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7.4 Lattices: Basic Definitions and Properties

After seeing the examples in Sects. 7.1 and 7.2 and being reminded of the
fundamental properties of vector spaces in Sect. 7.3, the reader will not be
surprised by the formal definitions of a lattice and its properties.

Definition. Let v1, . . . ,vn ∈ R
m be a set of linearly independent vectors. The

lattice L generated by v1, . . . ,vn is the set of linear combinations of v1, . . . ,vn

with coefficients in Z,

L = {a1v1 + a2v2 + · · ·+ anvn : a1, a2, . . . , an ∈ Z}.
A basis for L is any set of independent vectors that generates L. Any

two such sets have the same number of elements. The dimension of L is the
number of vectors in a basis for L.

Suppose that v1, . . . ,vn is a basis for a lattice L and that w1, . . . ,wn ∈ L
is another collection of vectors in L. Just as we did for vector spaces, we can
write each wj as a linear combination of the basis vectors,

w1 = a11v1 + a12v2 + · · ·+ a1nvn,

w2 = a21v1 + a22v2 + · · ·+ a2nvn,

...
...

wn = an1v1 + an2v2 + · · ·+ annvn,

but since now we are dealing with lattices, we know that all of the aij coeffi-
cients are integers.

Suppose that we try to express the vi in terms of the wj . This involves
inverting the matrix

A =

⎛
⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

⎞
⎟⎟⎟⎠ .

Note that we need the vi to be linear combinations of the wj using integer
coefficients, so we need the entries of A−1 to have integer entries. Hence

1 = det(I) = det(AA−1) = det(A) det(A−1),

where det(A) and det(A−1) are integers, so we must have det(A) = ±1. Con-
versely, if det(A) = ±1, then the theory of the adjoint matrix tells us that A−1

does indeed have integer entries. (See Exercise 7.10.) This proves the following
useful result.

Proposition 7.14. Any two bases for a lattice L are related by a matrix
having integer coefficients and determinant equal to ±1.
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For computational purposes, it is often convenient to work with lattices
whose vectors have integer coordinates. For example,

Z
n =

{
(x1, x2, . . . , xn) : x1, . . . , xn ∈ Z

}
is the lattice consisting of all vectors with integer coordinates.

Definition. An integral (or integer) lattice is a lattice all of whose vectors
have integer coordinates. Equivalently, an integral lattice is an additive sub-
group of Zm for some m ≥ 1.

Example 7.15. Consider the three-dimensional lattice L ⊂ R
3 generated by

the three vectors

v1 = (2, 1, 3), v2 = (1, 2, 0), v3 = (2,−3,−5).

It is convenient to form a matrix using v1,v2,v3 as the rows of the matrix,

A =

⎛
⎝2 1 3

1 2 0
2 −3 −5

⎞
⎠ .

We create three new vectors in L by the formulas

w1 = v1 + v3, w2 = v1 − v2 + 2v3, w3 = v1 + 2v2.

This is equivalent to multiplying the matrix A on the left by the matrix

U =

⎛
⎝1 0 1

1 −1 2
1 2 0

⎞
⎠ ,

and we find that w1,w2,w3 are the rows of the matrix

B = UA =

⎛
⎝ 4 −2 −2

5 −7 −7
4 5 3

⎞
⎠ .

The matrix U has determinant −1, so the vectors w1,w2,w3 are also a
basis for L. The inverse of U is

U−1 =

⎛
⎝ 4 −2 −1
−2 1 1
−3 2 1

⎞
⎠ ,

and the rows of U−1 tell us how to express the vi as linear combinations of
the wj ,

v1 = 4w1 − 2w2 −w3, v2 = −2w1 +w2 +w3, v3 = −3w1 + 2w2 +w3.
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Remark 7.16. If L ⊂ R
m is a lattice of dimension n, then a basis for L may

be written as the rows of an n-by-m matrix A, that is, a matrix with n rows
and m columns. A new basis for L may be obtained by multiplying the ma-
trix A on the left by an n-by-n matrix U such that U has integer entries and
determinant ±1. The set of such matrices U is called the general linear group
(over Z) and is denoted by GLn(Z); cf. Example 2.11(g). It is the group of
matrices with integer entries whose inverses also have integer entries.

There is an alternative, more abstract, way to define lattices that inter-
twines geometry and algebra.

Definition. A subset L of Rm is an additive subgroup if it is closed under
addition and subtraction. It is called a discrete additive subgroup if there is a
positive constant ε > 0 with the following property: for every v ∈ L,

L ∩ {
w ∈ R

m : ‖v −w‖ < ε
}
= {v}. (7.8)

In other words, if you take any vector v in L and draw a solid ball of radius ε
around v, then there are no other points of L inside the ball.

Theorem 7.17. A subset of R
m is a lattice if and only if it is a discrete

additive subgroup.

Proof. We leave the proof for the reader; see Exercise 7.9.

A lattice is similar to a vector space, except that it is generated by all
linear combinations of its basis vectors using integer coefficients, rather than
using arbitrary real coefficients. It is often useful to view a lattice as an orderly
arrangement of points in R

m, where we put a point at the tip of each vector.
An example of a lattice in R

2 is illustrated in Fig. 7.1.

Definition. Let L be a lattice of dimension n and let v1,v2, . . . ,vn be a
basis for L. The fundamental domain (or fundamental parallelepiped) for L
corresponding to this basis is the set

F(v1, . . . ,vn) = {t1v1 + t2v2 + · · ·+ tnvn : 0 ≤ ti < 1}. (7.9)

The shaded area in Fig. 7.1 illustrates a fundamental domain in dimen-
sion 2. The next result indicates one reason why fundamental domains are
important in studying lattices.

Proposition 7.18. Let L ⊂ R
n be a lattice of dimension n and let F be a

fundamental domain for L. Then every vector w ∈ R
n can be written in the

form
w = t+ v for a unique t ∈ F and a unique v ∈ L.

Equivalently, the union of the translated fundamental domains

F + v =
{
t+ v : t ∈ F}

as v ranges over the vectors in the lattice L exactly covers R
n; see Fig. 7.2.
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F

L

Figure 7.1: A lattice L and a fundamental domain F

Proof. Let v1, . . . ,vn be a basis of L that gives the fundamental domain F .
Then v1, . . . ,vn are linearly independent in R

n, so they are a basis of Rn.
This means that any w ∈ R

n can be written in the form

w = α1v1 + α2v2 + · · ·+ αnvn for some α1, . . . , αn ∈ R.

We now write each αi as

αi = ti + ai with 0 ≤ ti < 1 and ai ∈ Z.

Then

w =

this is a vector t ∈ F︷ ︸︸ ︷
t1v1 + t2v2 + · · ·+ tnvn +

this is a vector v ∈ L︷ ︸︸ ︷
a1v1 + a2v2 + · · ·+ anvn .

This shows that w can be written in the desired form.
Next suppose that w = t + v = t′ + v′ has two representations as a sum

of a vector in F and a vector in L. Then

(t1 + a1)v1 + (t2 + a2)v2 + · · ·+ (tn + an)vn

= (t′1 + a′1)v1 + (t′2 + a′2)v2 + · · ·+ (t′n + a′n)vn.

Since v1, . . . ,vn are independent, it follows that

ti + ai = t′i + a′i for all i = 1, 2, . . . , n.

Hence
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F
F + v1

F + v2

F + v1 − v2

F + v1 + v2

Figure 7.2: Translations of F by vectors in L exactly covers Rn

ti − t′i = a′i − ai ∈ Z

is an integer. But we also know that ti and t′i are greater than or equal to 0
and strictly smaller than 1, so the only way for ti − t′i to be an integer is
if ti = t′i. Therefore t = t′, and then also

v = w − t = w − t′ = v′.

This completes the proof that t ∈ F and v ∈ L are uniquely determined
by w.

It turns out that all fundamental domains of a lattice L have the same
volume. We prove this later (Corollary 7.22) for lattices of dimension n in R

n.
The volume of a fundamental domain turns out to be an extremely important
invariant of the lattice.

Definition. Let L be a lattice of dimension n and let F be a fundamental
domain for L. Then the n-dimensional volume of F is called the determinant
of L (or sometimes the covolume4 of L). It is denoted by det(L).

If you think of the basis vectors v1, . . . ,vn as being vectors of a given
length that describe the sides of the parallelepiped F , then for basis vectors

4Note that the lattice L itself has no volume, since it is a countable collection of points.
If L ⊂ R

n has dimension n, then the covolume of L is defined to be the volume of the
quotient group R

n/L.
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of given lengths, the largest volume is obtained when the vectors are pairwise
orthogonal to one another. This leads to the following important upper bound
for the determinant of a lattice.

Proposition 7.19 (Hadamard’s Inequality). Let L be a lattice, take any
basis v1, . . . ,vn for L, and let F be a fundamental domain for L. Then

detL = Vol(F) ≤ ‖v1‖ ‖v2‖ · · · ‖vn‖. (7.10)

The closer that the basis is to being orthogonal, the closer that Hadamard’s
inequality (7.10) comes to being an equality.

It is fairly easy to compute the determinant of a lattice L if its dimension
is the same as its ambient space, i.e., if L is contained in R

n and L has
dimension n. This formula, which luckily is the case that is of most interest
to us, is described in the next proposition. See Exercise 7.14 to learn how to
compute the determinant of a lattice in the general case.

Proposition 7.20. Let L ⊂ R
n be a lattice of dimension n, let v1,v2, . . . ,vn

be a basis for L, and let F = F(v1, . . . ,vn) be the associated fundamental
domain as defined by (7.9). Write the coordinates of the ith basis vector as

vi = (ri1, ri2, . . . , rin)

and use the coordinates of the vi as the rows of a matrix,

F = F (v1, . . . ,vn) =

⎛
⎜⎜⎜⎝
r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

⎞
⎟⎟⎟⎠ . (7.11)

Then the volume of F is given by the formula

Vol
(F(v1, . . . ,vn)

)
=

∣∣det(F (v1, . . . ,vn)
)∣∣.

Proof. The proof uses multivariable calculus. We can compute the volume
of F as the integral of the constant function 1 over the region F ,

Vol(F) =
∫
F
dx1 dx2 · · · dxn.

The fundamental domain F is the set described by (7.9), so we make a change
of variables from x = (x1, . . . , xn) to t = (t1, . . . , tn) according to the formula

(x1, x2, . . . , xn) = t1v1 + t2v2 + · · ·+ tnvn.
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In terms of the matrix F = F (v1, . . . ,vn) defined by (7.11), the change of
variables is given by the matrix equation x = tF . The Jacobian matrix of this
change of variables is F , and the fundamental domain F is the image under F
of the unit cube Cn = [0, 1]n, so the change of variables formula for integrals
yields

∫
F
dx1 dx2 · · · dxn =

∫
FCn

dx1 dx2 · · · dxn =

∫
Cn

| detF | dt1 dt2 · · · dtn
= | detF |Vol(Cn) = | detF |.

Example 7.21. The lattice in Example 7.15 has determinant

detL = | detA| =
∣∣∣∣∣∣det

⎛
⎝ 2 1 3

1 2 0
2 −3 −5

⎞
⎠
∣∣∣∣∣∣ = | − 36| = 36.

Corollary 7.22. Let L ⊂ R
n be a lattice of dimension n. Then every fun-

damental domain for L has the same volume. Hence det(L) is an invariant
of the lattice L, independent of the particular fundamental domain used to
compute it.

Proof. Let v1, . . . ,vn and w1, . . . ,wn be two fundamental domains for L,
and let F (v1, . . . ,vn) and F (w1, . . . ,wn) be the associated matrices (7.11)
obtained by using the coordinates of the vectors as the rows of the matrices.
Then Proposition 7.14 tells us that

F (v1, . . . ,vn) = AF (w1, . . . ,wn) (7.12)

for some n-by-n matrix with integer entries and det(A) = ±1. Now applying
Proposition 7.20 twice yields

Vol
(F(v1, . . . ,vn)

)
=

∣∣det(F (v1, . . . ,vn)
)∣∣ from Proposition 7.20,

=
∣∣det(AF (w1, . . . ,wn)

)∣∣ from (7.12),

=
∣∣det(A)∣∣∣∣det(F (w1, . . . ,wn)

)∣∣ since det(AB) = det(A) det(B),

=
∣∣det(F (w1, . . . ,wn)

)∣∣ since det(A) = ±1,
= Vol

(F(w1, . . . ,wn)
)

from Proposition 7.20.


