EASTERN MEDITERRANEAN UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING

CMPE 443

Real-Time Systems Design
Final Exam

2008/09 Fall Semester

February 2, 2009

Name-Surname
: ___________________

Student Number
: ___________________

Instructor:

Assoc. Prof. Dr. Alexander CHEFRANOV

Time: 110 minutes
YOU CAN BRING ONE A4 SIZED SHEET OF HAND-WRITTEN NOTES TO THE EXAM. PHOTOCOPIES ARE NOT ALLOWED AND WILL BE COLLECTED.

Switch-off mobiles!
READ THE INSTRUCTIONS FOR EACH SECTION CAREFULLY.

Grade

	

Task 1. (15 points) Construct Rate-Monotonic schedule of the following task set:

	Task#
	Phase
[image: image1.wmf]j

	E
	P

	1
	0
	0.5
	3

	2
	2
	2
	5

	3
	1
	2
	6

What is the utilization of the task set? Check, whether all the constraints are met by the schedule.

[image: image2.wmf]9

.

0

30

27

6

2

5

2

3

5

.

0

=

=

+

+

=

U

Hyperperiod = 30

[image: image3.emf]

1 3 2 2 1 3 1 2 1 3 2 3 1 2 2 3

4 5 6 7 8 9 0 1 2 3 4 5

3 3 2 1 2 3 3 1 3 2 2 1 1 2 2

6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

3 3

1 2 3

1

Schedule is shown in the figure above as follows. A short box is 0.5 time unit length, a long one – 1 time unit length. Second and forth lines show time line, and the first and third show tasks. Total number of idle places is 6, each of 0.5 time unit length; hence, total idle time in the hyperperiod is 3 complying with the obtained utilization.

Task 1 is released 10 times at time instances 0, 3, 6, 9, 12, 15, 18, 21, 24, and 27, and each release completes before its deadline which is the next release time. Constraints for Task 1 are met.
Task 2 is released 6 times at time instances 2, 7, 12, 17, 22, and 27, and each release completes before its deadline which is the next release time. Constraints for Task 2 are also met.

Task 3 is released 5 times at time instances 1, 7, 13, 19, and 25, and each release completes before its deadline which is the next release time. Constraints for Task 3 are also met.

Hence, all constraints are met.
Task 2. (15 points) Construct the Earliest-Deadline-First schedule of the following task set:

	Task#
	Phase
[image: image4.wmf]j

	E
	P
	D

	1
	1
	1
	6
	5

	2
	2
	2
	8
	7

	3
	0
	2
	4
	3

What is the utilization of the task set? Check, whether all the constraints are met by the schedule.

[image: image5.wmf]24

22

4

2

8

2

6

1

=

+

+

=

U

Hyperperiod = 24

[image: image6.emf]

3 3 2 1 3 2 3 1 3 2 2

4 5 6 7 8 9 0 1 2 3 4 5

3 3 2 1 3 3

6 7 8 9 0 1 2 3 4

2

3 3 3 1

1 2 3

The EDF-schedule above is represented similar to the RM-schedule from Task 1 above. It has two idle time units complying with the calculated utilization.
Task 1 is released 4 times at time instances 1, 7, 13, and 19, with respective deadlines 6, 12, 18, and 24. Each release completes before its deadline. Constraints for Task 1 are met.

Task 2 is released 3 times at time instances 2, 10, and 18, with respective deadlines 9, 17, and 25. Each release completes before its deadline. Constraints for Task 2 are also met.

Task 3 is released 6 times at time instances 0, 4, 8, 12, 16, and 20, with respective deadlines 3, 7, 11, 15, 19, and 23. Each release completes before its deadline. Constraints for Task 3 are also met.

Hence, all constraints are met.

Task 3. (15 points) Assume, three parallel processes, A, B, and C, run concurrently. All the processes exclude each other when accessing the buffer BUF. Process A, in infinite loop, gets a portion of information from an external device, and writes it in the output buffer BUF. Processes B and C read information from BUF in infinite loop. Write operation is allowed only when the buffer is empty. Read operation is allowed only when the buffer is not empty. Each read operation empties the buffer entirely. Each write operation fills the buffer entirely.

Write a pseudocode using binary semaphores to provide necessary synchronization of the processes A, B and C. Show initial settings of the semaphores you use.

	Process A;

1: read(device, info);

put(buffer, info);

Goto 1;

	Process B;
1: get(buffer, info);

..

Goto 1;

Process C;

1: get(buffer, info);

..

Goto 1;

Where put and get are the following procedures:
	Put(buffer, info){

 1: P(buf);//acquire semaphore buf

 If (empty){//if buffer is empty

 Write(buffer, info);//write into the buffer

 Empty=false;//buffer is not empty now

 V(buf);//release semaphore buf

 V(wait); //awake sleeping process

 }

 Else{//buffer is not empty

 V(buf);//release semaphore buf

 P(wait);//suspend on the semaphore “wait” until buffer is empty

 Goto 1;

 }// end if

}//end put
	Get(buffer, info){

 1:P(buf);//acquire semaphore buf

 If (not empty){//if buffer is full

 Read(buffer, info);//read from the buffer

 Empty=true;//buffer is empty now

 V(buf);//release semaphore buf

 V(wait); //awake sleeping process

 }

 Else{//buffer is empty

 V(buf);//release semaphore buf

 P(wait);//suspend on the semaphore “wait” until buffer is not empty

 Goto 1;

 }// end if

}//end get
	

Where shared variables buf, wait, and empty are defined as follows:
Binary semaphore buf=1 (open), wait=0 (closed);
Boolean empty=true;//initially the buffer is empty

.

Task 4. (15 points) Assume that a system has 5 processes and resources of 2 types: processors (total available number is 10), and memory (10 units available totally). Processes’ resources required and maximal required are as follows:

	Process
	Processors required
	Processors maximal required
	Memory required
	Memory maximal required

	1
	1
	5
	2
	4

	2
	2
	6
	2
	5

	3
	1
	3
	1
	3

	4
	2
	3
	1
	3

	5
	2
	5
	1
	5

Use Habermann’s algorithm to decide safety of granting required resources. Give necessary explanations for your decision.

R1=10-(1+2+1+2+2)=2 processors are free if the required processors are granted
R2=10-(2+2+1+1+1)=3 memory units are free if the required memory is granted.

B11-c11=5-1=4<=r1=2? No

B21-c21=6-2=4<=r1=2? No

B31-c31=3-1=2<=r1=2? Yes, and b32-c32=3-1=2<=r2=3? Yes => S=(P3)

B41-c41=3-2=1<=r1+c31=2+1=3? Yes , and b42-c42=3-1=2<=r2+c32=3+1=4? Yes => S=(P3, P4)

B51-c51=5-2=3<=r1+c31+c41=2+1+2=5? Yes, and b52-c52=5-1=4<=r2+c32+c42=3+1+1=5? Yes => S=(P3, P4, P5)

B11-c11=5-1=4<=r1+c31+c41+c51=2+1+2+2=7? Yes, and b12-c12=4-2=2<=r2+c32+c42+c52=3+1+1+1=6? Yes => S=(P3, P4, P5, P1)

B21-c21=6-2=4<=r1+c31+c41+c51+c11=2+1+2+2+1=8? Yes, and b22-c22=5-2<=r2+c32+c42+c52+c12=3+1+1+1+2=8? Yes => S=(P3, P4, P5, P1, P2)

All the processes are included in the safe sequence. Hence, the resource state is safe, and the required resources can be granted to the processes.

Task 5. (15 points) Assume, we have priority preemptive system (without time sharing for same priority tasks) and the following system of processes:

	Process
	Priority
	Execution sequence
	Release time

	A
	2
	VVEQE
	0

	B
	4 (lowest)
	EEVV
	2

	C
	1 (highest)
	QQQEV
	1

	D
	3
	EEQQE
	1

Show time diagrams of execution for each process, if Original Ceiling Priority Protocol is used. Calculate response time for each process A, B, C, D

[image: image7.emf]

D

C

B

 P P P P

 Q Q Q E

 B P P P

B

P P P P E E Q Q E

E E V V P

V

E Q E P

P

P P P P P P P

A

V V P P P P

P

Response times are a follows: RT(A)=10, RT(B)=17, RT(C)=6, RT(D)=14
Task 6. (10 points) Build a Moore Finite State Automaton accepting all words from the alphabet L={0,1}excepting those with three or more consecutive zeroes. For example, 1110010 is accepted, but 1110001 and 001100001111 are rejected.

[image: image8.emf]

I II

III

F

0

0

1

0

1

0,1

1

Initial state is I. If finally, the state is I, II, or III, the word is accepted, otherwise – rejected.

Task 7. (15 points) Draw a Petri net simulating the following C-language calculations:

for(;;){
 for (i=5;i>0;i--){
 y[i]=b[i]+1;
 b[i]++;

 }

 if (y[1]>10) break;

}

Specify initial labeling of the net. Show the Petri net labeling state in a tabular form for time instances 0, 1,.., 5.

Denote

for (i=5;i>0;i--){

 y[i]=b[i]+1;

 b[i]++;

 }

as A. Hence, we need to model

for(;;){

 A;

 if (y[1]>10) break;

}

Petri net for it is as follows:

[image: image9.emf]

1

BL

f o r

L o o p

A

i f

A A

AIf

AL

BA

where BL, BA, AA, AIf, and AL are the places before for(;;) loop, before A, after A, after If, and after for-loop places, respectively.
Consider now A separately. Note, that there may be many input and output places for any transition, and one place may be used as input and output place for many transitions. In particular, a place and transition can be connected by several edges. Instead of showing many edges, we shall show one but with its weight – associated with it number, showing how many edges do we have actually.

[image: image10.emf]

iter

BA

f o r

 1

2

+

=

+

yi

One

2

Yi=bi+1

i

5

bi

Bi+1

bi+1(2)

=

bi=bi+1

l o o p

5

A A

2

2

End - for

next

Note that place i has 5 input edges, place End-for has 5 output edges, places bi and One have two input edges each.
	time
	BL
	BA
	i
	yi
	bi
	iter
	one
	Bi+1
	Yi=bi+1
	Bi+1(2)
	Bi=bi+1
	End-for
	next
	AA
	AIf
	AL

	0
	1
	0
	0
	1
	2
	0
	2
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	0
	1
	0
	1
	2
	0
	2
	0
	0
	0
	0
	0
	0
	0
	0
	0

	2
	0
	0
	5
	1
	2
	0
	2
	0
	0
	0
	0
	0
	1
	0
	0
	0

	3
	0
	0
	4
	1
	2
	1
	2
	0
	0
	0
	0
	0
	0
	0
	0
	0

	4
	0
	0
	4
	1
	1
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0

	5
	0
	0
	4
	0
	1
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	0

PAGE
8

_1295276592.unknown

_1295279752.doc

[image: image1]

V

V

P

P

P

P

E

Q

E

P

P

P

P

P

P

P

P

P

P

P

E

E

V

V

A

B

Q

Q

Q

E

B

P

P

P

B

C

P

P

P

P

E

E

Q

Q

E

D

P

V

P

P

P

_1295350321.doc

[image: image1]

1

BA

BL

Loop

A

if

AA

AL

AIf

for

_1295360904.doc

[image: image1]

bi+1(2)

5

i

BA

1

2

+

=

bi

+

yi

Yi=bi+1

One

2

=

Bi+1

for

bi=bi+1

loop

5

AA

2

2

End-for

next

iter

_1295280287.doc

[image: image1]

I

II

III

F

0

0

1

1

0

1

0,1

_1295276656.doc

[image: image1]

1

3

3

1

3

2

5

0

2

9

7

3

2

3

8

3

6

3

3

4

3

1

5

1

2

2

3

4

2

1

3

2

3

1

3

2

3

4

3

2

1

0

9

8

7

6

_1295260536.unknown

_1295274053.doc

[image: image1]

1

1

3

3

3

2

1

2

5

0

2

9

7

1

2

1

3

8

3

6

1

3

4

3

2

3

5

3

2

2

3

4

2

1

2

2

1

3

2

3

1

2

1

3

2

1

2

3

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

_1294749059.unknown

