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Example 7.33. Let (m1, . . . ,mn, S) be a knapsack problem. The associated
lattice LM ,S is generated by the rows of the matrix (7.4) given on page 383.
The matrix LM ,S has dimension n+ 1 and determinant detLM ,S = 2nS. As
explained in Sect. 7.2, the number S satisfies S = O(22n), so S1/n ≈ 4. This
allows us to approximate the Gaussian shortest length as

σ(LM ,S) =

√
n+ 1

2πe
(detLM ,S)

1/(n+1) =

√
n+ 1

2πe
(2nS)1/(n+1)

≈
√

n

2πe
· 2S1/n ≈

√
n

2πe
· 8 ≈ 1.936

√
n.

On the other hand, as explained in Sect. 7.2, the lattice LM ,S contains a
vector t of length

√
n, and knowledge of t reveals the solution to the subset-

sum problem. Hence solving SVP for the lattice LM ,S is very likely to solve
the subset-sum problem. For a further discussion of the use of lattice methods
to solve subset-sum problems, see Sect. 7.14.2.

We will find that the Gaussian heuristic is useful in quantifying the diffi-
culty of locating short vectors in lattices. In particular, if the actual shortest
vector of a particular lattice L is significantly shorter than σ(L), then lattice
reduction algorithms such as LLL seem to have a much easier time locating
the shortest vector.

A similar argument leads to a Gaussian heuristic for CVP. Thus if L ⊂ R
n

is a random lattice of dimension n and w ∈ R
n is a random point, then we

expect that the lattice vector v ∈ L closest to w satisfies

‖v −w‖ ≈ σ(L).

And just as for SVP, if L contains a point that is significantly closer than σ(L)
to w, then lattice reduction algorithms have an easier time solving CVP.

7.6 Babai’s Algorithm and Using a “Good”
Basis to Solve apprCVP

If a lattice L ⊂ R
n has a basis v1, . . . ,vn consisting of vectors that are pairwise

orthogonal, i.e., such that

vi · vj = 0 for all i �= j,

then it is easy to solve both SVP and CVP. Thus to solve SVP, we observe
that the length of any vector in L is given by the formula

‖a1v1 + a2v2 + · · ·+ anvn‖2 = a21‖v1‖2 + a22‖v2‖2 + · · ·+ a2n‖vn‖2.

Since a1, . . . , an ∈ Z, we see that the shortest nonzero vector(s) in L are
simply the shortest vector(s) in the set {±v1, . . . ,±vn}.
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Similarly, suppose that we want to find the vector in L that is closest to a
given vector w ∈ R

n. We first write

w = t1v1 + t2v2 + · · ·+ tnvn with t1, . . . , tn ∈ R.

Then for v = a1v1 + · · ·+ anvn ∈ L, we have

‖v−w‖2 = (a1− t1)
2‖v1‖2+(a2− t2)

2‖v2‖2+ · · ·+(an− tn)
2‖vn‖2. (7.23)

The ai are required to be integers, so (7.23) is minimized if we take each ai
to be the integer closest to the corresponding ti.

v

F + v
w

The vertex of F + v that is
closest to w is a candidate
for (approximate) closest vector

L

Figure 7.3: Using a given fundamental domain to try to solve CVP

It is tempting to try a similar procedure with an arbitrary basis of L. If
the vectors in the basis are reasonably orthogonal to one another, then we
are likely to be successful in solving CVP; but if the basis vectors are highly
non-orthogonal, then the algorithm does not work well. We briefly discuss the
underlying geometry, then describe the general method, and conclude with a
2-dimensional example.

A basis {v1, . . . ,vn} for L determines a fundamental domain F in the usual
way, see (7.9). Proposition 7.18 says that the translates of F by the elements
of L fill up the entire space R

n, so any w ∈ R
n is in a unique translate F + v

of F by an element v ∈ L. We take the vertex of the parallelepiped F + v
that is closest to w as our hypothetical solution to CVP. This procedure is
illustrated in Fig. 7.3. It is easy to find the closest vertex, since

w = v + ε1v1 + ε2v2 + · · ·+ εnvn for some 0 ≤ ε1, ε2, . . . , εn < 1,
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so we simply replace εi by 0 if it is less than 1
2 and replace it by 1 if it is

greater than or equal to 1
2 .

Looking at Fig. 7.3 makes it seem that this procedure is bound to work,
but that’s because the basis vectors in the picture are reasonably orthogonal
to one another. Figure 7.4 illustrates two different bases for the same lattice.
The first basis is “good” in the sense that the vectors are fairly orthogonal;
the second basis is “bad” because the angle between the basis vectors is small.

If we try to solve CVP using a bad basis, we are likely run into problems
as illustrated in Fig. 7.5. The nonlattice target point is actually quite close to
a lattice point, but the parallelogram is so elongated that the closest vertex

A “Good Basis” A “Bad Basis”

Figure 7.4: Two different bases for the same lattice

to the target point is quite far away. And it is important to note that the
difficulties get much worse as the dimension of the lattice increases. Examples
visualized in dimension 2 or 3, or even dimension 4 or 5, do not convey the
extent to which the following closest vertex algorithm generally fails to solve
even apprCVP unless the basis is quite orthogonal.

Theorem 7.34 (Babai’s Closest Vertex Algorithm). Let L ⊂ R
n be a lattice

with basis v1, . . . ,vn, and let w ∈ R
n be an arbitrary vector. If the vectors in

the basis are sufficiently orthogonal to one another, then the following algo-
rithm solves CVP.

Write w = t1v1 + t2v2 + · · ·+ tnvn with t1, . . . , tn ∈ R.

Set ai = 	ti
 for i = 1, 2, . . . , n.

Return the vector v = a1v1 + a2v2 + · · ·+ anvn.

In general, if the vectors in the basis are reasonably orthogonal to one another,
then the algorithm solves some version of apprCVP, but if the basis vectors are
highly nonorthogonal, then the vector returned by the algorithm is generally
far from the lattice vector that is closest to w.

Example 7.35. Let L ⊂ R
2 be the lattice given by the basis

v1 = (137, 312) and v2 = (215,−187).
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We are going to use Babai’s algorithm (Theorem 7.34) to find a vector in L
that is close to the vector

w = (53172, 81743).

The first step is to express w as a linear combination of v1 and v2 using real
coordinates. We do this using linear algebra. Thus we need to find t1, t2 ∈ R

such that
w = t1v1 + t2v2.

Target Point

Closest Vertex

Closest Lattice
Point

Figure 7.5: Babai’s algorithm works poorly if the basis is “bad”

This gives the two linear equations

53172 = 137t1 + 215t2 and 81743 = 312t1 − 187t2, (7.24)

or, for those who prefer matrix notation,

(53172, 81743) = (t1, t2)

(
137 312
215 −187

)
. (7.25)

It is easy to solve for (t1, t2), either by solving the system (7.24) or by invert-
ing the matrix in (7.25). We find that t1 ≈ 296.85 and t2 ≈ 58.15. Babai’s
algorithm tells us to round t1 and t2 to the nearest integer and then compute

v = 	t1
v1 + 	t2
v2 = 297(137, 312) + 58(215,−187) = (53159, 81818).
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Then v is in L and v should be close to w. We find that

‖v −w‖ ≈ 76.12

is indeed quite small. This is to be expected, since the vectors in the given
basis are fairly orthogonal to one another, as is seen by the fact that the
Hadamard ratio

H(v1,v2) =

(
det(L)

‖v1‖‖v2‖
)1/2

≈
(

92699

(340.75)(284.95)

)1/2

≈ 0.977

is reasonably close to 1.
We now try to solve the same closest vector problem in the same lattice,

but using the new basis

v′
1 = (1975, 438) = 5v1 + 6v2 and v′

2 = (7548, 1627) = 19v1 + 23v2.

The system of linear equations

(53172, 81743) = (t1, t2)

(
1975 438
7548 1627

)
(7.26)

has the solution (t1, t2) ≈ (5722.66,−1490.34), so we set

v′ = 5723v′
1 − 1490v′

2 = (56405, 82444).

Then v′ ∈ L, but v′ is not particularly close to w, since

‖v′ −w‖ ≈ 3308.12.

The nonorthogonality of the basis {v′
1,v

′
2} is shown by the smallness of the

Hadamard ratio

H(v′
1,v

′
2) =

(
det(L)

‖v1‖‖v2‖
)1/2

≈
(

92699

(2022.99)(7721.36)

)1/2

≈ 0.077.

7.7 Cryptosystems Based on Hard
Lattice Problems

During the mid-1990s, several cryptosystems were introduced whose un-
derlying hard problem was SVP and/or CVP in a lattice L of large di-
mension n. The most important of these, in alphabetical order, were the
Ajtai–Dwork cryptosystem [4], the GGH cryptosystem of Goldreich, Gold-
wasser, and Halevi [49], and the NTRU cryptosystem proposed by Hoffstein,
Pipher, and Silverman [54].

The motivation for the introduction of these cryptosystems was twofold.
First, it is certainly of interest to have cryptosystems based on a variety of
hard mathematical problems, since then a breakthrough in solving one math-
ematical problem does not compromise the security of all systems. Second,


