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Returning to Example 7.56, we see that the expected number of decryption
keys in T (84, 83) for N = 251 and q = 257 is

(
3

257

)251 (
251

84

)(
167

83

)
≈ 2−1222.02. (7.45)

Of course, if h(x) is an NTRUEncrypt public key, then there do exist de-
cryption keys, since we built the decryption key f(x) into the construction
of h(x). But the probability calculation (7.45) makes it unlikely that there
are any additional decryption keys beyond f(x) and its rotations.

7.11 NTRUEncrypt as a Lattice Cryptosystem

In this section we explain how NTRU key recovery can be formulated as
a shortest vector problem in a certain special sort of lattice. Exercise 7.36
sketches a similar description of NTRU plaintext recovery as a closest vector
problem.

7.11.1 The NTRU Lattice

Let

h(x) = h0 + h1x+ · · ·+ hN−1x
N−1

be an NTRUEncrypt public key. The NTRU lattice LNTRU
h associated to h(x)

is the 2N -dimensional lattice spanned by the rows of the matrix

MNTRU
h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 h0 h1 · · · hN−1

0 1 · · · 0 hN−1 h0 · · · hN−2

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 h1 h2 · · · h0

0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that MNTRU
h is composed of four N -by-N blocks:

Upper left block = Identity matrix,

Lower left block = Zero matrix,

Lower right block = q times the identity matrix,

Upper right block = Cyclical permutations of the coefficients of h(x).
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It is often convenient to abbreviate the NTRU matrix as

MNTRU
h =

(
I h
0 qI

)
, (7.46)

where we view (7.46) as a 2-by-2 matrix with coefficients in R.
We are going to identify each pair of polynomials

a(x) = a0 + a1x+ · · ·+ aN−1x
N−1 and b(x) = b0 + b1x+ · · ·+ bN−1x

N−1

in R with a 2N -dimensional vector

(a, b) = (a0, a1, . . . , aN−1, b0, b1, . . . , bN−1) ∈ Z
2N .

We now suppose that the NTRUEncrypt public key h(x) was created using
the private polynomials f(x) and g(x) and compute what happens when we
multiply the NTRU matrix by a carefully chosen vector.

Proposition 7.59. Assuming that f(x) �h(x) ≡ g(x) (mod q), let u(x) ∈ R
be the polynomial satisfying

f(x) � h(x) = g(x) + qu(x). (7.47)

Then

(f ,−u)MNTRU
h = (f , g), (7.48)

so the vector (f , g) is in the NTRU lattice LNTRU
h .

Proof. It is clear that the first N coordinates of the product (7.48) are the
vector f , since the left-hand side ofMNTRU

h is the identity matrix atop the zero
matrix. Next consider what happens when we multiply the column of MNTRU

h

whose top entry is hk by the vector (f ,−u). We get the quantity

hkf0 + hk−1f1 + · · ·+ hk+1fN−1 − quk,

which is the kth entry of the vector f(x) � h(x)− qu(x). From (7.47), this is
the kth entry of the vector g, so the secondN coordinates of the product (7.48)
form the vector g. Finally, (7.48) says that we can get the vector (f , g) by
taking a certain linear combination of the rows of MNTRU

h . Hence (f , g) ∈
LNTRU
h .

Remark 7.60. Using the abbreviation (7.46) and multiplying 2-by-2 matrices
having coefficients in R, the proof of Proposition 7.59 becomes the succinct
computation

(f ,−u)
(
1 h
0 q

)
= (f ,f � h− qu) = (f , g).

Proposition 7.61. Let (N, p, q, d) be NTRUEncrypt parameters, where for
simplicity we will assume that

p = 3 and d ≈ N/3 and q ≈ 6pd ≈ 2pN.

Let LNTRU
h be an NTRU lattice associated to the private key (f , g).
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(a) det(LNTRU
h ) = qN .

(b)
∥∥(f , g)∥∥ ≈ √4d ≈

√
4N/3 ≈ 1.155

√
N .

(c) The Gaussian heuristic predicts that the shortest nonzero vector in the
NTRU lattice has length

σ
(
LNTRU
h

)
≈

√
Nq/πe ≈ 0.838N.

Hence if N is large, then there is a high probability that the shortest nonzero
vectors in LNTRU

h are (f , g) and its rotations. Further,

∥∥(f , g)∥∥
σ(L)

≈ 1.38√
N

,

so the vector (f , g) is a factor of O(1/
√
N ) shorter than predicted by the

Gaussian heuristic.

Proof. (a) Proposition 7.20 says that det(LNTRU
h ) is equal to the determinant

of the matrix MNTRU
h . The matrix is upper triangular, so its determinant is

the product of the diagonal entries, which equals qN .

(b) Each of f and g has (approximately) d coordinates equal to 1 and d
coordinates equal to −1.
(c) Using (a) and keeping in mind that LNTRU

h has dimension 2N , we estimate
the Gaussian expected shortest length using the formula (7.21),

σ
(
LNTRU
h

)
=

√
2N

2πe
(detL)1/2N =

√
Nq

πe
≈

√
6

πe
N.

7.11.2 Quantifying the Security of an NTRU Lattice

Proposition 7.61 says that Eve can determine Alice’s private NTRU key if she
can find a shortest vector in the NTRU lattice LNTRU

h . Thus the security of
NTRUEncrypt depends at least on the difficulty of solving SVP in LNTRU

h .
More generally, if Eve can solve apprSVP in LNTRU

h to within a factor of
approximately N ε for some ε < 1

2 , then the short vector that she finds will
probably serve as a decryption key.

This leads to the question of how to estimate the difficulty of finding a
short, or shortest, vector in an NTRU lattice. The LLL algorithm that we
describe in Sect. 7.13.2 runs in polynomial time and solves apprSVP to within
a factor of 2N , but ifN is large, LLL does not find very small vectors in LNTRU

h .
In Sect. 7.13.4 we describe a generalization of the LLL algorithm, called BKZ-
LLL, that is able to find very small vectors. The BKZ-LLL algorithm includes
a blocksize parameter β, and it solves apprSVP to within a factor of β2N/β ,
but its running time is exponential in β.
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Unfortunately, the operating characteristics of standard lattice reduction
algorithms such as BKZ-LLL are not nearly as well understood as are the
operating characteristics of sieves, the index calculus, or Pollard’s ρ method.
This makes it difficult to predict theoretically how well a lattice reduction
algorithm will perform on any given class of lattices. Thus in practice, the
security of a lattice-based cryptosystem such as NTRUEncrypt must be de-
termined experimentally.

Roughly, one takes a sequence of parameters (N, q, d) in whichN grows and
such that certain ratios involving N , q, and d are held approximately constant.
For each set of parameters, one runs many experiments using BKZ-LLL with
increasing block size β until the algorithm finds a short vector in LNTRU

h .
Then one plots the logarithm of the average running time against N , verifies
that the points approximately lie on line, and computes the best-fitting line

log(Running Time) = AN +B. (7.49)

After doing this for many values of N up to the point at which the com-
putations become infeasible, one can use the line (7.49) to extrapolate the
expected amount of time it would take to find a private key vector in an
NTRU lattice LNTRU

h for larger values of N . Such experiments suggest that
values of N in the range from 250 to 1000 yield security levels comparable to
currently secure implementations of RSA, Elgamal, and ECC. Details of such
experiments are described in [102].

Remark 7.62. Proposition 7.61 says that the short target vectors in an NTRU
lattice are O(

√
N ) shorter than predicted by the Gaussian heuristic. Theoret-

ically and experimentally, it is true that if a lattice of dimension n has a vector
that is extremely small, say O(2n) shorter than the Gaussian prediction, then
lattice reduction algorithms such as LLL and its variants are very good at
finding the tiny vector. It is a natural and extremely interesting question to
ask whether vectors that are only O(nε) shorter than the Gaussian prediction
might similarly be easier to find. At this time, no one knows the answer to
this question.

7.12 Lattice-Based Digital Signature Schemes

We have already seen digital signatures schemes whose security depends on the
integer factorization problem (Sect. 4.2) and on the discrete logarithm prob-
lem in the multiplicative group (Sect. 4.3) or in an elliptic curve (Sect. 6.4.3).
In this section we briefly discuss how digital signature schemes may be con-
structed from hard lattice problems.

7.12.1 The GGH Digital Signature Scheme

It is easy to convert the CVP idea underlying GGH encryption into a lattice-
based digital signature scheme. Samantha knows a good (i.e., short and


