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Basic Architecture
Three system wide 
busses: power, 
address, and data
System bus refers to 
the address and data 
busses collectively 
Real- time systems are:

single processor systems
multiprocessor systems

loosely coupled 
through messaging
schedule tasks across 
different processors

Von Neumann architecture
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Hardware Interfacing (From a Software 
or System Engineering Perspective)

Latching
Edge versus level triggered
Tri-state logic
Wait states
System interfaces and busses
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Latching
Mechanism for “recording” the appearance of a signal 
between devices for later processing. 
Interrupt signals are latched into the programmable 
interrupt controller so that they can be serviced at an 
appropriate time.
Once the latch is read, it needs to be reset so that a 
new signal can be received. 
In the case of an interrupt, if a second interrupt is 
signaled on the same input a second interrupt may be 
lost. Therefore, it is important to read and clear the 
latch as soon as possible.
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Edge versus Level Triggered

A fictitious time-varying signal (typically, a clock) showing two rising
edges, each of which represents a single event, and a falling edge.
Vc represents a critical or threshold voltage
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Tristate Logic
When multiple devices are connected to the same 
bus structure those devices that are not involved are 
placed into a high-impedance state at their bus 
interconnections.
This is called “tri-stating” the device. Tri-state logic is 
essential in the design of computer systems.
Signals can be in one of three levels:

high, low and tri-stated.
Signals that are improperly tri-stated will be in an 
unknown state in which the signal is “floating”
(arbitrarily high or low). 
Floating signals can be the source of many insidious 
problems such as falsely indicated interrupts, 
improper setting of switches, and so on.
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Wait States
When a microprocessor must interface with a slower 
peripheral or memory device, a wait state may be 
needed to be added to the bus cycles.
Wait states extends the microprocessor read or write 
cycle by a certain number of processor clock cycles to 
allow the device or memory to “catch up.”
For example, EEPROM, RAM, and ROM may have 
different memory access times. Since RAM memory 
is typically faster than ROM, wait states would need to 
be inserted when accessing RAM. 
Wait states degrade overall systems performance, but 
preserve determinism.



5

ENGG4420: Real-Time Systems Design 9

Systems Interfaces and Busses
UART
MIL-STD-1553B
SCSI
IEEE 1394 Firewire
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UART (Universal Asynchronous Relay 
Terminal)

A transmitter/receiver device used to multiplex parallel data 
to serial. To receive, the parallel data are captured from the 
bus into a receive register and then shifted into a serial stream 
of bits. To transmit, the data are loaded into a shift register,
then shifted into a parallel transmit-receive buffer for transmission.
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MIL-STD 1553B

Master Device
Keeps: list of 

activities 

ID; directive; data

Slave 1:
Listening

Slave 2:
Listening

Messages are broadcasted
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MIL-STD 1553B

MIL- STD 1553B configuration. The inset shows the inductive 
coupling connection specified. Such a connection helps the 
system withstand electrical failure of one of the devices
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Small Computer System Interface 
(SCSI) or “Scuzzy”

This is a PC-based parallel interface that 
supports many kinds of devices
The SCSI 3 standard supports new connection 
types such as: Fiber Channel and FireWire
SCSI supports devices connected in a daisy-
chained fashion
ID=0 is set for the boot device and the higher 
the ID number the higher the priority of the 
device in bus access arbitration
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Small Computer System Interface 
(SCSI) or “Scuzzy”

SCSI daisy chained connection. Daisy chain connections 
are used in many kinds of devices in an embedded system 
(e.g. interrupt controllers) because they allow for an easy 
“extension” of the system bus by simply attaching to the 
device at the end.

id=0 id=1 id=n-1

Bus
terminator
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IEEE 1394 Firewire
A very fast external bus standard that supports data 
transfer rates of up to 400Mbps (in 1394a) and 
800Mbps (in 1394b). 
Can be used to connect up to 63 external devices.  
Defines 100, 200, and 400 Mbps devices and can 
support the multiple speeds on a single bus, and is 
flexible in the sense that: 

Supports freeform daisy chaining and branching for peer-to-
peer implementations. 

It is also hot pluggable (devices can be added and 
removed while the bus is active).
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IEEE 1394 Firewire

Supports two types of data transfer: 
asynchronous and isochronous. 

Asynchronous – for traditional computer 
memory-mapped, load and store applications. 
Isochronous – provides guaranteed data 
transport at a pre-determined rate. 

Used for multimedia applications where 
uninterrupted transport of time- critical data and just-
in- time delivery reduce the need for costly 
buffering. 
Ideal for devices that need to transfer high levels of 
data in real- time, such as cameras, VCRs and 
televisions.
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CPU
Basic structure
Fetch and execute cycle
Microcontrollers
Instruction forms
Core instructions
Addressing modes
RISC versus CISC
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Basic Structure

Partial, stylized, internal structure of a typical CPU. The internal 
paths represent connections to the internal bus structure. 
The connection to the system bus is shown on the right.

Collectively known
as the “bus” or 
“system bus”

address bus

data bus
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Fetch and Execute Cycle
Programs are a sequence of macroinstructions 
or macrocode stored in the main memory in 
binary form. 
Macroinstructions are sequentially fetched from 
the main memory location pointed to by the 
program counter, and placed in the instruction 
register. 
Each instruction consists of an operation code 
or opcode field and zero or more operand fields. 
The control unit decodes the instruction. 
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Fetch and Execute Cycle

In

PC

IR
opcode; operands

Control Unit
Decode 
Execute

Program

ENGG4420: Real-Time Systems Design 22

Fetch and Execute Cycle
After executing the instruction, the next macroinstruction 
is retrieved from main memory and executed.
Certain macroinstructions or external conditions may 
cause a nonconsecutive macroinstruction to be 
executed. 
This process is called the fetch- execute cycle (or fetch-
decode- execute). 
Even when “idling,” the computer is fetching and 
executing an instruction that causes no effective change 
to the state of the CPU and is called a no- op (for no-
operation).
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Microcontrollers

A microcontroller is a computer system that is programmable 
via microinstructions. Because the complex and 
time- consuming macroinstruction decoding process does 
not occur, program execution tends to be very fast.
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Instruction Forms
An instruction set constitutes the language that 
describes a computer’s functionality and its 
organization. 
Most instructions make reference to either memory 
locations, pointers to a memory location, or a register. 

Implementation
details

Hardware details
that are visible to
the programmer

Computer Organization Computer Architecture
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Instruction Forms
0-address form 

use the stack locations as operands
are found in programmable calculators that are 
programmed using postfix notation

1-address form
Uses implicit register (accumulator)

2-address form
Has the form: op-code operand1, operand2

3-address form
Has the form: op-code operand1, operand2, 
resultant
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Core Instructions
There are generally six kinds of instructions. These 
can be classified as:

horizontal-bit operation
e.g. AND, IOR, XOR, NOT

vertical-bit operation
e.g. rotate left, rotate right, shift right, and shift left 

Control
e.g. TRAP, CLI, EPI, DPI, HALT

data movement
e.g. LOAD, STORE, MOVE

mathematical/special processing
other (processor specific)

e.g. LOCK, ILLEGAL
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Example of Special Instruction to 
Support Real-Time Implementations

Intel IA-32 family provides: LOCK, HLT, BTS
LOCK => LOCK# signal is asserted => 

instruction becomes atomic (uniterruptible)
processor has exclusive use of any shared memory 
while the signal is asserted

HLT: halt processor => processor is stoped
until enabled interrupt or debug exception is 
received

BTS (Bit Test and Set): can be used with 
LOCK prefix to allow the instruction to be 
executed atomically 
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Addressing Modes
Three basic modes

immediate data 
direct memory location
indirect memory location 

Others are combinations of these
register indirect
double indirect
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RISC versus CISC
Complex Instruction Set Computer (CISC)
CISC based upon the following set of principles:

Complex instructions take many different cycles.
Any instruction can reference memory.
No instructions are pipelined.
A microprogram is executed for each native instruction.
Instructions are of variable format.
There are multiple instructions and addressing modes.
There is a single set of registers.
Complexity in the micro program and hardware.
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RISC versus CISC
Reduce Instruction Set Computer (RISC)
RISC criteria are a complementary set of 
principles to CISC. 

Simple instructions taking one clock cycle.
LOAD/STORE architecture to reference memory.
Highly pipelined design.
Instructions executed directly by hardware.
Fixed format instructions.
Few instructions and addressing modes.
Large multiple register sets.
Complexity handled by the compiler and software.
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RISC versus CISC
RISC has fewer instructions; hence more complicated 
instructions are implemented by composing a 
sequence of simple instructions. 
RISC needs more memory than the equivalent CISC 
instruction. 
RISCs have several major advantages in real-time 
systems:

The average instruction execution time is shorter than for 
CISCs.  
The reduced instruction execution time leads to shorter 
interrupt latency and thus shorter response times.  
RISC instruction sets tend to allow compilers to generate 
faster code because the limited instruction set facilitates a 
greater number of optimization approaches.
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Memory
Memory access
Memory technologies
Memory organization
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Memory Access

Clock

Address

Data

DST

Time

Illustration of the clock synchronized memory transfer 
process between a device and the CPU. The symbolism
“<>” shown in the data and address signals indicates that
multiple lines are involved during this period in the transfer.
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Memory Technologies
Primary and secondary memory storage forms a 
hierarchy involving access time, storage density, cost 
and other factors. 
The fastest possible memory is desired in real-time 
systems, but economics dictates that the fastest 
affordable technology is used as required.  
In order of fastest to slowest, memory should be 
assigned, considering cost as follows:

internal CPU memory
registers
cache
main memory
memory on board external devices
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Memory Technologies

Memory type Typical access 
time 

Density Typical applications 

DRAM 50-100 ns 64 Mb main memory  
SRAM 10 ns 1 Mb µmemory , cache, fast RAM 
UVROM 50 ns 32 Mb Code and data storage 
Fusible link 
PROM 

50 ns 32 Mb Code and data storage 

EEPROM 50-200 ns 1 Mb Persistent storage of variable data 
Flash 20-30 ns (read) 

1 µs (write) 
64 Mb Code and data storage 

Ferroelectric 
RAM 

40 ns 64 Mb various 

Ferrite core 10 ms 2 Kb or less None, possibly ultra-hardened 
non-volatile memory 

 

Selection of the appropriate technology is a systems design issue.
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Memory Organization

Typical memory map showing designated regions.

ENGG4420: Real-Time Systems Design 38

Ch2: Hardware 
Considerations

A. Basic architecture
B. Hardware interfacing (from a software 

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures



20

ENGG4420: Real-Time Systems Design 39

I/O
Programmed I/O
Direct memory access (DMA)
Memory-mapped I/O
Interrupts
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Programmed I/O
Special data movement instructions are used to 
transfer data to and from the CPU.
An IN instruction transfers data from a specified I/O 
device into a specified CPU register.
An OUT instruction outputs from a register to some 
I/O device.  
Normally, the identity of the operative CPU register is 
embedded in the instruction code.  
Both the IN and OUT instructions require the efforts of 
the CPU and thus cost time that could impact real-
time performance.
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Direct Memory Access (DMA)
Access to the computer’s memory is given to 
other devices in the system without CPU 
intervention.  
Information is deposited directly into main 
memory by the external device.  
DMA controller is required unless the DMA 
circuitry is integrated into the CPU. 
Because CPU participation is not required, 
data transfer is fast.
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Direct Memory Access (DMA)

The DMA controller prevents collisions by requiring each device to issue a 
DMA request signal (DMARQ) that will be acknowledged with a DMA 
acknowledge signal (DMACK).  Until the DMACK signal is given to the 
requesting device its connection to the main bus remains in a tri-state condition. 
Any device that is tri-stated cannot affect the data on the memory data lines.
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Memory-Mapped I/O
Memory-mapped I/O provides a data transfer 
mechanism that is convenient because it does 
not require the use of special CPU I/O 
instructions. 
In memory-mapped I/O certain designated 
locations of memory appear as virtual 
input/output ports.
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Memory-Mapped I/O

Input from an appropriate memory- mapped location 
involves executing a LOAD instruction on a pseudomemory
location connected to an input device. Output uses a 
STORE instruction
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Memory-Mapped I/O

Set indicator light, on=1 Other devices Motor control, 4 bits control 16 speeds

A bit map (packed binary word) describes a view of a 
set of devices that are accessed by a single (discrete) 
signal and organized into a word of memory for 
convenient access either by DMA or memory 
mapped-addressing.
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Interrupts
Instruction support for interrupts
Internal CPU handling of interrupts
Programmable interrupt controller (PIC)
Interfacing devices to the CPU via interrupts
Interruptible instructions
Watchdog timers
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Instruction Support for Interrupts
Interrupt: a hardware signal that initiates an 
event

external
internal

Processors provide two instructions
enable (turn on) priority interrupt (EPI) 
disable (turn off) priority interrupt (DPI). 

These are atomic instructions that are used for 
many purposes, such as buffering, within 
interrupt handlers, and for parameter passing.
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Internal CPU Handling of Interrupts

Interrupt return
location

Interrupt handler
location

Program
Counter

Single Interrupt Support

Step 1: finish the currently executing macroinstruction. 
Step 2: save the contents of the PC to the interrupt return location 
Step 3: load the address held in the interrupt handler location into the 
program counter. Resume the fetch and execute sequence.
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Internal CPU Handling of Interrupts
Step 1: complete 
the currently 
executing 
instruction. 
Step 2: save the 
contents of PC to 
interrupt return 
location i. 
Step 3: load the 
address held in 
interrupt handler 
location i into the 
PC. Resume the 
fetch-execute 
cycle.

Multiple interrupt support
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Programmable Interrupt Controller 
(PIC)
A Programmable 
interrupt 
controller (PIC).
The registers: 

interrupt, priority, 
vector, status, 
and mask serve 
the same 
functions as for 
the interrupt 
control circuitry of 
an on-board 
CPU.
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Programmable Interrupt Controller 
(PIC)

Handling multiple interrupts with an external interrupt controller. 
Step 1: finish the currently executing instruction. 
Step 2: save the contents of the PC into the interrupt return location. 
Step 3: load the address held in the interrupt handler location into the 
program counter. Resume the fetch execute cycle. The interrupt 
handler routine will interrogate the PIC and take the appropriate 
action.
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Interfacing Devices to the CPU via 
Interrupts

A Single peripheral controller. IRL is the interrupt request line.
The controller’s address on the address but activates the
Device Select Line signal
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Interfacing Devices to the CPU via 
Interrupts

Several peripheral 
controllers 
connected to the 
CPU via a 
programmable 
interrupt controller. 
Notice that the 
devices share the 
common data bus, 
which is facilitated 
by tri-stating, non-
active devices via 
the device select 
lines.
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Interruptible Instructions
In rare instances certain macroinstruction may 
need to be interruptible. 
This might be the case where the instruction 
takes a great deal of time to complete. 

E.g. a memory to memory instruction that moves 
large amounts of data. 
In most cases, such an instruction should be 
interruptible between blocks to reduce interrupt 
latency.  
However, interrupting this particular instruction 
could cause data integrity problems.
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Watchdog Timers (WDT)

WDT: is a counting register that is increased 
periodically. Overflow generates interrupt to CPU
NOTE: the register must be cleared by appropriate 
code using memory-mapped I/O before the register 
overflows and generates an interrupt.
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Enhancing Performance
Locality of reference
Cache
Pipelining
Coprocessors
Other special devices

Two architectural enhancements that can improve average
case performance in real- time systems are caches and
pipelines => this proves that when the locality of reference
is high, performance is improved
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Locality of Reference
Refers to the relative “distance” in memory between 
consecutive code or data accesses. 
If data or code fetched tends to reside relatively close 
in memory, then the locality of reference is high. 
When programs execute instructions that are 
relatively widely scattered locality of reference is low, 
Well-written programs in procedural languages tend 
to execute sequentially within code modules and 
within the body of loops, and hence have a high 
locality of reference. 
Object-oriented code tends to execute in a much 
more non-linear fashion. But portions of such code 
can be linearized (e.g. array access).
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Cache

A small block of fast memory where frequently used instructions 
and data are kept. The cache is much smaller than the main 
memory.

Also contains a table of memory address tags, which are currently in 
the cache. The table is often in the cache itself. 

Usage:
Upon memory access check the address tags to see if 
instruction/data is in the cache. 
If present, retrieve data from cache, 
If not present, cache contents are written back (into the main 
memory) and new block is read from main memory to cache. 
The needed information is then delivered from cache to CPU and 
the address tags adjusted. 

Cache design considerations include: cache size, mapping 
function, block replacement algorithm, write policy, block size,
and number of caches.
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Cache
Performance benefits are a function of cache hit radio.
This is due to the fact that if needed data or instructions 
are not found in the cache, then the cache contents need 
to be written back (if any were altered) and overwritten by 
a memory block containing the needed information. 

This overhead can become significant when the hit ratio is low. 
Therefore a low hit ratio can degrade performance. 

Hence, if the locality of reference is low, a low number of 
cache hits would be expected, degrading performance.
Using a cache is also non- deterministic – it is impossible 
to know a priori what the cache contents and hence the 
overall access time will be.
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Cache
What performance benefit does the cache 
give?
Consider a simple system with a single cache

noncached memory reference costs 100ns
access from the cache 30ns
cache hit ratio is 60%
As a result the average access time would be:
0.6*30 ns + 0.4 * 100 ns = 58 ns

Performance benefits in a cache system are a 
function of the cache hit ratio

ENGG4420: Real-Time Systems Design 62

Pipelining 
Pipelining imparts an implicit execution parallelism in 
the different cycles of processing an instruction. 
With pipelining, more instructions can be processed in 
different cycles simultaneously, improving processor 
performance.
Suppose execution of an instruction consists of the 
following stages:

fetch – get the instruction from memory
decode  – determine what the instruction is
execute – perform the instruction decode
write – store the results to memory



32

ENGG4420: Real-Time Systems Design 63

Pipelining
Sequential 
instruction 
execution versus 
pipelined 
instruction 
execution. 
Nine complete 
instruction can be 
completed in the 
pipelined approach 
in the same time it 
takes to complete 
three instruction in 
the sequential 
(scalar) approach
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Pipelining
speedup from pipelining = (pipeline 
depth)/(1+ pipeline stall cycles per 
instruction)
Note that if there are no stalls, the speedup is 
equal to the number of pipeline stages

cmpe1
Sticky Note
k operations, each passing n steps in a time unit each
T(1,k)=n*k
with pipelining with n steps
T(n,k)=n+k-1
speedup(n,k)=T1/Tn=n*k/(n+k-1)=
n/(1+(n-1)/k)
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Pipelining
Superpipelined architectures can be achieved if the 
fetch-and-execute cycle can be decomposed further. 
A superscalar architecture can be achieved by the 
use of redundant hardware to replicate one or more 
stages in the pipeline. 
Superscalar and superpipelined architectures can be 
combined to obtain a superscalar, superpipelined
computer.
Pipelining can actually degrade performance –

if any of the instructions in the pipeline are a branch 
instruction, the prefetched instructions further in the pipeline 
are no longer valid and must be flushed.
Data dependencies can also degrade performance
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Coprocessors
A second specialized CPU to perform special instructions 
that are not part of the base instruction set (e.g. signal 
processing instructions).  

The main processor loads certain registers with data for the 
coprocessor; issues an interrupt to the coprocessor, then halts 
itself. When the coprocessor finishes it awakens the main 
processor via an interrupt, and then halts itself.

Coprocessors improve real- time performance by 
extending the instruction set to support faster, specialized 
instructions. 
Coprocessors do not improve performance because of 
any inherent parallelism.
The coprocessor and its resources are a critical resource 
and need to be protected. Ex. registers should be saved
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Other Special Devices
ASICs
PAL/PLA
FPGAs
Tranducers
A/D converters
D/A converters
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ASICs
Applications specific integrated circuit – a special 
purpose integrated circuit designed for one 
application only. 
In essence, these devices are systems-on-a-chip that 
can include a microprocessor, memory, I/O devices 
and other specialized circuitry. 
ASICs are used in many embedded applications 
including image processing, avionics systems, 
medical systems.
Real-time design issues are the same for them as 
they are for most other systems.
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PAL/PLA
One-time programmable logic devices are used for 
special purpose functionality in embedded systems.
Programmable array logic (PAL) – a programmable 
AND array followed by a fixed number input OR 
element. Each OR element has a certain number of 
dedicated product terms.
Programmable logic array (PLA) same as PAL but the 
AND array is followed by a programmable width OR 
array. This allows the product terms to be shared 
between macrocells, increasing device density. 
PLA is much more flexible and yields more efficient 
logic, but is more expensive. PAL is faster (because it 
uses fewer fuses) and is less expensive.
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PAL

Only the
external
junctions
are
programmable.
The internal 
ones are 
marked with
a dot and 
are fixed
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PLA

All junctions
are
programmable.
They can 
be selectively 
fused
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FPGAs
Field programmable gate array (FPGA) – allows 
construction of a system on a chip with an integrated 
processor, memory, and I/O. 
Differs from the ASIC in that it is reprogrammable, 
even while embedded in the system. 
A reconfigurable architecture allows for the 
programmed interconnection and functionality of a 
conventional processor
Algorithms and functionality are moved from residing 
in the software side into the hardware side. 
Widely used in embedded, mission-critical systems 
where fault-tolerance and adaptive functionality is 
essential.
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FPGAs

FPGA, showing internal configurable logic blocks and 
periphery I/O elements
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Transducers
Transducers are generally any device that 
converts energy from one form to another.
In embedded system the input is an analog 
signal, which must be converted to digital form 
by another device
Typical transducers in embedded systems:

Temperature sensors
Accelerometers
Gyroscopes
Position resolvers
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Temperature Sensors
Temperature is an important control parameter of 
most embedded real-time systems. 
Most commonly used electrical temperature sensors 
are thermocouples, thermistors, and resistance 
thermometers. 
Thermocouples take advantage of the junction effect 
– the voltage difference generated at a junction due to 
the difference in the energy distribution of, of two 
dissimilar metals.  
Resistance thermometers rely on the increase in 
resistance of a metal wire as temperature increases. 
Thermistors are resistive elements made of 
semiconductor materials that have changing 
resistance properties with temperature.
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Accelerometers
Use a simple transducing function to convert the 
compression or stretching of a spring or the deformation of 
a membrane into an electrical output. 

One mechanism takes advantage of the fact that the capacitance 
associated with a capacitor is a function of the gap width, which 
changes according to the spring or membrane deformation. 
Another kind is a strain gage, which takes advantage of the fact
that as a wire is stretched or compressed, its resistance changes.  
Accelerometers can be constructed using a strain gage.

Piezoelectric effect can also be used – the phenomenon 
that if a crystal is compressed and the lattice structure is 
disrupted electrons are discharged. 

Hence, the compression of the device due to acceleration can be 
measured. Piezoelectric accelerometers are widely used where 
miniaturization is desirable. 

Vibrating beams can also be used as both gyroscopes and 
accelerometers and have a high scale of miniaturization.
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Gyroscopes 
Used to sense position, provide stability

Used in the inertial navigation of aircraft, spacecraft, 
robots, and automotive applications. 

Based on the fact that a vertically oriented rotating mass will 
remain fixed with respect to two spatial directions.

Mechanical gyroscopes are used to maintain a platform in 
a fixed position with respect to space.
Ring laser gyros don’t hold platform steady – they just 
sense rotation. 

These are constructed from two concentric fiber optic loops. 
A laser pulse is sent in opposite directions through each of the two 
loops. If the vehicle rotates in the direction of the loops, then one 
beam will travel faster than the other. Difference can be measured 
and the amount of rotation determined. 
Three ring laser gyros needed to measure yaw, pitch, and roll 
angles.
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Gyroscopes
Stylized 
representation 
of two 
gyroscopes 
used to hold a 
hinged platform 
with three 
orthogonal 
accelerometers, 
fixed with 
respect to an 
inertial 
reference frame 
(not to scale).
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Position Resolvers
Sensors that provide angular measurements 
pertaining to the orientation or attitude of the 
vehicle.
Accelerometers that are mounted orthogonally 
can provide enough information from which 
orientation can be determined via geometry. 
Other techniques take advantage of the 
piezoelectric effect or magnetic induction to 
determine position.
Ring laser gyros can also be used for position 
resolution.
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A/D Converters
Analog- to- digital conversion converts continuous (analog) 
signals from various transducers and devices into discrete 
(digital) ones.  
Similar circuitry can be used to convert temperature, 
sound, pressure, and other inputs from transducers using 
a variety of sampling schemes to perform the conversion.  
The output of A/D circuitry is a discrete version of the time-
varying signal being monitored.  
The key factor in the service of A/D circuitry for time 
varying signals is the sampling rate (the Nyquist rate). This 
consideration is an inherent part of the design process for 
the scheduling of tasks.

digital samples must be taken at twice the rate of the highest 
frequency component of the analog signal
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D/A Converters
Digital-to-analog conversion performs the 
inverse function of A/D circuitry.
Converts a discrete quantity to a continuous 
one.  
D/A devices are used to allow the computer to 
output analog voltages based on the digital 
version stored internally.  
Communication with D/A circuitry uses one of 
the three input/output methods discussed.



42

ENGG4420: Real-Time Systems Design 83

Ch2: Hardware 
Considerations

A. Basic architecture
B. Hardware interfacing (from a software 

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures
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Non-von-Neumann Architectures
Von-Neumann architectures are architectures 
that allow only one instruction or one data to 
occupy the bus at one time
The generally accepted taxonomy of parallel 
systems was proposed by Flynn

The classification is based on the notion of two 
streams of information flow to a processor; 
instruction (I) and data (D)
These two streams can be either single (S) or 
multiple (M)

As a result: SISD; SIMD; MISD; and MIMD
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Non-von-Neumann Architectures
 single data stream multiple data stream 

single instruction stream von Neumann processors systolic processors 
 RISC wavefront 

processors 
 

multiple instruction 
stream 

pipelined architectures dataflow processors 

 VLIW processors transputers 
grid computers 
hypercube processors 

 
Flynn’s classification for computer architectures.
Examples of typical architectures
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Non-von-Neumann Architectures
Besides SISD and pipelined MISD 
architectures the others tend to be found only 
in limited real-time application in industry
A special case of the MIMD computer is the 
Transport Triggered Architecture 

a distributed heterogeneous architecture in which a 
number of independent von-Neumann CPUs 
communicate over a network and employ a time-
driven processing model rather than an event-
driven one.
An example is time triggered architecture (TTA)
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Non von Neumann Architectures

Time triggered architecture with five nodes.
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Non von Neumann Architectures
Time Triggered Architecture (TTA)

TTA can be used for implementing real-time 
systems
TTA models a distributed real-time system as a 
set of nodes interconnected by a real-time 
communication system

each node consists of a communication controller 
and a host computer, which are provided with a 
global synchronization clock with a 1 us tick duration
nodes use TDMA (time division multiple access) – a 
time slot is allocated to each node
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Non von Neumann Architectures
Time Triggered Architecture (TTA)

In TTA architecture is possible to predict the 
latency of all messages an the bus

this guarantees hard real-time message delivery
Furthermore the latency jitter is minimal since 
the messages are sent at a predetermined 
point in time
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Ch2: Hardware 
Considerations

A. Basic architecture
B. Hardware interfacing (from a software or system 

engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures
I. Assignments
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Assignments [1] (Laplante Ch2)
Exercises

2.3; 2.4; 2.5; 2.6; 2.9; 2.10; 2.12; 2.13; 2.14; 2.16;




