
416 7. Lattices and Cryptography

If the gcd is equal to 1, then reducing modulo xN − 1 yields a(x) � u(x) = 1
in Rq. Conversely, if a(x) is a unit in Rq, then we can find a polynomial u(x)
such that a(x) � u(x) = 1 in Rq. By definition of Rq, this means that

a(x)u(x) ≡ 1 (mod (xN − 1)),

so by definition of congruences, there is a polynomial v(x) satisfying

a(x)u(x)− 1 = (xN − 1)v(x) in (Z/qZ)[x].

Example 7.46. We let N = 5 and q = 2 and give the full details for computing
(1 + x+ x4)−1 in R2. First we use the Euclidean algorithm to compute the
greatest common divisor of 1 + x+ x4 and 1− x5 in (Z/2Z)[x]. (Note that
since we are working modulo 2, we have 1− x5 = 1 + x5.) Thus

x5 + 1 = x · (x4 + x+ 1) + (x2 + x+ 1),

x4 + x+ 1 = (x2 + x)(x2 + x+ 1) + 1.

So the gcd is equal to 1, and using the usual substitution method yields

1 = (x4 + x+ 1) + (x2 + x)(x2 + x+ 1)

= (x4 + x+ 1) + (x5 + 1 + x(x4 + x+ 1))

= (x4 + x+ 1)(x3 + x2 + 1) + (x5 + 1)(x2 + x).

Hence
(1 + x+ x4)−1 = 1 + x2 + x3 in R2.

(See Exercise 1.12 for an efficient computer algorithm and Fig. 1.3 for the
“magic box method” to compute a(x)−1 in Rq.)

Remark 7.47. The ring Rq makes perfect sense regardless of whether q is
prime, and indeed there are situations in which it can be advantageous to
take q composite, for example q = 2k. In general, if q is a power of a prime p,
then in order to compute the inverse of a(x) in Rq, one first computes the
inverse in Rp, then “lifts” this value to an inverse in Rp2 , and then lifts to
an inverse in Rp4 , and so on. (See Exercise 7.27.) Similarly, if q = q1q2 · · · qr,
where each qi = pki

i is a prime power, one first computes inverses in Rqi and
then combines the inverses using the Chinese remainder theorem.

7.10 The NTRU Public Key Cryptosystem

Cryptosystems based on the difficulty of integer factorization or the discrete
logarithm problem are group-based cryptosystems, because the underlying
hard problem involves only one operation. For RSA, Diffie–Hellman, and
Elgamal, the group is the group of units modulo m for some modulus m that



7.10. The NTRU Public Key Cryptosystem 417

may be prime or composite, and the group operation is multiplication mod-
ulo m. For ECC, the group is the set of points on an elliptic curve modulo p
and the group operation is elliptic curve addition.

Rings are algebraic objects that have two operations, addition and mul-
tiplication, which are connected via the distributive law. In this section we
describe NTRUEncrypt, the NTRU public key cryptosystem. NTRUEncrypt
is most naturally described using convolution polynomial rings, but the un-
derlying hard mathematical problem can also be interpreted as SVP or CVP
in a lattice. We discuss the connection with lattices in Sect. 7.11.

7.10.1 NTRUEncrypt

In this section we describe NTRUEncrypt, the NTRU (pronounced en-trū)
public key cryptosystem. We begin by fixing an integer N ≥ 1 and two mod-
uli p and q, and we let R, Rp, and Rq be the convolution polynomial rings

R =
Z[x]

(xN − 1)
, Rp =

(Z/pZ)[x]

(xN − 1)
, Rq =

(Z/qZ)[x]

(xN − 1)
,

described in Sect. 7.9. As usual, we may view a polynomial a(x) ∈ R as an
element of Rp or Rq by reducing its coefficients modulo p or q. In the other
direction, we use center-lifts to move elements from Rp or Rq to R. We make
various assumptions on the parameters N , p and q, in particular we require
that N be prime and that gcd(N, q) = gcd(p, q) = 1. (The reasons for these
assumptions are explained in Exercises 7.32 and 7.37.)

We need one more piece of notation before describing NTRUEncrypt.

Definition. For any positive integers d1 and d2, we let

T (d1, d2) =

⎧⎨
⎩a(x) ∈ R :

a(x) has d1 coefficients equal to 1,
a(x) has d2 coefficients equal to −1,
a(x) has all other coefficients equal to 0

⎫⎬
⎭ .

Polynomials in T (d1, d2) are called ternary (or trinary) polynomials. They are
analogous to binary polynomials, which have only 0’s and 1’s as coefficients.

We are now ready to describe NTRUEncrypt. Alice (or some trusted au-
thority) chooses public parameters (N, p, q, d) satisfying the guidelines de-
scribed earlier (or see Table 7.4). Alice’s private key consists of two randomly
chosen polynomials

f(x) ∈ T (d+ 1, d) and g(x) ∈ T (d, d). (7.31)

Alice computes the inverses

F q(x) = f(x)−1 in Rq and F p(x) = f(x)−1 in Rp. (7.32)



418 7. Lattices and Cryptography

(If either inverse fails to exist, she discards this f(x) and chooses a new one.
We mention that Alice chooses f(x) in T (d + 1, d), rather than in T (d, d),
because elements in T (d, d) never have inverses in Rq; see Exercise 7.24.)

Alice next computes

h(x) = F q(x) � g(x) in Rq. (7.33)

The polynomial h(x) is Alice’s public key. Her private key, which she’ll need
to decrypt messages, is the pair

(
f(x),F p(x)

)
. Alternatively, Alice can just

store f(x) and recompute F p(x) when she needs it.
Bob’s plaintext is a polynomial m(x) ∈ R whose coefficients satisfy − 1

2p <
mi ≤ 1

2p, i.e., the plaintext m is a polynomial in R that is the center-lift
of a polynomial in Rp. Bob chooses a random polynomial (a random ele-
ment) r(x) ∈ T (d, d) and computes7

e(x) ≡ ph(x) � r(x) +m(x) (mod q). (7.34)

Bob’s ciphertext e(x) is in the ring Rq.
On receiving Bob’s ciphertext, Alice starts the decryption process by com-

puting
a(x) ≡ f(x) � e(x) (mod q). (7.35)

She then center lifts a(x) to an element of R and does a mod p computation,

b(x) ≡ F p(x) � a(x) (mod p). (7.36)

Assuming that the parameters have been chosen properly, we now verify that
the polynomial b(x) is equal to the plaintext m(x).

NTRUEncrypt, the NTRU public key cryptosystem, is summarized in
Table 7.4.

Proposition 7.48. If the NTRUEncrypt parameters (N, p, q, d) are chosen
to satisfy

q > (6d+ 1) p, (7.37)

then the polynomial b(x) computed by Alice in (7.36) is equal to Bob’s plain-
text m(x).

Proof. We first determine more precisely the shape of Alice’s preliminary cal-
culation of a(x). Thus

a(x) ≡ f(x) � e(x) (mod q) from (7.35),

≡ f(x) �
(
ph(x) � r(x) +m(x)

)
(mod q) from (7.34),

≡ pf(x) � F q(x) � g(x) � r(x) + f(x) �m(x) (mod q) from (7.33).

≡ pg(x) � r(x) + f(x) �m(x) (mod q) from (7.32).

7Note that when we write a congruence of polynomials modulo q, we really mean that
the computation is being done in Rq .



7.10. The NTRU Public Key Cryptosystem 419

Public parameter creation
A trusted party chooses public parameters (N, p, q, d) with N and p
prime, gcd(p, q) = gcd(N, q) = 1, and q > (6d+ 1)p.

Alice Bob

Key creation
Choose private f ∈ T (d+ 1, d)
that is invertible in Rq and Rp.

Choose private g ∈ T (d, d).
Compute F q, the inverse of f in
Rq.
Compute F p, the inverse of f in
Rp.
Publish the public key h = F q � g.

Encryption
Choose plaintext m ∈ Rp.
Choose a random r ∈ T (d, d).
Use Alice’s public key h to

compute e ≡ pr�h+m (mod q).
Send ciphertext e to Alice.

Decryption
Compute
f � e ≡ pg � r + f �m (mod q).

Center-lift to a ∈ R and compute
m ≡ F p � a (mod p).

Table 7.4: NTRUEncryt: the NTRU public key cryptosystem

Consider the polynomial

pg(x) � r(x) + f(x) �m(x), (7.38)

computed exactly in R, rather than modulo q. We need to bound its largest
possible coefficient. The polynomials g(x) and r(x) are in T (d, d), so if, in the
convolution product g(x)�r(x), all of their 1’s match up and all of their −1’s
match up, the largest possible coefficient of g(x)�r(x) is 2d. Similarly, f(x) ∈
T (d+1, d) and the coefficients of m(x) are between − 1

2p and 1
2p, so the largest

possible coefficient of f(x)�m(x) is (2d+1)· 12p. So even if the largest coefficient
of g(x) � r(x) happens to coincide with the largest coefficient of r(x) �m(x),
the largest coefficient of (7.38) has magnitude at most

p · 2d+ (2d+ 1) · 1
2
p =

(
3d+

1

2

)
p.

Thus our assumption (7.37) ensures that every coefficient of (7.38) has mag-
nitude strictly smaller than 1

2q. Hence when Alice computes a(x) modulo q



420 7. Lattices and Cryptography

(i.e., in Rq) and then lifts it to R, she recovers the exact value (7.38). In other
words,

a(x) = pg(x) � r(x) + f(x) �m(x) (7.39)

exactly in R, and not merely modulo q.
The rest is easy. Alice multiplies a(x) by F p(x), the inverse of f(x) mod-

ulo p, and reduces the result modulo p to obtain

b(x) ≡ F p(x) � a(x) (mod p) from (7.36),

≡ F p(x) �
(
pg(x) � r(x) + f(x) �m(x)

)
(mod p) from (7.39),

≡ F p(x) � f(x) �m(x) (mod p) reducing mod p,

≡m(x) (mod p). from (7.32).

Hence b(x) and m(x) are the same modulo p.

Remark 7.49. The condition q > (6d + 1)p in Proposition 7.48 ensures that
decryption never fails. However, an examination of the proof shows that de-
cryption is likely to succeed even for considerably smaller values of q, since it
is highly unlikely that the positive and negative coefficients of g(x) and r(x)
will exactly line up, and similarly for f(x) and m(x). So for additional effi-
ciency and to reduce the size of the public key, it may be advantageous to
choose a smaller value of q. It then becomes a delicate problem to estimate
the probability of decryption failure. It is important that the probability of
decryption failure be very small (e.g., smaller than 2−80), since decryption
failures have the potential to reveal private key information to an attacker.

Remark 7.50. Notice that NTRUEncrypt is an example of a probabilistic
cryptosystem (Sect. 3.10), since a single plaintext m(x) has many different
encryptions ph(x)�r(x)+m(x) corresponding to different choices of the ran-
dom element r(x). As is common for such systems, cf. Remark 7.37 for GGH,
it is a bad idea for Bob to send the same message twice using different random
elements, just as it is inadvisable for Bob to use the same random element to
send two different plaintexts; see Exercise 7.34. Various ways of ameliorating
this danger for GGH, which also apply mutatis mutandis to NTRUEncrypt,
are described in Exercises 7.20 and 7.21.

Remark 7.51. The polynomial f(x) ∈ T (d + 1, d) has small coefficients, but
the coefficients of its inverse F q(x) ∈ Rq tend to be randomly and uniformly
distributed modulo q. (This is not a theorem, but it is an experimentally
observed fact.) For example, let N = 11 and q = 73 and take a random
polynomial

f(x) = x10 + x8 − x3 + x2 − 1 ∈ T (3, 2).
Then f(x) is invertible in Rq, and its inverse

F q(x) = 22x10+33x9+15x8+33x7−10x6+36x5−33x4−30x3+12x2−32x+28



7.10. The NTRU Public Key Cryptosystem 421

has random-looking coefficients. Similarly, in practice the coefficients of the
public key and the ciphertext,

h(x) ≡ F q(x) � g(x) (mod q) and e(x) ≡ pr(x) � h(x) +m(x) (mod q),

also appear to be randomly distributed modulo q.

Remark 7.52. As noted in Sect. 7.7, a motivation for using lattice-based cryp-
tosystems is their high speed compared to discrete logarithm and factoriza-
tion-based cryptosystems. How fast is NTRUEncrypt? The most time consum-
ing part of encryption and decryption is the convolution product. In general, a
convolution product a�b requires N2 multiplications, since each coefficient is
essentially the dot product of two vectors. However, the convolution products
required by NTRUEncrypt have the form r �h, f �e, and F p �a, where r, f ,
and F p are ternary polynomials. Thus these convolution products can be
computed without any multiplications; they each require approximately 2

3N
2

additions and subtractions. (If d is smaller than N/3, the first two require
only 2

3dN additions and subtractions.) Thus NTRUEncrypt encryption and
decryption take O(N2) steps, where each step is extremely fast.

Example 7.53. We present a small numerical example of NTRUEncrypt with
public parameters

(N, p, q, d) = (7, 3, 41, 2).

We have
41 = q > (6d+ 1)p = 39,

so Proposition 7.48 ensures that decryption will work. Alice chooses

f(x) = x6−x4+x3+x2−1 ∈ T (3, 2) and g(x) = x6+x4−x2−x ∈ T (2, 2).

She computes the inverses

F q(x) = f(x)−1 mod q = 8x6 + 26x5 + 31x4 + 21x3 + 40x2 + 2x+ 37 ∈ Rq,

F p(x) = f(x)−1 mod p = x6 + 2x5 + x3 + x2 + x+ 1 ∈ Rp.

She stores
(
f(x),F p(x)

)
as her private key and computes and publishes her

public key

h(x) = F q(x) � g(x) = 20x6 + 40x5 + 2x4 + 38x3 + 8x2 + 26x+ 30 ∈ Rq.

Bob decides to send Alice the message

m(x) = −x5 + x3 + x2 − x+ 1

using the random element

r(x) = x6 − x5 + x− 1.



422 7. Lattices and Cryptography

Bob computes and sends to Alice the ciphertext

e(x) ≡ pr(x)�h(x)+m(x) ≡ 31x6+19x5+4x4+2x3+40x2+3x+25 (mod q).

Alice’s decryption of Bob’s message proceeds smoothly. First she computes

f(x) � e(x) ≡ x6 + 10x5 + 33x4 + 40x3 + 40x2 + x+ 40 (mod q). (7.40)

She then center-lifts (7.40) modulo q to obtain

a(x) = x6 + 10x5 − 8x4 − x3 − x2 + x− 1 ∈ R.

Finally, she reduces a(x) modulo p and computes

F p(x) � a(x) ≡ 2x5 + x3 + x2 + 2x+ 1 (mod p). (7.41)

Center-lifting (7.41) modulo p retrieves Bob’s plaintext m(x) = −x5 + x3 +
x2 − x+ 1.

7.10.2 Mathematical Problems for NTRUEncrypt

As noted in Remark 7.51, the coefficients of the public key h(x) appear to be
random integers modulo q, but there is a hidden relationship

f(x) � h(x) ≡ g(x) (mod q), (7.42)

where f(x) and g(x) have very small coefficients. Thus breaking NTRUEn-
crypt by finding the private key comes down to solving the following problem:

The NTRU Key Recovery Problem
Given h(x), find ternary polynomials f(x) and g(x) satis-
fying f(x) � h(x) ≡ g(x) (mod q).

Remark 7.54. The solution to the NTRU key recovery problem is not unique,
because if

(
f(x), g(x)

)
is one solution, then

(
xk � f(x), xk � g(x)

)
is also a

solution for every 0 ≤ k < N . The polynomial xk � f(x) is called a rotation
of f(x) because the coefficients have been cyclically rotated k positions. Rota-
tions act as private decryption keys in the sense that decryption with xk�f(x)
yields the rotated plaintext xk �m(x).

More generally, any pair of polynomials
(
f(x), g(x)

)
with sufficiently small

coefficients and satisfying (7.42) serves as an NTRU decryption key. For ex-
ample, if f(x) is the original decryption key and if θ(x) has tiny coefficients,
then θ(x) � f(x) may also work as a decryption key.

Remark 7.55. Why would one expect the NTRU key recovery problem to
be a hard mathematical problem? A first necessary requirement is that the
problem not be practically solvable by a brute-force or collision search. We
discuss such searches later in this section. More importantly, in Sect. 7.11.2


