EASTERN MEDITERRANEAN UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

CMPE 443 

Real-Time System Design
Midterm Exam

2009-2010 Spring Semester

April 12, 2010

Name-Surname
: ___________________

Student Number
: ___________________

Instructor:

Assoc. Prof. Dr. Alexander CHEFRANOV 

Time: 110 minutes
MOBILES ARE NOT ALLOWED!!!

YOU CAN BRING ONE A4 SIZED SHEET OF HAND-WRITTEN NOTES TO THE EXAM. PHOTOCOPIES ARE NOT ALLOWED AND WILL BE COLLECTED.

READ THE INSTRUCTIONS FOR EACH SECTION CAREFULLY.

Grading

	PART I
	

	PART II
	

	TOTAL
	


Part I. Hardware Considerations (50 points)

A. (25 points) Consider 0-address machine instruction set below:

	0-address machine (reverse Polish)

	where the processor has a stack and some supporting hardware, at least a top of stack (TOS) pointer. 

	Operation
	e.g. or comment 

	load_literal <int> 
	effect:
TOS:=TOS+1; stack[TOS]:=<int>
load a constant onto the top of stack; this can be used in arithmetic or to get an address onto the stack for use by a load or a store instruction later (it is splitting hairs to argue whether the literal is an address or a constant which might happen to be used as an address elsewhere) 

	load 
	effect:
stack[TOS]:=memory[stack[TOS]]
take the top-of-stack as an address, replace the top-of-stack with the contents of that address. 

	sto 
	effect:
memory[stack[TOS-1]]:=stack[TOS]; TOS:=TOS-2
store contents of top of stack at the address in stack[TOS-1] then pop the value and the address 

	<opcd> 
	where <opcd> is add | sub |...
effect:
stack[TOS-1] := stack[TOS-1] <op> stack[TOS];
TOS:=TOS-1


For the expression

y=z/y+w*(z+y-w)

1. Give the reverse Polish notation (5 points)

Yzy/wzy+w-*+=
2. Write the code to implement it (10 points)

1. Load_literal @y
2. Load_literal @z

3. Load

4. Load_literal @y

5. Load

6. Div

7. Load_literal @w

8. Load

9. Load_literal @z

10. Load

11. Load_literal @y

12. Load

13. Add

14. Load_literal @w

15. Load

16. Sub

17. Mult

18. Add

19. sto

3. Trace the code assuming w=1, x=2, y=3, z=1: show state of the memory cells allocated for the variables and state of the stack initially and after each instruction completion. (10 points)

	After Instruction #
	w=1

(addr=100)
	Y=3

(addr=101)
	Z=1

(addr=102)
	Stack

Empty

	1. 
	
	
	
	101

	2. 
	
	
	
	101,102

	3. 
	
	
	
	101,1

	4. 
	
	
	
	101,1,101

	5. 
	
	
	
	101,1,3

	6. 
	
	
	
	101,1/3

	7. 
	
	
	
	101,1/3,100

	8. 
	
	
	
	101,1/3,1

	9. 
	
	
	
	101,1/3,1,102

	10. 
	
	
	
	101,1/3,1,1

	11. 
	
	
	
	101,1/3,1,1,101

	12. 
	
	
	
	101,1/3,1,1,3

	13. 
	
	
	
	101,1/3,1,4

	14. 
	
	
	
	101,1/3,1,4,100

	15. 
	
	
	
	101,1/3,1,4,1

	16. 
	
	
	
	101,1/3,1,3

	17. 
	
	
	
	101,1/3,3

	18. 
	
	
	
	101,10/3

	19. 
	
	10/3
	
	


B. (13 points) Use PLA to create a ROM with 9 memory cells containing the following numbers in the given order: 12, 9, 1, 8, 3, 6, 10, 4, 2. For each number, specify its address in your ROM. Each memory cell shall have one and the same number of bits, and this number of bits shall be minimal possible to accommodate the specified nine numbers. What is the number of bits of each memory cell? Why?
[image: image1.png]e e

N||N| |N||N
#\Tﬁi T
iHinEERE
14« +—4 & -
e \w* *+—o
+H+HH .J T
rasIasam A
Ty




Minimal number of bits to represent the maximal number in the set is 4, hence, each cell shall have at least 4 bits (z3, z2, z1, z0). To represent the given nine numbers we need at least 4 address bits (x3, x2, x1, x0).

C. (12 points) Give FPGA implementation of the following computations assuming that FPGA elements can perform any arithmetic/logic operation:

A=w+x*(y-z)

B=(y-z)^2+x

C=B^3+A*y

Show necessary operation to be used for each element in your implementation (e.g., element for +, or *, or ^, etc). Use minimal possible number of elements in your implementation.

 SHAPE  \* MERGEFORMAT 




Part II. Software considerations (50 points)

A. (10 points) How a new interruption handler can be inserted in the existing chain of interruption handlers for some particular interruption signal so that all handlers (the old and new one) will be invoked on the signal rising?

1. Address of the old handler is read from the interruption vector and written into old_handler.
2. Address of the new handler is written in the interruption vector.
3. Code of the new handler (before or after its actual job doing) calls old handler using its address from old_handler.

B. (14 points) Assume two processes, Reader, and Writer, communicate using double buffering. Each buffer contains 10 bytes. Writer, when an empty buffer is available, writes 10 bytes into it. Writer gets these 10 bytes from some external device E always ready to provide the data. If there are no empty buffers, Writer waits for an empty buffer appearance. Reader reads 10 bytes from a filled buffer thus emptying it. Reader outputs read information to the output device O which is always ready for information acceptance. If there are no filled buffers, Reader waits for a filled buffer. Write C-like pseudocode for Reader and Writer processes. Define necessary data structures, show their initial settings.
Char buf[2,10];
Int empty[2]={1,1};//both buffers are empty at the beginning

Reader(){

 While(1)//infinite loop

   For(i=0;1;i++)
     If(empty[i]==0){//i-th buffer is full

       Read(buf[i],10); empty[i]=1;

     }
}//end reader
Writer(){

 While(1)//infinite loop

   For(i=0;1;i++)

     If(empty[i]==1){//i-th buffer is empty

       Write(buf[i],10); empty[i]=0;

     }

}//end writer

Synchronization primitives shall be used to guarantee mutual exclusion, but they are not shown here as not covered yet.

C. (13 points) Calculate processor utilization and hyper-period for the following task set:

	Task#
	E
	P

	1
	2
	8

	2
	2
	12

	3
	2
	6

	4
	1
	4


Define the frame size for the task system.

U=2/8+2/12+2/6+1/4=24/24=1

Hyperperiod=24

f>=2
(C1)

f is from {2,3,4,6,8,12} (C2)

Check f=2 for (C3):

2f-gcd(f,pi)<=Di=pi

2*2-gcd(2,8)=4-2=2<=8? yes

2*2-gcd(2,12)=4-2=2<=12? Yes

2*2-gcd(2,6)=4-2=2<=6? Yes

2*2-gcd(2,4)=4-2=2<=4? Yes

Hence. f=2 can be used as a frame size

D. (13 points) Build an Earliest-Deadline First schedule for the task system defined in 
task C above. Are the deadlines met by the schedule? Explain why.

	Time
	1
	2
	3
	4
	5
	6
	7
	8
	9
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	0

	Task
	4
	3
	3
	1
	1
	4
	2
	2
	3
	3
	4
	1
	1
	4
	3
	3
	4
	2
	2
	1


	Time
	1
	2
	3
	4

	Task
	1
	3
	3
	4


Completion times and absolute deadlines for each task release are shown below

	task
	release
	Completion time
	Deadline

	1
	1
	5
	8

	
	2
	13
	16

	
	3
	21
	24

	2
	1
	8
	12

	
	2
	19
	24

	3
	1
	3
	6

	
	2
	10
	12

	
	3
	16
	18

	
	4
	23
	24

	4
	1
	1
	4

	
	2
	6
	8

	
	3
	11
	12

	
	4
	14
	16

	
	5
	17
	20

	
	6
	24
	24


As far as from the table above we see that each release completes not later than its deadline, all time constraints are met

^











IO





^





IO





3





B





IO





+





IO





2





*

















A





IO





IO





IO





IO





-








+





IO





IO





IO





IOo





z





y





x





w





C





IO





+





IO

















IO





*





IO














PAGE  
2

