on computer vision,
pages 2223–2232, 2017.

APPENDIX

A. Glitch Attack on Touch ID

To trigger Error-cancel in CAMF exploitation, we use the
glitch attack discussed in Section IV-B. Figure 12 is an CAMF
attempt that successfully bypasses the attempt limit. The Glitch
signal in the figure indicates whether the connection between
fingerprint sensor and processor is valid (High level) or not
(Low level).

Fig. 12: Signals captured during our glitch attack on Touch
ID within one attempt.

15

	I Introduction
	II Background
	II-A Authentication Process
	II-B Security Enhancement
	II-C Evaluation Metrics

	III Attack Framework
	III-A Threat Model
	III-B Attack Overview

	IV Methodology
	IV-A Attempt Limit Bypassing
	IV-A1 CAMF Vulnerability
	IV-A2 MAL Vulnerability

	IV-B Fingerprint Image Hijacking
	IV-C Fingerprint Dictionary Generation

	V Brute-force Attack: A Case Study
	V-A Unlimited Attempt Limit Bypassing
	V-B Successful Fingerprint Image Hijacking
	V-C Effective Dictionary Generation for Brute-force
	V-D Automatic Fingerprint Brute-force Attack

	VI Experiments Across SFA Systems
	VI-A Empirical Analysis
	VI-A1 Experimental Setup
	VI-A2 System Selection
	VI-A3 Experimental Results

	VI-B Details and Findings
	VI-B1 MAL-based Bypassing
	VI-B2 Bypassing Touch ID
	VI-B3 Shared Fail Counter

	VI-C Success Rate of Fingerprint Brute-force Attack

	VII Mitigation
	VIII Discussion
	IX Related Work
	X Conclusion
	References
	Appendix
	A Glitch Attack on Touch ID

