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Unfortunately, the operating characteristics of standard lattice reduction
algorithms such as BKZ-LLL are not nearly as well understood as are the
operating characteristics of sieves, the index calculus, or Pollard’s ρ method.
This makes it difficult to predict theoretically how well a lattice reduction
algorithm will perform on any given class of lattices. Thus in practice, the
security of a lattice-based cryptosystem such as NTRUEncrypt must be de-
termined experimentally.

Roughly, one takes a sequence of parameters (N, q, d) in whichN grows and
such that certain ratios involving N , q, and d are held approximately constant.
For each set of parameters, one runs many experiments using BKZ-LLL with
increasing block size β until the algorithm finds a short vector in LNTRU

h .
Then one plots the logarithm of the average running time against N , verifies
that the points approximately lie on line, and computes the best-fitting line

log(Running Time) = AN +B. (7.49)

After doing this for many values of N up to the point at which the com-
putations become infeasible, one can use the line (7.49) to extrapolate the
expected amount of time it would take to find a private key vector in an
NTRU lattice LNTRU

h for larger values of N . Such experiments suggest that
values of N in the range from 250 to 1000 yield security levels comparable to
currently secure implementations of RSA, Elgamal, and ECC. Details of such
experiments are described in [102].

Remark 7.62. Proposition 7.61 says that the short target vectors in an NTRU
lattice are O(

√
N ) shorter than predicted by the Gaussian heuristic. Theoret-

ically and experimentally, it is true that if a lattice of dimension n has a vector
that is extremely small, say O(2n) shorter than the Gaussian prediction, then
lattice reduction algorithms such as LLL and its variants are very good at
finding the tiny vector. It is a natural and extremely interesting question to
ask whether vectors that are only O(nε) shorter than the Gaussian prediction
might similarly be easier to find. At this time, no one knows the answer to
this question.

7.12 Lattice-Based Digital Signature Schemes

We have already seen digital signatures schemes whose security depends on the
integer factorization problem (Sect. 4.2) and on the discrete logarithm prob-
lem in the multiplicative group (Sect. 4.3) or in an elliptic curve (Sect. 6.4.3).
In this section we briefly discuss how digital signature schemes may be con-
structed from hard lattice problems.

7.12.1 The GGH Digital Signature Scheme

It is easy to convert the CVP idea underlying GGH encryption into a lattice-
based digital signature scheme. Samantha knows a good (i.e., short and
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reasonably orthogonal) private basis B for a lattice L, so she can use Babai’s
algorithm (Theorem 7.34) to solve, at least approximately, the closest vector
problem in L for a given vector d ∈ R

n. She expresses her solution s ∈ L in
terms of a bad public basis B′. The vector s is Samantha’s signature on the
document d. Victor can easily check that s is in L and is close to d. The GGH
digital signature scheme is summarized in Table 7.5.

Samantha Victor

Key creation
Choose a good basis v1, . . . ,vn and
a bad basis w1, . . . ,wn for L.

Publish the public key w1, . . . ,wn.
Signing

Choose document d ∈ Z
n to sign.

Use Babai’s algorithm with the
good basis to compute a vector
s ∈ L that is close to d.

Write s = a1w1 + · · ·+ anwn.
Publish the signature (a1, . . . , an).

Verification
Compute s = a1w1 + · · ·+ anwn.
Verify that s is sufficiently close to d.

Table 7.5: The GGH digital signature scheme

Notice the tight fit between the digital signature and the underlying hard
problem. The signature s ∈ L is a solution to apprCVP for the vector d ∈ R

n,
so signing a document is equivalent to solving apprCVP.

Remark 7.63. In a lattice-based digital signature scheme, the digital docu-
ment to be signed is a vector in R

n. Just as with other signature schemes, in
practice Samantha applies a hash function to her actual document in order
to create a short document of just a few hundred bits, which is then signed.
(See Remark 4.2.) For lattice-based signatures, one uses a hash function whose
output is a vector in Z

n having coordinates in some specified range.

Example 7.64. We illustrate the GGH digital signature scheme using the lat-
tice and the good and bad bases from Example 7.36 on page 410. Samantha
decides to sign the document

d = (678846, 651685, 160467) ∈ Z
3.

She uses Babai’s algorithm to find a vector

s = 2213v1 + 7028v2 − 6231v3 = (678835, 651671, 160437) ∈ L
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that is quite close to d,
‖s− d‖ ≈ 34.89.

Samantha next uses linear algebra to express s in terms of the bad basis,

s = 1531010w1 − 553385w2 − 878508w3,

where w1,w2,w3 are the vectors on page 410. She publishes

(1531010,−553385,−878508)

as her signature for the document d. Victor verifies the signature by using the
public basis to compute

s = 1531010w1 − 553385w2 − 878508w3 = (678835, 651671, 160437),

which is automatically a vector in L, and then verifying that ‖s−d‖ ≈ 34.89
is small.

We observe that if Eve attempts to sign d using Babai’s algorithm with
the bad basis {w1,w2,w3}, then the signature that she obtains is

s′ = (2773584, 1595134,−131844) ∈ L.

This vector is not a good solution to apprCVP, since ‖s′ − d‖ > 106.

Remark 7.65 (Key Size Issues). The GGH signature scheme suffers the same
drawback as the GGH cryptosystem, namely security requires lattices of
high dimension, which in turn lead to very large public verification keys;
cf. Sect. 7.7. It is thus tempting to use an NTRU lattice LNTRU as the pub-
lic key, but there is an initial difficulty because LNTRU has dimension 2N ,
so the known (secret) short vector (f , g) and its rotations (xi � f , xi � g)
for 0 ≤ i < N give only half a very short basis for LNTRU. Using a technique
described in [55], it is possible to extend the half-basis to a full basis that
is short enough to make an NTRU signature scheme feasible. However, both
GGH and NTRU signature schemes have a more serious shortcoming which
we now describe.

7.12.2 Transcript Analysis

In any digital signature scheme, each document/signature pair (d, s) reveals
some information about the private signing key v, since at the very least, it re-
veals that the document d signed with the private key v yields the signature s.
Hence a sufficiently long transcript of signed documents

(d1, s1), (d2, s2), (d3, s3), . . . , (dr, sr) (7.50)

may reveal information about either the signing key or how to sign additional
documents.


