ADVANCED ENCRYPTION STANDARD
The Origins of AES

The principal drawback of 3DES (which was recommended in 1999, Federal Information Processing Standard FIPS PUB 46-3 as new standard with 168-bit key) is that the algorithm is relatively sluggish in software. A secondary drawback is the use of 64-bit block size. For reasons of both efficiency and security, a larger block size is desirable.

In 1997, National Institute of Standards and Technology NIST issued a call for proposals for a new Advanced Encryption Standard (AES), which should have security strength equal to or better than 3DES, and significantly improved efficiency. In addition, NIST also specified that AES must be a symmetric block cipher with a block length of 128 bits and support for key lengths of 128, 192, and 256 bits.

In a first round of evaluation, 15 proposed algorithms were accepted. A 2nd round narrowed to 5 algorithms. NIST completed its evaluation process and published a final standard (FIPS PUB 197) in November, 2001. NIST selected Rijndael as the proposed AES algorithm. The 2 researches of AES are Dr. Joan Daemon and Dr. Vincent Rijmen from Belgium. 

AES Evaluation
Security – 128 minimal key size provides enough security

Cost – AES should have high computational efficiency
The Origins of AES (Cont 1)
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CCURITY

Actual security: compared to other submitted algorithms (at the same key and block size).
«Randomness: The extent to which the algorithm output is indistinguishable from a random
permutation on the input block.
Soundness: of the mathematical basis for the algorithm’s sccurity
«Other security factors: raised by the public during the evaluation proces
attacks which demonstrate that the actual security of the algorithm is e
claimed by the submitter

. including any
s than the strength

COST

“Licensing requirements: NIST intends that when the AES is issued. the algorithm(s)
specified in the AES shall be available on a worldwide, non-exclusive. royalty-free ba

«Computational efficiency: The evaluation of computational cfficiency will be applicable to
both hardware and software implementations. Round 1 analysis by NIST will focus
primarily on software implementations and specifically on one key-block size combination
(128-128): more attention will be paid to hardware implementations and other supported

combinations during Round 2 analysis. Computational efficiency essentially
refers 1o the speed of the algorithm. Public comments on cach algorithm's efficiency
(particularly for various platforms and applications) will also be taken into consideration by
NIST,

Memory requirements: The memory required to implement a candidate algorithm--for
both hardware and software implementations of the algorithm--will also be considered
during the evaluation process. Round 1 analysis by NIST will focus primarily on software

more attention will be paid to hardware implementations during Round 2.

Memory requirements will include such factors as gate counts for hardware

and code size and RAM requirements for software implementations.

key-block size

implementations

implementations





Algorithm and implementation characteristics – this includes variety of considerations, including flexibility, suitability for hardware and software implementations, simplicity
The Origins of AES (Cont 2)
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ALGORITHM AND IMPLEMENTATION CHARACTERISTIC!

ty: Candidate algorithms with greater flexibility will meet the needs of more users
than less flexible ones. and therefore. inter alia, are preferable. However. some extremes of
functionality are of little practical application (e.g.. extremely short key lengths): for those
s. preference will not be given. Some examples of flexibility may include (but are not
limited to) the followin;
a. The algorithm can accommodate additional key- and block-sizes (¢.g.. 64-bit block
sizes. key sizes other than those specified in the Minimum Acceptability Requirements
seetion. [e.g.. keys between 128 and 256 that are multiples of 32 bits. etc.])
b. The algorithm can be implemented securely and efficiently in a wide variety of
platforms and applications (c.g.. 8-bit processors, ATM networks. voice & satellite
HDTV. B-ISDN, etc.).
¢. The algorithm can be implemented as a stream cipher. message authentication code
(MAC) generator. pseudorandom number gencrator. hashing algorithm. ete
«Hardware and software suitability: A candidate algorithm shall not be restrictive in the
sense that it can only be implemented in hardware. If one can also implement the algorithm
efficiently in firmware. then this will be an advantage in the area of flexibility
«Simplicity: A candidate algorithm shall be judged according to relative simplicity of design.

cas

communications





Additional criteria include: general security, software implementations, restricted-space environments, hardware implementations, attacks on implementation (timing attacks), encryption versus decryption, key agility, flexibility, potential for instruction-level parallelism.
The Origins of AES (Cont 3)
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General Security
Rijndael has no known sccurity attacks. Rijndael uses S-boxes as nonlinear components.
Rijndael appears to have an adequate security margin. but has received some criticism
suggesting that its mathematical structure may lead to attacks. On the other hand. the simple
structure may have facilitated its security analysis during the timeframe of the AES

development process.

Software Implementations
Rijndael performs encryption and decryption very well across a variety of platforms.
including 8-bit and 64-bit platforms. and DSPs. However. there s a decrease in performance
with the higher key sizes because of the increased number of rounds that are performed
Rijndael’s high inherent parallelism facilitates the efficient use of processor resources.
resulting in very good software performance even when implemented in a mode not capable
of interleaving. Rijndacl’s key setup time is fast.

stricted-Space Environments
In general. Rijndacl is very well suited for restricted-space environments where either
encryption or decryption is implemented (but not both). It has very low RAM and ROM
requirements. A drawback is that ROM requirements will increase if both encryption and
decryption are implemented simultancously. although it appears to remain suitable for these
parate from encryption,

environments. The key schedule for decryption is

Hardware Implementations
Rijndael has the highest throughput of any of the finalists for fecdback modes and second
highest for non-feedback modes. For the 192 and 256-bit key sizes. throughput falls in
standard and unrolled implementations because of the additional number of rounds. For fully
pipelined implementations. the area requirement increases. but the throughput is unaffected





The Origins of AES (Cont 4)
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Attacks on Implementation:
The operations used by Rijndacl are among the casiest to defend against power and timing
attacks. The use of masking techniques to provide Rijndacl with some defense against these
attacks does not cause significant performance degradation relative to the other finalists. and
its RAM requirement remains reasonable. Rijndal appears to gain a major speed advantag
overits competitors when such protections arc considered.

Encryption vs. Decryption
The encryption and decryption functions in Rijndacl differ. One FPGA study reports that the
implementation of both encryption and decryption takes about 60% more space than the
implementation of encryption alone. Rijndacl’s speed does not vary significantly between
encryption and decryption. although the key setup performance is slower for decryption than
for encryption.

Key Agility
Rijndael supports on-the-fly subkey computation for encryption. Rijndael requires a one-time
exceution of the key sehedule to génerate all subkeys prior to the first decryption with a

pecific key. This places a slight resource burden on the key agility of Rijndacl

Other Versatility and Flexibility
Rijndael fully supports block sizes and key sizes of 128 bits. 192 bits and 236 bits. in any
combination. In principle. the Rijndacl structure can accommodate any block sizes and key
sizes that are multiples of 32, as well as changes in the number of rounds that are specified.

Potential for Instruction-Level Parallelism
Rijndacl has an excellent potential for parallelism for a single block encryption.





THE AES CIPHER
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Key size (words/bytes/bits) 416/128 6/24/192 8/32/256
Plaintext block size (words/bytes/bits) 416/128 416/128 416/128
Number of rounds 10 12 14

Round ke

size (words/bytes/bits) 416/128 416/128 416/128

Expanded key size (words/bytes) H176 521208 60/240





A number of AES parameters depend on the key length (Table 5.3). In the description of this section, we assume the key length of 128 bits. 

Figure 5.1 shows the overall structure of AES.
OVERALL STRUCTURE OF AES
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The input to the encryption and decryption algorithm is a single 128-bit block, this block, in FIPS PUB 197, is depicted as a square matrix of bytes. This block is copied into the State array, which is modified at each stage of encryption or decryption. After the final stage, State is copied to an output matrix. These operations are depicted in Figure 5.2a:
OVERALL STRUCTURE OF AES (Cont 1)
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Figure 5.2 AES Data Structures




Similarly, the 128-bit is depicted as a square matrix of bytes. This key is expanded into an array of key schedule words; each word is 4 bytes and the total key schedule is 44 words for the 128-bit key (Figure 5.2b). Ordering of bytes within a matrix is by column.
Before delving into details, we can make several comments about overall AES structure:

1. This cipher is not a Feistel structure.

2. The key that is provided as input is expanded into an array of 44 words (32-bits each), w[i]. 4 distinct words (128 bits) serve as a round key for each round; these are indicated in Fig. 5.1
3. 4 different stages are used, 1 permutation and 3 of substitution:

· Substitute bytes – Uses an S-box to perform a byte-to-byte substitution of the block

· Shift rows – A simple permutation

· Mix columns – A substitution that makes use of arithmetic over GF(28).

· Add round key – A simple bitwise XOR of the current block with the portion of the expanded key

4. The structure is quite simple. Figure 5.3 depicts the structure of a full encryption round
OVERALL STRUCTURE OF AES (Cont 2)
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5. Only the Add Round Key stage uses the key. Any other stage is reversible without knowledge of the key.

6. The Add Round Key is a form of Vernam cipher and by itself would not be formidable. The other 3 stages together provide confusion, diffusion, and nonlinearity, but by themselves would provide no security because they do not use the key. We can view the cipher as alternating operations of XOR encryption (Add Round Key), followed by scrambling of the block. 
7. Each stage is easily reversible

8. Decryption uses the same keys but in the reverse order. Decryption is not identical to encryption

9. At each horizontal point (e.g., the dashed line) in Figure 5.1, State is the same for both encryption and decryption
10. The final round of both encryption and decryption consists of only 3 stages; it is the consequence of the particular structure of AES.

OVERALL STRUCTURE OF AES (Cont 3)
As was mentioned in Chapter 4, AES uses arithmetic in the finite field GF(28), GF(p^n); p=2; n=8; order 7=8-1; n-1 order with the irreducible polynomial 
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P=7 prime: 7=1*7

4=1*2*2; gcd(4,7)=1

Euler totient function fi(N)=(p-1)*(q-1); fi(p)=p-1; fi(q)=q-1;

Fi(p*q)=f(p)*fi(q); Z2={0,1}; Zn={0,..,n-1}; Z10; Z16={0.,9,a=10,b=11,c=12, d=13, e=14, f=15}; a21=10*16^2+2*16^1+1*16^0
2310=2*10^1+3*10^0=1716=1*16^1+7*16^0=101112=1*2^4+0*2^3+1*2^2+1*2^2+1*2^02=

B d from ZB

1011 10102=x^7+x^5+x^4+x^3+x element of GF(2^8)
D(n-1) D(n-2)..D1 D0=D(n-1)*B^(n-1)+ D(n-2)*B^(n-2)+..+ D(i)*B^(i)+..+D1*B+D0

D(n-1)*x^(n-1)+ D(n-2)*x^(n-2)+..+ D(i)*x^(i)+..+D1*x+D0

2x^5+3x^2+1 =>[2,0,0,3,0,1]=> 200301
+

3x^5+5x^2+x

=

5x^5+8x^2+x+1

2x^5+3x^2+1

-

3x^5+5x^2+x

=

-x^5-2x^2-x+1

2x^5+3x^2+1

+

3x^5+5x^2+x

=

5x^5+8x^2+x+1

-

3x^5+5x^2+x

=

2x^5+3x^2+1

17/3=5.66667; floor(5.667)=5

Floor(x) is the maximal integer not exceeding x

Floor(-1.1)=???-1???incorrect??-2
dividend17/3divisor=(5quotient,2remainder); 

dividend=quotient*divisor+remainder

0<=remainder<divisor

17=5*3+2

0<=R= a mod b = a-Q*b<b
Q=floor(a/b)

A=17, b=3, q=5, r=2

A=q*b+r

a(x)=3x^4+2x+1; b(x)=5x^3+1
a(x)*b(x)=(3x^4+2x+1)*(5x^3+1)=15x^7+10x^4+5x^3+3x^4+2x+1=15x^7+13x^4+5x^3+2x+1 mod 2= x^7+x^4+x^3+1 =>1001 1001 = 0x 99 element of GF(2^8) 

mod 10 Z10
5*7=2 mod 10 =42=> reduce by modulo 10 => 42 mod 10 2

(X^5+x)*(x^4+x+1)=x^9+x^5+x^6+x^2+x^5+x= x^9+x^6+2*x^5+x^2+x= x^9+x^6+x^2+x
	Dividend
	Divisor
	Quotient

	x^9+x^6++x^2+x
-

X^9+x^5+x^4+x^2+x
	X^8+x^4+x^3+x+1
	X quotient

	X^6+x^5+x^4 remainder
	
	

	
	
	


R(x)=A(x) mod B(x)=A(x)-Q(x)*B(x) degree of R(x)<degree of B(x)
A(x)=Q(x)*B(x)+R(x)=x*( X^8+x^4+x^3+x+1)+x^6+x^5+x^4= X^9+x^5+x^4+x^2+x+x^6+x^5+x^4= X^9+x^6+x^2+x
	Dividend
	Divisor
	Quotient

	x^12+x^6+x^5+x^4+x^2+x

xor (-)
X^12+x^8+x^7+x^5+x^4
	X^8+x^4+x^3+x+1
	X^4+1 quotient

	-X^8-x^7+x^6+x^2+x mod 2 =
X^8+x^7+x^6+x^2+x
xor

X^8+x^4+x^3+x+1

X^7+x^6+x^4+x^3+x^2+1 remainder
1101 1101 = 0x DD

	
	

	
	
	


(X^4+1)*( X^8+x^4+x^3+x+1)+ X^7+x^6+x^4+x^3+x^2+1= X^12+x^8+x^7+x^5+x^4+X^8+x^4+x^3+x+1+ X^7+x^6+x^4+x^2+1=
X^12+x^8+x^7+x^5+x^4+X^8+x^4+x^3+x+1+ X^7+x^6+x^4+x^3+x^2+1=

X^12+x^5+x^3+x+x^6+x^4+x^2= X^12+x^6+x^5+x^4+??x^3 +x^2+x 

Substitute Byte Transformation. Forward and Inverse Transformation

The Forward substitute byte transformation, called SubBytes, is a simple table lookup (Figure 5.4a). 
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Substitute Byte Transformation. Forward and Inverse Transformation (Cont 2)
AES defines a 16x16 matrix of byte values, called an S-box (Table 5.4a), that contains a permutation of all possible 256 8-bit values. Each individual byte of State is mapped into a new byte in the following way: The leftmost 4 bits are used as a row value and the rightmost 4 bits are used as a column value. These row and column values serve as indexes into the S-box to select a unique 8-bit output value. For example, the hexadecimal value {95} references row 9, column 5 of the S-box, which contains the value {2a}:
Substitute Byte Transformation. Forward and Inverse Transformation (Cont 3)
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DDSbox=>C1=>DD
AFInvSbox=>1B=>AF
The S-box is constructed in the following fashion:
1. Initialize the S-box with the byte values in ascending order row by row. Thus, the value of the byte at row x, column y is {xy}

Substitute Byte Transformation. Forward and Inverse Transformation (Cont 4)
2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(28); the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled (b7,b6,b5,b4,b3,b2,b1,b0). Apply the following transformation to each bit of each byte in the S-box:
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(5.1)

where ci is the i-th bit of byte c with the value {63}, that is, (c7c7c5c4c3c2c1c0)=(01100011). The prime 
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 indicates that the variable is to be updated by the value on the right. The AES standard depicts this transformation in matrix form as follows:
	B0’
	
	1
	0
	0
	0
	1
	1
	1
	1
	
	B0
	
	1
	

	B1’
	
	1
	1
	0
	0
	0
	1
	1
	1
	
	B1
	
	1
	

	B2’
	
	1
	1
	1
	0
	0
	0
	1
	1
	
	B2
	
	0
	

	B3’
	=
	1
	1
	1
	1
	0
	0
	0
	1
	x
	B3
	+
	0
	(5.2)

	B4’
	
	1
	1
	1
	1
	1
	0
	0
	0
	
	B4
	
	0
	

	B5’
	
	0
	1
	1
	1
	1
	1
	0
	0
	
	B5
	
	1
	

	B6’
	
	0
	0
	1
	1
	1
	1
	1
	0
	
	B6
	
	1
	

	B7’
	
	0
	0
	0
	1
	1
	1
	1
	1
	
	B7
	
	0
	


Each element in the product matrix is the bitwise XOR of elements of one row and one column. Further, the final addition, shown in (5.2), is a bitwise XOR.
As an example, consider the input value {95}. The multiplicative inverse in GF(28) is {95}-1 ={8a}, which is 10001010 in binary. Using equation (5.2),

	1
	0
	0
	0
	1
	1
	1
	1
	
	0
	
	1
	
	1
	
	1
	
	0

	1
	1
	0
	0
	0
	1
	1
	1
	
	1
	
	1
	
	0
	
	1
	
	1

	1
	1
	1
	0
	0
	0
	1
	1
	
	0
	
	0
	
	0
	
	0
	
	0

	1
	1
	1
	1
	0
	0
	0
	1
	x
	1
	+
	0
	=
	1
	+
	0
	=
	1

	1
	1
	1
	1
	1
	0
	0
	0
	
	0
	
	0
	
	0
	
	0
	
	0

	0
	1
	1
	1
	1
	1
	0
	0
	
	0
	
	1
	
	0
	
	1
	
	1

	0
	0
	1
	1
	1
	1
	1
	0
	
	0
	
	1
	
	1
	
	1
	
	0

	0
	0
	0
	1
	1
	1
	1
	1
	
	1
	
	0
	
	0
	
	0
	
	0


The result is {2a}, which should appear in row {09} column {05} of the S-box. This is verified by checking Table 5.4a.
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