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We now come to the crux of the matter. Since the xi are all 0 or 1, all of
the 2xi − 1 values are ±1, so the vector t is quite short, ‖t‖ =

√
n. On

the other hand, we have seen that mi = O(22n) and S = O(22n), so the
vectors generating L all have lengths ‖vi‖ = O(22n). Thus it is unlikely that L
contains any nonzero vectors, other than t, whose length is as small as

√
n. If

we postulate that Eve knows an algorithm that can find small nonzero vectors
in lattices, then she will be able to find t, and hence to recover the plaintext x.

Algorithms that find short vectors in lattices are called lattice reduction al-
gorithms. The most famous of these is the LLL algorithm, to which we alluded
earlier, and its variants such as LLL-BKZ. The remainder of this chapter is
devoted to describing lattices, cryptosystems based on lattices, the LLL al-
gorithm, and cryptographic applications of LLL. A more detailed analysis of
knapsack cryptosystems is given in Sect. 7.14.2; see also Example 7.33.

7.3 A Brief Review of Vector Spaces

Before starting our discussion of lattices, we pause to remind the reader of
some important definitions and ideas from linear algebra. Vector spaces can be
defined in vast generality,3 but for our purposes in this chapter, it is enough to
consider vector spaces that are contained in R

m for some positive integer m.
We start with the basic definitions that are essential for studying vector

spaces.

Vector Spaces. A vector space V is a subset of Rm with the property that

α1v1 + α2v2 ∈ V for all v1,v2 ∈ V and all α1, α2 ∈ R.

Equivalently, a vector space is a subset of Rm that is closed under ad-
dition and under scalar multiplication by elements of R.

Linear Combinations. Let v1,v2, . . . ,vk ∈ V . A linear combination of
v1,v2, . . . ,vk ∈ V is any vector of the form

w = α1v1 + α2v2 + · · ·+ αkvk with α1, . . . , αk ∈ R.

The collection of all such linear combinations,

{α1v1 + · · ·+ αkvk : α1, . . . , αk ∈ R},
is called the span of {v1, . . . ,vk}.

Independence. A set of vectors v1,v2, . . . ,vk ∈ V is (linearly) independent
if the only way to get

α1v1 + α2v2 + · · ·+ αkvk = 0 (7.5)

is to have α1 = α2 = · · · = αk = 0. The set is (linearly) dependent if we
can make (7.5) true with at least one αi nonzero.

3For example, we saw in Sect. 3.6 a nice application of vector spaces over the field F2.
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Bases. A basis for V is a set of linearly independent vectors v1, . . . ,vn that
span V . This is equivalent to saying that every vector w ∈ V can be
written in the form

w = α1v1 + α2v2 + · · ·+ αnvn

for a unique choice of α1, . . . , αn ∈ R.

We next describe the relationship between different bases and the impor-
tant concept of dimension.

Proposition 7.11. Let V ⊂ R
m be a vector space.

(a) There exists a basis for V .

(b) Any two bases for V have the same number of elements. The number of
elements in a basis for V is called the dimension of V .

(c) Let v1, . . . ,vn be a basis for V and let w1, . . . ,wn be another set of n
vectors in V . Write each wj as a linear combination of the vi,

w1 = α11v1 + α12v2 + · · ·+ α1nvn,

w2 = α21v1 + α22v2 + · · ·+ α2nvn,

...
...

wn = αn1v1 + αn2v2 + · · ·+ αnnvn.

Then w1, . . . ,wn is also a basis for V if and only if the determinant of
the matrix ⎛

⎜⎜⎜⎝
α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

. . .
...

αn1 αn2 · · · αnn

⎞
⎟⎟⎟⎠

is not equal to 0.

We next explain how to measure lengths of vectors in R
n and the angles

between pairs of vectors. These important concepts are tied up with the notion
of dot product and the Euclidean norm.

Definition. Let v,w ∈ V ⊂ R
m and write v and w using coordinates as

v = (x1, x2, . . . , xm) and w = (y1, y2, . . . , ym).

The dot product of v and w is the quantity

v ·w = x1y1 + x2y2 + · · ·+ xmym.

We say that v and w are orthogonal to one another if v ·w = 0.
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The length, or Euclidean norm, of v is the quantity

‖v‖ =
√
x2
1 + x2

2 + · · ·+ x2
m.

Notice that dot products and norms are related by the formula

v · v = ‖v‖2.
Proposition 7.12. Let v,w ∈ V ⊂ R

m.
(a) Let θ be the angle between the vectors v and w, where we place the starting

points of v and w at the origin 0. Then

v ·w = ‖v‖ ‖w‖ cos(θ), (7.6)

(b) (Cauchy–Schwarz inequality)

|v ·w| ≤ ‖v‖ ‖w‖. (7.7)

Proof. For (a), see any standard linear algebra textbook. We observe that
the Cauchy–Schwarz inequality (b) follows immediately from (a), but we feel
that it is of sufficient importance to warrant a direct proof. If w = 0, there is
nothing to prove, so we may assume that w �= 0. We consider the function

f(t) = ‖v − tw‖2 = (v − tw) · (v − tw)

= v · v − 2tv ·w + t2w ·w
= ‖v‖2 − 2tv ·w + t2‖w‖2.

We know that f(t) ≥ 0 for all t ∈ R, so we choose the value of t that min-
imizes f(t) and see what it gives. This minimizing value is t = v · w/‖w‖2.
Hence

0 ≤ f

(
v ·w
‖w‖2

)
= ‖v‖2 − (v ·w)2

‖w‖2 .

Simplifying this expression and taking square roots gives the desired result.

Definition. An orthogonal basis for a vector space V is a basis v1, . . . ,vn

with the property that

vi · vj = 0 for all i �= j.

The basis is orthonormal if in addition, ‖vi‖ = 1 for all i.

There are many formulas that become much simpler using an orthogonal
or orthonormal basis. In particular, if v1, . . . ,vn is an orthogonal basis and
if v = a1v1 + · · ·+ anvn is a linear combination of the basis vectors, then

‖v‖2 = ‖a1v1 + · · ·+ anvn‖2
= (a1v1 + · · ·+ anvn) · (a1v1 + · · ·+ anvn)
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=
n∑

i=1

n∑
j=1

aiaj(vi · vj)

=

n∑
i=1

a2i ‖vi‖2 since vi · vj = 0 for i �= j.

If the basis is orthonormal, then this further simplifies to ‖v‖2 =
∑

a2i .
There is a standard method, called the Gram–Schmidt algorithm, for cre-

ating an orthonormal basis. We describe a variant of the usual algorithm that
gives an orthogonal basis, since it is this version that is most relevant for our
later applications.

Theorem 7.13 (Gram–Schmidt Algorithm). Let v1, . . . ,vn be a basis for
a vector space V ⊂ R

m. The following algorithm creates an orthogonal ba-
sis v∗1, . . . ,v

∗
n for V :

Set v∗1 = v1.

Loop i = 2, 3, . . . , n.

Compute μij = vi · v∗j/‖v∗j‖2 for 1 ≤ j < i.

Set v∗i = vi −
∑i−1

j=1 μijv
∗
j .

End Loop

The two bases have the property that

Span{v1, . . . ,vi} = Span{v∗1, . . . ,v∗i } for all i = 1, 2, . . . , n.

Proof. The proof of orthogonality is by induction, so we suppose that the
vectors v∗1, . . . ,v

∗
i−1 are pairwise orthogonal and we need to prove that v∗i is

orthogonal to all of the previous starred vectors. To do this, we take any k < i
and compute

v∗i · v∗k =

⎛
⎝vi −

i−1∑
j=1

μijv
∗
j

⎞
⎠ · v∗k

= vi · v∗k − μik‖v∗k‖2 since v∗k · v∗j = 0 for j �= k,

= 0 from the definition of μik.

To prove the final statement about the spans, we note first that it is clear
from the definition of v∗i that vi is in the span of v∗1, . . . ,v

∗
i . We prove the

other inclusion by induction, so we suppose that v∗1, . . . ,v
∗
i−1 are in the span

of v1, . . . ,vi−1 and we need to prove that v∗i is in the span of v1, . . . ,vi. But
from the definition of v∗i , we see that it is in the span of v∗1, . . . ,v

∗
i−1,vi, so

we are done by the induction hypothesis.


