
1

ENGG4420: Real-Time Systems Design. NOTE: Slides 1-75 follow Dr. P.A. Laplante book [1] 1

Topic 2: Hardware
Considerations [1]

A. Basic architecture
B. Hardware interfacing (from a software

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures

ENGG4420: Real-Time Systems Design 2

Basic Architecture
Three system wide
busses: power,
address, and data
System bus refers to
the address and data
busses collectively
Real- time systems are:

single processor systems
multiprocessor systems

loosely coupled
through messaging
schedule tasks across
different processors

Von Neumann architecture

2

ENGG4420: Real-Time Systems Design 3

Ch2: Hardware
Considerations

A. Basic architecture
B. Hardware interfacing (from a software

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures

ENGG4420: Real-Time Systems Design 4

Hardware Interfacing (From a Software
or System Engineering Perspective)

Latching
Edge versus level triggered
Tri-state logic
Wait states
System interfaces and busses

3

ENGG4420: Real-Time Systems Design 5

Latching
Mechanism for “recording” the appearance of a signal
between devices for later processing.
Interrupt signals are latched into the programmable
interrupt controller so that they can be serviced at an
appropriate time.
Once the latch is read, it needs to be reset so that a
new signal can be received.
In the case of an interrupt, if a second interrupt is
signaled on the same input a second interrupt may be
lost. Therefore, it is important to read and clear the
latch as soon as possible.

ENGG4420: Real-Time Systems Design 6

Edge versus Level Triggered

A fictitious time-varying signal (typically, a clock) showing two rising
edges, each of which represents a single event, and a falling edge.
Vc represents a critical or threshold voltage

4

ENGG4420: Real-Time Systems Design 7

Tristate Logic
When multiple devices are connected to the same
bus structure those devices that are not involved are
placed into a high-impedance state at their bus
interconnections.
This is called “tri-stating” the device. Tri-state logic is
essential in the design of computer systems.
Signals can be in one of three levels:

high, low and tri-stated.
Signals that are improperly tri-stated will be in an
unknown state in which the signal is “floating”
(arbitrarily high or low).
Floating signals can be the source of many insidious
problems such as falsely indicated interrupts,
improper setting of switches, and so on.

ENGG4420: Real-Time Systems Design 8

Wait States
When a microprocessor must interface with a slower
peripheral or memory device, a wait state may be
needed to be added to the bus cycles.
Wait states extends the microprocessor read or write
cycle by a certain number of processor clock cycles to
allow the device or memory to “catch up.”
For example, EEPROM, RAM, and ROM may have
different memory access times. Since RAM memory
is typically faster than ROM, wait states would need to
be inserted when accessing RAM.
Wait states degrade overall systems performance, but
preserve determinism.

5

ENGG4420: Real-Time Systems Design 9

Systems Interfaces and Busses
UART
MIL-STD-1553B
SCSI
IEEE 1394 Firewire

ENGG4420: Real-Time Systems Design 10

UART (Universal Asynchronous Relay
Terminal)

A transmitter/receiver device used to multiplex parallel data
to serial. To receive, the parallel data are captured from the
bus into a receive register and then shifted into a serial stream
of bits. To transmit, the data are loaded into a shift register,
then shifted into a parallel transmit-receive buffer for transmission.

6

ENGG4420: Real-Time Systems Design 11

MIL-STD 1553B

Master Device
Keeps: list of

activities

ID; directive; data

Slave 1:
Listening

Slave 2:
Listening

Messages are broadcasted

ENGG4420: Real-Time Systems Design 12

MIL-STD 1553B

MIL- STD 1553B configuration. The inset shows the inductive
coupling connection specified. Such a connection helps the
system withstand electrical failure of one of the devices

7

ENGG4420: Real-Time Systems Design 13

Small Computer System Interface
(SCSI) or “Scuzzy”

This is a PC-based parallel interface that
supports many kinds of devices
The SCSI 3 standard supports new connection
types such as: Fiber Channel and FireWire
SCSI supports devices connected in a daisy-
chained fashion
ID=0 is set for the boot device and the higher
the ID number the higher the priority of the
device in bus access arbitration

ENGG4420: Real-Time Systems Design 14

Small Computer System Interface
(SCSI) or “Scuzzy”

SCSI daisy chained connection. Daisy chain connections
are used in many kinds of devices in an embedded system
(e.g. interrupt controllers) because they allow for an easy
“extension” of the system bus by simply attaching to the
device at the end.

id=0 id=1 id=n-1

Bus
terminator

8

ENGG4420: Real-Time Systems Design 15

IEEE 1394 Firewire
A very fast external bus standard that supports data
transfer rates of up to 400Mbps (in 1394a) and
800Mbps (in 1394b).
Can be used to connect up to 63 external devices.
Defines 100, 200, and 400 Mbps devices and can
support the multiple speeds on a single bus, and is
flexible in the sense that:

Supports freeform daisy chaining and branching for peer-to-
peer implementations.

It is also hot pluggable (devices can be added and
removed while the bus is active).

ENGG4420: Real-Time Systems Design 16

IEEE 1394 Firewire

Supports two types of data transfer:
asynchronous and isochronous.

Asynchronous – for traditional computer
memory-mapped, load and store applications.
Isochronous – provides guaranteed data
transport at a pre-determined rate.

Used for multimedia applications where
uninterrupted transport of time- critical data and just-
in- time delivery reduce the need for costly
buffering.
Ideal for devices that need to transfer high levels of
data in real- time, such as cameras, VCRs and
televisions.

9

ENGG4420: Real-Time Systems Design 17

Ch2: Hardware
Considerations

A. Basic architecture
B. Hardware interfacing (from a software

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures

ENGG4420: Real-Time Systems Design 18

CPU
Basic structure
Fetch and execute cycle
Microcontrollers
Instruction forms
Core instructions
Addressing modes
RISC versus CISC

10

ENGG4420: Real-Time Systems Design 19

Basic Structure

Partial, stylized, internal structure of a typical CPU. The internal
paths represent connections to the internal bus structure.
The connection to the system bus is shown on the right.

Collectively known
as the “bus” or
“system bus”

address bus

data bus

ENGG4420: Real-Time Systems Design 20

Fetch and Execute Cycle
Programs are a sequence of macroinstructions
or macrocode stored in the main memory in
binary form.
Macroinstructions are sequentially fetched from
the main memory location pointed to by the
program counter, and placed in the instruction
register.
Each instruction consists of an operation code
or opcode field and zero or more operand fields.
The control unit decodes the instruction.

11

ENGG4420: Real-Time Systems Design 21

Fetch and Execute Cycle

In

PC

IR
opcode; operands

Control Unit
Decode
Execute

Program

ENGG4420: Real-Time Systems Design 22

Fetch and Execute Cycle
After executing the instruction, the next macroinstruction
is retrieved from main memory and executed.
Certain macroinstructions or external conditions may
cause a nonconsecutive macroinstruction to be
executed.
This process is called the fetch- execute cycle (or fetch-
decode- execute).
Even when “idling,” the computer is fetching and
executing an instruction that causes no effective change
to the state of the CPU and is called a no- op (for no-
operation).

12

ENGG4420: Real-Time Systems Design 23

Microcontrollers

A microcontroller is a computer system that is programmable
via microinstructions. Because the complex and
time- consuming macroinstruction decoding process does
not occur, program execution tends to be very fast.

ENGG4420: Real-Time Systems Design 24

Instruction Forms
An instruction set constitutes the language that
describes a computer’s functionality and its
organization.
Most instructions make reference to either memory
locations, pointers to a memory location, or a register.

Implementation
details

Hardware details
that are visible to
the programmer

Computer Organization Computer Architecture

13

ENGG4420: Real-Time Systems Design 25

Instruction Forms
0-address form

use the stack locations as operands
are found in programmable calculators that are
programmed using postfix notation

1-address form
Uses implicit register (accumulator)

2-address form
Has the form: op-code operand1, operand2

3-address form
Has the form: op-code operand1, operand2,
resultant

ENGG4420: Real-Time Systems Design 26

Core Instructions
There are generally six kinds of instructions. These
can be classified as:

horizontal-bit operation
e.g. AND, IOR, XOR, NOT

vertical-bit operation
e.g. rotate left, rotate right, shift right, and shift left

Control
e.g. TRAP, CLI, EPI, DPI, HALT

data movement
e.g. LOAD, STORE, MOVE

mathematical/special processing
other (processor specific)

e.g. LOCK, ILLEGAL

14

ENGG4420: Real-Time Systems Design 27

Example of Special Instruction to
Support Real-Time Implementations

Intel IA-32 family provides: LOCK, HLT, BTS
LOCK => LOCK# signal is asserted =>

instruction becomes atomic (uniterruptible)
processor has exclusive use of any shared memory
while the signal is asserted

HLT: halt processor => processor is stoped
until enabled interrupt or debug exception is
received

BTS (Bit Test and Set): can be used with
LOCK prefix to allow the instruction to be
executed atomically

ENGG4420: Real-Time Systems Design 28

Addressing Modes
Three basic modes

immediate data
direct memory location
indirect memory location

Others are combinations of these
register indirect
double indirect

15

ENGG4420: Real-Time Systems Design 29

RISC versus CISC
Complex Instruction Set Computer (CISC)
CISC based upon the following set of principles:

Complex instructions take many different cycles.
Any instruction can reference memory.
No instructions are pipelined.
A microprogram is executed for each native instruction.
Instructions are of variable format.
There are multiple instructions and addressing modes.
There is a single set of registers.
Complexity in the micro program and hardware.

ENGG4420: Real-Time Systems Design 30

RISC versus CISC
Reduce Instruction Set Computer (RISC)
RISC criteria are a complementary set of
principles to CISC.

Simple instructions taking one clock cycle.
LOAD/STORE architecture to reference memory.
Highly pipelined design.
Instructions executed directly by hardware.
Fixed format instructions.
Few instructions and addressing modes.
Large multiple register sets.
Complexity handled by the compiler and software.

16

ENGG4420: Real-Time Systems Design 31

RISC versus CISC
RISC has fewer instructions; hence more complicated
instructions are implemented by composing a
sequence of simple instructions.
RISC needs more memory than the equivalent CISC
instruction.
RISCs have several major advantages in real-time
systems:

The average instruction execution time is shorter than for
CISCs.
The reduced instruction execution time leads to shorter
interrupt latency and thus shorter response times.
RISC instruction sets tend to allow compilers to generate
faster code because the limited instruction set facilitates a
greater number of optimization approaches.

ENGG4420: Real-Time Systems Design 32

Ch2: Hardware
Considerations

A. Basic architecture
B. Hardware interfacing (from a software

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures

17

ENGG4420: Real-Time Systems Design 33

Memory
Memory access
Memory technologies
Memory organization

ENGG4420: Real-Time Systems Design 34

Memory Access

Clock

Address

Data

DST

Time

Illustration of the clock synchronized memory transfer
process between a device and the CPU. The symbolism
“<>” shown in the data and address signals indicates that
multiple lines are involved during this period in the transfer.

18

ENGG4420: Real-Time Systems Design 35

Memory Technologies
Primary and secondary memory storage forms a
hierarchy involving access time, storage density, cost
and other factors.
The fastest possible memory is desired in real-time
systems, but economics dictates that the fastest
affordable technology is used as required.
In order of fastest to slowest, memory should be
assigned, considering cost as follows:

internal CPU memory
registers
cache
main memory
memory on board external devices

ENGG4420: Real-Time Systems Design 36

Memory Technologies

Memory type Typical access
time

Density Typical applications

DRAM 50-100 ns 64 Mb main memory
SRAM 10 ns 1 Mb µmemory , cache, fast RAM
UVROM 50 ns 32 Mb Code and data storage
Fusible link
PROM

50 ns 32 Mb Code and data storage

EEPROM 50-200 ns 1 Mb Persistent storage of variable data
Flash 20-30 ns (read)

1 µs (write)
64 Mb Code and data storage

Ferroelectric
RAM

40 ns 64 Mb various

Ferrite core 10 ms 2 Kb or less None, possibly ultra-hardened
non-volatile memory

Selection of the appropriate technology is a systems design issue.

19

ENGG4420: Real-Time Systems Design 37

Memory Organization

Typical memory map showing designated regions.

ENGG4420: Real-Time Systems Design 38

Ch2: Hardware
Considerations

A. Basic architecture
B. Hardware interfacing (from a software

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures

20

ENGG4420: Real-Time Systems Design 39

I/O
Programmed I/O
Direct memory access (DMA)
Memory-mapped I/O
Interrupts

ENGG4420: Real-Time Systems Design 40

Programmed I/O
Special data movement instructions are used to
transfer data to and from the CPU.
An IN instruction transfers data from a specified I/O
device into a specified CPU register.
An OUT instruction outputs from a register to some
I/O device.
Normally, the identity of the operative CPU register is
embedded in the instruction code.
Both the IN and OUT instructions require the efforts of
the CPU and thus cost time that could impact real-
time performance.

21

ENGG4420: Real-Time Systems Design 41

Direct Memory Access (DMA)
Access to the computer’s memory is given to
other devices in the system without CPU
intervention.
Information is deposited directly into main
memory by the external device.
DMA controller is required unless the DMA
circuitry is integrated into the CPU.
Because CPU participation is not required,
data transfer is fast.

ENGG4420: Real-Time Systems Design 42

Direct Memory Access (DMA)

The DMA controller prevents collisions by requiring each device to issue a
DMA request signal (DMARQ) that will be acknowledged with a DMA
acknowledge signal (DMACK). Until the DMACK signal is given to the
requesting device its connection to the main bus remains in a tri-state condition.
Any device that is tri-stated cannot affect the data on the memory data lines.

22

ENGG4420: Real-Time Systems Design 43

Memory-Mapped I/O
Memory-mapped I/O provides a data transfer
mechanism that is convenient because it does
not require the use of special CPU I/O
instructions.
In memory-mapped I/O certain designated
locations of memory appear as virtual
input/output ports.

ENGG4420: Real-Time Systems Design 44

Memory-Mapped I/O

Input from an appropriate memory- mapped location
involves executing a LOAD instruction on a pseudomemory
location connected to an input device. Output uses a
STORE instruction

23

ENGG4420: Real-Time Systems Design 45

Memory-Mapped I/O

Set indicator light, on=1 Other devices Motor control, 4 bits control 16 speeds

A bit map (packed binary word) describes a view of a
set of devices that are accessed by a single (discrete)
signal and organized into a word of memory for
convenient access either by DMA or memory
mapped-addressing.

ENGG4420: Real-Time Systems Design 46

Interrupts
Instruction support for interrupts
Internal CPU handling of interrupts
Programmable interrupt controller (PIC)
Interfacing devices to the CPU via interrupts
Interruptible instructions
Watchdog timers

24

ENGG4420: Real-Time Systems Design 47

Instruction Support for Interrupts
Interrupt: a hardware signal that initiates an
event

external
internal

Processors provide two instructions
enable (turn on) priority interrupt (EPI)
disable (turn off) priority interrupt (DPI).

These are atomic instructions that are used for
many purposes, such as buffering, within
interrupt handlers, and for parameter passing.

ENGG4420: Real-Time Systems Design 48

Internal CPU Handling of Interrupts

Interrupt return
location

Interrupt handler
location

Program
Counter

Single Interrupt Support

Step 1: finish the currently executing macroinstruction.
Step 2: save the contents of the PC to the interrupt return location
Step 3: load the address held in the interrupt handler location into the
program counter. Resume the fetch and execute sequence.

25

ENGG4420: Real-Time Systems Design 49

Internal CPU Handling of Interrupts
Step 1: complete
the currently
executing
instruction.
Step 2: save the
contents of PC to
interrupt return
location i.
Step 3: load the
address held in
interrupt handler
location i into the
PC. Resume the
fetch-execute
cycle.

Multiple interrupt support

ENGG4420: Real-Time Systems Design 50

Programmable Interrupt Controller
(PIC)
A Programmable
interrupt
controller (PIC).
The registers:

interrupt, priority,
vector, status,
and mask serve
the same
functions as for
the interrupt
control circuitry of
an on-board
CPU.

26

ENGG4420: Real-Time Systems Design 51

Programmable Interrupt Controller
(PIC)

Handling multiple interrupts with an external interrupt controller.
Step 1: finish the currently executing instruction.
Step 2: save the contents of the PC into the interrupt return location.
Step 3: load the address held in the interrupt handler location into the
program counter. Resume the fetch execute cycle. The interrupt
handler routine will interrogate the PIC and take the appropriate
action.

ENGG4420: Real-Time Systems Design 52

Interfacing Devices to the CPU via
Interrupts

A Single peripheral controller. IRL is the interrupt request line.
The controller’s address on the address but activates the
Device Select Line signal

27

ENGG4420: Real-Time Systems Design 53

Interfacing Devices to the CPU via
Interrupts

Several peripheral
controllers
connected to the
CPU via a
programmable
interrupt controller.
Notice that the
devices share the
common data bus,
which is facilitated
by tri-stating, non-
active devices via
the device select
lines.

ENGG4420: Real-Time Systems Design 54

Interruptible Instructions
In rare instances certain macroinstruction may
need to be interruptible.
This might be the case where the instruction
takes a great deal of time to complete.

E.g. a memory to memory instruction that moves
large amounts of data.
In most cases, such an instruction should be
interruptible between blocks to reduce interrupt
latency.
However, interrupting this particular instruction
could cause data integrity problems.

28

ENGG4420: Real-Time Systems Design 55

Watchdog Timers (WDT)

WDT: is a counting register that is increased
periodically. Overflow generates interrupt to CPU
NOTE: the register must be cleared by appropriate
code using memory-mapped I/O before the register
overflows and generates an interrupt.

ENGG4420: Real-Time Systems Design 56

Ch2: Hardware
Considerations

A. Basic architecture
B. Hardware interfacing (from a software

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures

29

ENGG4420: Real-Time Systems Design 57

Enhancing Performance
Locality of reference
Cache
Pipelining
Coprocessors
Other special devices

Two architectural enhancements that can improve average
case performance in real- time systems are caches and
pipelines => this proves that when the locality of reference
is high, performance is improved

ENGG4420: Real-Time Systems Design 58

Locality of Reference
Refers to the relative “distance” in memory between
consecutive code or data accesses.
If data or code fetched tends to reside relatively close
in memory, then the locality of reference is high.
When programs execute instructions that are
relatively widely scattered locality of reference is low,
Well-written programs in procedural languages tend
to execute sequentially within code modules and
within the body of loops, and hence have a high
locality of reference.
Object-oriented code tends to execute in a much
more non-linear fashion. But portions of such code
can be linearized (e.g. array access).

30

ENGG4420: Real-Time Systems Design 59

Cache

A small block of fast memory where frequently used instructions
and data are kept. The cache is much smaller than the main
memory.

Also contains a table of memory address tags, which are currently in
the cache. The table is often in the cache itself.

Usage:
Upon memory access check the address tags to see if
instruction/data is in the cache.
If present, retrieve data from cache,
If not present, cache contents are written back (into the main
memory) and new block is read from main memory to cache.
The needed information is then delivered from cache to CPU and
the address tags adjusted.

Cache design considerations include: cache size, mapping
function, block replacement algorithm, write policy, block size,
and number of caches.

ENGG4420: Real-Time Systems Design 60

Cache
Performance benefits are a function of cache hit radio.
This is due to the fact that if needed data or instructions
are not found in the cache, then the cache contents need
to be written back (if any were altered) and overwritten by
a memory block containing the needed information.

This overhead can become significant when the hit ratio is low.
Therefore a low hit ratio can degrade performance.

Hence, if the locality of reference is low, a low number of
cache hits would be expected, degrading performance.
Using a cache is also non- deterministic – it is impossible
to know a priori what the cache contents and hence the
overall access time will be.

31

ENGG4420: Real-Time Systems Design 61

Cache
What performance benefit does the cache
give?
Consider a simple system with a single cache

noncached memory reference costs 100ns
access from the cache 30ns
cache hit ratio is 60%
As a result the average access time would be:
0.6*30 ns + 0.4 * 100 ns = 58 ns

Performance benefits in a cache system are a
function of the cache hit ratio

ENGG4420: Real-Time Systems Design 62

Pipelining
Pipelining imparts an implicit execution parallelism in
the different cycles of processing an instruction.
With pipelining, more instructions can be processed in
different cycles simultaneously, improving processor
performance.
Suppose execution of an instruction consists of the
following stages:

fetch – get the instruction from memory
decode – determine what the instruction is
execute – perform the instruction decode
write – store the results to memory

32

ENGG4420: Real-Time Systems Design 63

Pipelining
Sequential
instruction
execution versus
pipelined
instruction
execution.
Nine complete
instruction can be
completed in the
pipelined approach
in the same time it
takes to complete
three instruction in
the sequential
(scalar) approach

ENGG4420: Real-Time Systems Design 64

Pipelining
speedup from pipelining = (pipeline
depth)/(1+ pipeline stall cycles per
instruction)
Note that if there are no stalls, the speedup is
equal to the number of pipeline stages

cmpe1
Sticky Note
k operations, each passing n steps in a time unit each
T(1,k)=n*k
with pipelining with n steps
T(n,k)=n+k-1
speedup(n,k)=T1/Tn=n*k/(n+k-1)=
n/(1+(n-1)/k)

33

ENGG4420: Real-Time Systems Design 65

Pipelining
Superpipelined architectures can be achieved if the
fetch-and-execute cycle can be decomposed further.
A superscalar architecture can be achieved by the
use of redundant hardware to replicate one or more
stages in the pipeline.
Superscalar and superpipelined architectures can be
combined to obtain a superscalar, superpipelined
computer.
Pipelining can actually degrade performance –

if any of the instructions in the pipeline are a branch
instruction, the prefetched instructions further in the pipeline
are no longer valid and must be flushed.
Data dependencies can also degrade performance

ENGG4420: Real-Time Systems Design 66

Coprocessors
A second specialized CPU to perform special instructions
that are not part of the base instruction set (e.g. signal
processing instructions).

The main processor loads certain registers with data for the
coprocessor; issues an interrupt to the coprocessor, then halts
itself. When the coprocessor finishes it awakens the main
processor via an interrupt, and then halts itself.

Coprocessors improve real- time performance by
extending the instruction set to support faster, specialized
instructions.
Coprocessors do not improve performance because of
any inherent parallelism.
The coprocessor and its resources are a critical resource
and need to be protected. Ex. registers should be saved

34

ENGG4420: Real-Time Systems Design 67

Ch2: Hardware
Considerations

A. Basic architecture
B. Hardware interfacing (from a software

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures

ENGG4420: Real-Time Systems Design 68

Other Special Devices
ASICs
PAL/PLA
FPGAs
Tranducers
A/D converters
D/A converters

35

ENGG4420: Real-Time Systems Design 69

ASICs
Applications specific integrated circuit – a special
purpose integrated circuit designed for one
application only.
In essence, these devices are systems-on-a-chip that
can include a microprocessor, memory, I/O devices
and other specialized circuitry.
ASICs are used in many embedded applications
including image processing, avionics systems,
medical systems.
Real-time design issues are the same for them as
they are for most other systems.

ENGG4420: Real-Time Systems Design 70

PAL/PLA
One-time programmable logic devices are used for
special purpose functionality in embedded systems.
Programmable array logic (PAL) – a programmable
AND array followed by a fixed number input OR
element. Each OR element has a certain number of
dedicated product terms.
Programmable logic array (PLA) same as PAL but the
AND array is followed by a programmable width OR
array. This allows the product terms to be shared
between macrocells, increasing device density.
PLA is much more flexible and yields more efficient
logic, but is more expensive. PAL is faster (because it
uses fewer fuses) and is less expensive.

36

ENGG4420: Real-Time Systems Design 71

PAL

Only the
external
junctions
are
programmable.
The internal
ones are
marked with
a dot and
are fixed

ENGG4420: Real-Time Systems Design 72

PLA

All junctions
are
programmable.
They can
be selectively
fused

37

ENGG4420: Real-Time Systems Design 73

FPGAs
Field programmable gate array (FPGA) – allows
construction of a system on a chip with an integrated
processor, memory, and I/O.
Differs from the ASIC in that it is reprogrammable,
even while embedded in the system.
A reconfigurable architecture allows for the
programmed interconnection and functionality of a
conventional processor
Algorithms and functionality are moved from residing
in the software side into the hardware side.
Widely used in embedded, mission-critical systems
where fault-tolerance and adaptive functionality is
essential.

ENGG4420: Real-Time Systems Design 74

FPGAs

FPGA, showing internal configurable logic blocks and
periphery I/O elements

38

ENGG4420: Real-Time Systems Design 75

Transducers
Transducers are generally any device that
converts energy from one form to another.
In embedded system the input is an analog
signal, which must be converted to digital form
by another device
Typical transducers in embedded systems:

Temperature sensors
Accelerometers
Gyroscopes
Position resolvers

ENGG4420: Real-Time Systems Design 76

Temperature Sensors
Temperature is an important control parameter of
most embedded real-time systems.
Most commonly used electrical temperature sensors
are thermocouples, thermistors, and resistance
thermometers.
Thermocouples take advantage of the junction effect
– the voltage difference generated at a junction due to
the difference in the energy distribution of, of two
dissimilar metals.
Resistance thermometers rely on the increase in
resistance of a metal wire as temperature increases.
Thermistors are resistive elements made of
semiconductor materials that have changing
resistance properties with temperature.

39

ENGG4420: Real-Time Systems Design 77

Accelerometers
Use a simple transducing function to convert the
compression or stretching of a spring or the deformation of
a membrane into an electrical output.

One mechanism takes advantage of the fact that the capacitance
associated with a capacitor is a function of the gap width, which
changes according to the spring or membrane deformation.
Another kind is a strain gage, which takes advantage of the fact
that as a wire is stretched or compressed, its resistance changes.
Accelerometers can be constructed using a strain gage.

Piezoelectric effect can also be used – the phenomenon
that if a crystal is compressed and the lattice structure is
disrupted electrons are discharged.

Hence, the compression of the device due to acceleration can be
measured. Piezoelectric accelerometers are widely used where
miniaturization is desirable.

Vibrating beams can also be used as both gyroscopes and
accelerometers and have a high scale of miniaturization.

ENGG4420: Real-Time Systems Design 78

Gyroscopes
Used to sense position, provide stability

Used in the inertial navigation of aircraft, spacecraft,
robots, and automotive applications.

Based on the fact that a vertically oriented rotating mass will
remain fixed with respect to two spatial directions.

Mechanical gyroscopes are used to maintain a platform in
a fixed position with respect to space.
Ring laser gyros don’t hold platform steady – they just
sense rotation.

These are constructed from two concentric fiber optic loops.
A laser pulse is sent in opposite directions through each of the two
loops. If the vehicle rotates in the direction of the loops, then one
beam will travel faster than the other. Difference can be measured
and the amount of rotation determined.
Three ring laser gyros needed to measure yaw, pitch, and roll
angles.

40

ENGG4420: Real-Time Systems Design 79

Gyroscopes
Stylized
representation
of two
gyroscopes
used to hold a
hinged platform
with three
orthogonal
accelerometers,
fixed with
respect to an
inertial
reference frame
(not to scale).

ENGG4420: Real-Time Systems Design 80

Position Resolvers
Sensors that provide angular measurements
pertaining to the orientation or attitude of the
vehicle.
Accelerometers that are mounted orthogonally
can provide enough information from which
orientation can be determined via geometry.
Other techniques take advantage of the
piezoelectric effect or magnetic induction to
determine position.
Ring laser gyros can also be used for position
resolution.

41

ENGG4420: Real-Time Systems Design 81

A/D Converters
Analog- to- digital conversion converts continuous (analog)
signals from various transducers and devices into discrete
(digital) ones.
Similar circuitry can be used to convert temperature,
sound, pressure, and other inputs from transducers using
a variety of sampling schemes to perform the conversion.
The output of A/D circuitry is a discrete version of the time-
varying signal being monitored.
The key factor in the service of A/D circuitry for time
varying signals is the sampling rate (the Nyquist rate). This
consideration is an inherent part of the design process for
the scheduling of tasks.

digital samples must be taken at twice the rate of the highest
frequency component of the analog signal

ENGG4420: Real-Time Systems Design 82

D/A Converters
Digital-to-analog conversion performs the
inverse function of A/D circuitry.
Converts a discrete quantity to a continuous
one.
D/A devices are used to allow the computer to
output analog voltages based on the digital
version stored internally.
Communication with D/A circuitry uses one of
the three input/output methods discussed.

42

ENGG4420: Real-Time Systems Design 83

Ch2: Hardware
Considerations

A. Basic architecture
B. Hardware interfacing (from a software

or system engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures

ENGG4420: Real-Time Systems Design 84

Non-von-Neumann Architectures
Von-Neumann architectures are architectures
that allow only one instruction or one data to
occupy the bus at one time
The generally accepted taxonomy of parallel
systems was proposed by Flynn

The classification is based on the notion of two
streams of information flow to a processor;
instruction (I) and data (D)
These two streams can be either single (S) or
multiple (M)

As a result: SISD; SIMD; MISD; and MIMD

43

ENGG4420: Real-Time Systems Design 85

Non-von-Neumann Architectures
 single data stream multiple data stream

single instruction stream von Neumann processors systolic processors
 RISC wavefront

processors

multiple instruction
stream

pipelined architectures dataflow processors

 VLIW processors transputers
grid computers
hypercube processors

Flynn’s classification for computer architectures.
Examples of typical architectures

ENGG4420: Real-Time Systems Design 86

Non-von-Neumann Architectures
Besides SISD and pipelined MISD
architectures the others tend to be found only
in limited real-time application in industry
A special case of the MIMD computer is the
Transport Triggered Architecture

a distributed heterogeneous architecture in which a
number of independent von-Neumann CPUs
communicate over a network and employ a time-
driven processing model rather than an event-
driven one.
An example is time triggered architecture (TTA)

44

ENGG4420: Real-Time Systems Design 87

Non von Neumann Architectures

Time triggered architecture with five nodes.

ENGG4420: Real-Time Systems Design 88

Non von Neumann Architectures
Time Triggered Architecture (TTA)

TTA can be used for implementing real-time
systems
TTA models a distributed real-time system as a
set of nodes interconnected by a real-time
communication system

each node consists of a communication controller
and a host computer, which are provided with a
global synchronization clock with a 1 us tick duration
nodes use TDMA (time division multiple access) – a
time slot is allocated to each node

45

ENGG4420: Real-Time Systems Design 89

Non von Neumann Architectures
Time Triggered Architecture (TTA)

In TTA architecture is possible to predict the
latency of all messages an the bus

this guarantees hard real-time message delivery
Furthermore the latency jitter is minimal since
the messages are sent at a predetermined
point in time

ENGG4420: Real-Time Systems Design 90

Ch2: Hardware
Considerations

A. Basic architecture
B. Hardware interfacing (from a software or system

engineering perspective)
C. CPU
D. Memory
E. I/O
F. Enhancing performance
G. Other special devices
H. Non von Neumann architectures
I. Assignments

46

ENGG4420: Real-Time Systems Design 91

Assignments [1] (Laplante Ch2)
Exercises

2.3; 2.4; 2.5; 2.6; 2.9; 2.10; 2.12; 2.13; 2.14; 2.16;

