
7.8. The GGH Public Key Cryptosystem 409

NTRU is easily transformed into an SVP (for key recovery) or a CVP (for
plaintext recovery) in a special class of lattices. The NTRU lattices, which
are described in Sect. 7.11, are lattices of even dimension n = 2N consisting
of all vectors (x,y) ∈ Z

2N satisfying

y ≡ xH (mod q)

for some fixed positive integer q that is a public parameter. (In practice, q =
O(n).) The matrix H, which is the public key, is an N -by-N circulant matrix.
This means that each successive row of H is a rotation of the previous row,
so in order to describe H, it suffices to specify its first row. Thus the public
key has size O(n log n), which is significantly smaller than GGH.

The NTRU private key is a single short vector (f , g) ∈ L. The set
consisting of the short vector (f , g), together with its partial rotations,
gives N = 1

2 dim(L) independent short vectors in L. This allows the owner
of (f , g) to solve certain instances of CVP in L and thereby recover the en-
crypted plaintext. (For details, see Sect. 7.11 and Exercise 7.36.) Thus the
security of the plaintext relies on the difficulty of solving CVP in the NTRU
lattice. Further, the vector (f , g) and its rotations are almost certainly the
shortest nonzero vectors in L, so NTRU is also vulnerable to a solution of SVP.

7.8 The GGH Public Key Cryptosystem

Alice begins by choosing a set of linearly independent vectors

v1,v2, . . . ,vn ∈ Z
n

that are reasonably orthogonal to one another. One way to do this is to fix a
parameter d and choose the coordinates of v1, . . . ,vn randomly between −d
and d. Alice can check that her choice of vectors is good by computing the
Hadamard ratio (Remark 7.27) of her basis and verifying that it is not too
small. The vectors v1, . . . ,vn are Alice’s private key. For convenience, we let V
be the n-by-n matrix whose rows are the vectors v1, . . . ,vn, and we let L be
the lattice generated by these vectors.

Alice next chooses an n-by-n matrix U with integer coefficients and
det(U) = ±1. One way to create U is as a product of a large number of
randomly chosen elementary matrices. She then computes

W = UV.

The row vectors w1, . . . ,wn of W are a new basis for L. They are Alice’s
public key.

When Bob wants to send a message to Alice, he selects a small vector m
with integer coordinates as his plaintext, e.g., m might be a binary vector.
Bob also chooses a small random perturbation vector r that acts as a ran-
dom element. For example, he might choose the coordinates of r randomly



410 7. Lattices and Cryptography

between −δ and δ, where δ is a fixed public parameter. He then computes the
vector

e = mW + r =
n∑

i=1

miwi + r,

which is his ciphertext. Notice that e is not a lattice point, but it is close to
the lattice point mW , since r is small.

Alice Bob

Key creation
Choose a good basis v1, . . . ,vn.
Choose an integer matrix U

satisfying det(U) = ±1.
Compute a bad basis w1, . . . ,wn

as the rows of W = UV .
Publish the public key w1, . . . ,wn.

Encryption
Choose small plaintext vector m.
Choose random small vector r.
Use Alice’s public key to compute

e = x1w1 + · · ·+ xnwn + r.
Send the ciphertext e to Alice.

Decryption
Use Babai’s algorithm to compute

the vector v ∈ L closest to e.
Compute vW−1 to recover m.

Table 7.3: The GGH cryptosystem

Decryption is straightforward. Alice uses Babai’s algorithm, as described
in Theorem 7.34, with the good basis v1, . . . ,vn to find a vector in L that is
close to e. Since she is using a good basis and r is small, the lattice vector
that she finds is mW . She then multiplies by W−1 to recover m. The GGH
cryptosystem is summarized in Table 7.3.

Example 7.36. We illustrate the GGH cryptosystem with a 3-dimensional
example. For Alice’s private good basis we take

v1 = (−97, 19, 19), v2 = (−36, 30, 86), v3 = (−184,−64, 78).

The lattice L spanned by v1, v2, and v3 has determinant det(L) = 859516,
and the Hadamard ratio of the basis is

H(v1,v2,v3) =
(
det(L)/‖v1‖ ‖v2‖ ‖v3‖

)1/3 ≈ 0.74620.



7.8. The GGH Public Key Cryptosystem 411

Alice multiplies her private basis by the matrix

U =

⎛
⎝

4327 −15447 23454
3297 −11770 17871
5464 −19506 29617

⎞
⎠ ,

which has determinant det(U) = −1, to create her public basis

w1 = (−4179163,−1882253, 583183),
w2 = (−3184353,−1434201, 444361),
w3 = (−5277320,−2376852, 736426).

The Hadamard ratio of the public basis is very small,

H(v1,v2,v3) =
(
det(L)/‖w1‖ ‖w2‖ ‖w3‖

)1/3 ≈ 0.0000208.

Bob decides to send Alice the plaintext m = (86,−35,−32) using the
random element r = (−4,−3, 2). The corresponding ciphertext is

e = (86,−35,−32)
⎛
⎝
−4179163 −1882253 583183
−3184353 −1434201 444361
−5277320 −2376852 736426

⎞
⎠+ (−4,−3, 2)

= (−79081427,−35617462, 11035473).
Alice uses Babai’s algorithm to decrypt. She first writes e as a linear

combination of her private basis with real coefficients,

e ≈ 81878.97v1 − 292300.00v2 + 443815.04v3.

She rounds the coefficients to the nearest integer and computes a lattice vector

v = 81879v1 − 292300v2 + 443815v3 = (−79081423,−35617459, 11035471)
that is close to e. She then recovers m by expressing v as a linear combination
of the public basis and reading off the coefficients,

v = 86w1 − 35w2 − 32w3.

Now suppose that Eve tries to decrypt Bob’s message, but she knows only
the public basis w1,w2,w3. If she applies Babai’s algorithm using the public
basis, she finds that

e ≈ 75.76w1 − 34.52w2 − 24.18w3.

Rounding, she obtains a lattice vector

v′ = 76w1 − 35w2 − 24w3 = (−79508353,−35809745, 11095049)
that is somewhat close to e. However, this lattice vector gives the incorrect
plaintext (76,−35,−24), not the correct plaintext m = (86,−35,−32). It is
instructive to compare how well Babai’s algorithm did for the different bases.
We find that

‖e− v‖ ≈ 5.39 and ‖e− v′‖ ≈ 472004.09



412 7. Lattices and Cryptography

Of course, the GGH cryptosystem is not secure in dimension 3, since even
if we use numbers that are large enough to make an exhaustive search im-
practical, there are efficient algorithms to find good bases in low dimension.
In dimension 2, an algorithm for finding a good basis dates back to Gauss. A
powerful generalization to arbitrary dimension, known as the LLL algorithm,
is covered in Sect. 7.13.

Remark 7.37. We observe that GGH is an example of a probabilistic cryp-
tosystem (see Sect. 3.10), since a single plaintext leads to many different ci-
phertexts due to the choice of the random perturbation r. This leads to a
potential danger if Bob sends the same message twice using different random
perturbations, or sends different messages using the same random perturba-
tion. One possible solution is to choose the random perturbation r deter-
ministically by applying a hash function (Sect. 8.1) to the plaintext m, but
this causes other security issues. See Exercises 7.20 and 7.21 for a further
discussion.

Remark 7.38. An alternative version of GGH reverses the roles of m and r,
so the ciphertext has the form e = rW +m. Alice finds rW by computing the
lattice vector closest to e, and then she recovers the plaintext as m = e−rW .

7.9 Convolution Polynomial Rings

In this section we describe the special sort of polynomial quotient rings
that are used by the NTRU public key cryptosystem, which is the topic of
Sects. 7.10 and 7.11. The reader who is unfamiliar with basic ring theory
should read Sect. 2.10 before continuing.

Definition. Fix a positive integer N . The ring of convolution polynomials
(of rank N) is the quotient ring

R =
Z[x]

(xN − 1)
.

Similarly, the ring of convolution polynomials (modulo q) is the quotient ring

Rq =
(Z/qZ)[x]

(xN − 1)
.

Proposition 2.50 tells us that every element of R or Rq has a unique
representative of the form

a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1

with the coefficients in Z or Z/qZ, respectively. We observe that it is easier to
do computations in the rings R and Rq than it is in more general polynomial
quotient rings, because the polynomial xN − 1 has such a simple form. The


