
436 7. Lattices and Cryptography

7.13 Lattice Reduction Algorithms

We have now seen several cryptosystems whose security depends on the diffi-
culty of solving apprSVP and/or apprCVP in various types of lattices. In this
section we describe an algorithm called LLL that solves these problems to
within a factor of Cn, where C is a small constant and n is the dimension
of the lattice. Thus in small dimensions, the LLL algorithm comes close to
solving SVP and CVP, but in large dimensions it does not do as well. Ulti-
mately, the security of lattice-based cryptosystems depends on the inability
of LLL and other lattice reduction algorithms to efficiently solve apprSVP and
apprCVP to within a factor of, say, O(

√
n). We begin in Sect. 7.13.1 with

Gauss’s lattice reduction algorithm, which rapidly solves SVP in lattices of
dimension 2. Next, in Sect. 7.13.2, we describe and analyze the LLL algo-
rithm. Section 7.13.3 explains how to combine LLL and Babai’s algorithm
to solve apprCVP, and we conclude in Sect. 7.13.4 by briefly describing some
generalizations of LLL.

7.13.1 Gaussian Lattice Reduction in Dimension 2

The algorithm for finding an optimal basis in a lattice of dimension 2 is essen-
tially due to Gauss. The underlying idea is to alternately subtract multiples
of one basis vector from the other until further improvement is not possible.

So suppose that L ⊂ R
2 is a 2-dimensional lattice with basis vectors v1

and v2. Swapping v1 and v2 if necessary, we may assume that ‖v1‖ < ‖v2‖.
We now try to make v2 smaller by subtracting a multiple of v1. If we were
allowed to subtract an arbitrary multiple of v1, then we could replace v2 with
the vector

v∗2 = v2 − v1 · v2

‖v1‖2 v1,

which is orthogonal to v1. The vector v∗2 is the projection of v2 onto the
orthogonal complement of v1. (See Fig. 7.7.)

v1

v2

v2
∗

Figure 7.7: v∗2 is the projection of v2 onto the orthogonal complement of v1

Of course, this is cheating, since the vector v∗2 is unlikely to be in L. In
reality we are allowed to subtract only integer multiples of v1 from v2. So we
do the best that we can and replace v2 with the vector

v2 −mv1 with m =

⌊
v1 · v2

‖v1‖2
⌉
.

7.13. Lattice Reduction Algorithms 437

If v2 is still longer than v1, then we stop. Otherwise, we swap v1 and v2

and repeat the process. Gauss proved that this process terminates and that
the resulting basis for L is extremely good. The next proposition makes this
precise.

Proposition 7.66 (Gaussian Lattice Reduction). Let L ⊂ R
2 be a 2-

dimensional lattice with basis vectors v1 and v2. The following algorithm ter-
minates and yields a good basis for L.

Loop

If ‖v2‖ < ‖v1‖, swap v1 and v2.

Compute m =
⌊
v1 · v2

/‖v1‖2
⌉
.

If m = 0, return the basis vectors v1 and v2.

Replace v2 with v2 −mv1.

Continue Loop

More precisely, when the algorithm terminates, the vector v1 is a shortest
nonzero vector in L, so the algorithm solves SVP. Further, the angle θ be-
tween v1 and v2 satisfies | cos θ| ≤ ‖v1‖/2‖v2‖, so in particular, π

3 ≤ θ ≤ 2π
3 .

Proof. We prove that v1 is a smallest nonzero lattice vector and leave the
other parts of the proof to the reader. So we suppose that the algorithm has
terminated and returned the vectors v1 and v2. This means that ‖v2‖ ≥ ‖v1‖
and that |v1 · v2|

‖v1‖2 ≤ 1

2
. (7.51)

(Geometrically, condition (7.51) says that we cannot make v2 smaller by sub-
tracting an integral multiple of v1 from v2.) Now suppose that v ∈ L is any
nonzero vector in L. Writing

v = a1v1 + a2v2 with a1, a2 ∈ Z,

we find that

‖v‖2 = ‖a1v1 + a2v2‖2
= a21‖v1‖2 + 2a1a2(v1 · v2) + a22‖v2‖2
≥ a21‖v1‖2 − 2|a1a2| |v1 · v2|+ a22‖v2‖2
≥ a21‖v1‖2 − |a1a2|‖v1‖2 + a22‖v2‖2 from (7.51),

≥ a21‖v1‖2 − |a1a2|‖v1‖2 + a22‖v1‖2 since ‖v2‖ ≥ ‖v1‖,
=

(
a21 − |a1| |a2|+ a22

)‖v1‖2.
For any real numbers t1 and t2, the quantity

t21 − t2t2 + t22 =

(
t1 − 1

2
t2

)2

+
3

4
t22 =

3

4
t21 +

(
1

2
t1 − t2

)2

438 7. Lattices and Cryptography

is not zero unless t1 = t2 = 0. So the fact that a1 and a2 are integers and not
both 0 tells us that ‖v‖2 ≥ ‖v1‖2. This proves that v1 is a smallest nonzero
vector in L.

Example 7.67. We illustrate Gauss’s lattice reduction algorithm (Proposi-
tion 7.66) with the lattice L having basis

v1 = (66586820, 65354729) and v2 = (6513996, 6393464).

We first compute ‖v1‖2 ≈ 8.71 · 1015 and ‖v2‖2 ≈ 8.33 · 1013. Since v2 is
shorter than v1, we swap them, so now v1 = (6513996, 6393464) and v2 =
(66586820, 65354729).

Next we subtract a multiple of v1 from v2. The multiplier is

m =

⌊
v1 · v2

‖v1‖2
⌉
= 	10.2221
 = 10,

so we replace v2 with

v2 −mv1 = (1446860, 1420089).

This new vector has norm ‖v2‖2 ≈ 4.11 · 1012, which is smaller than ‖v1‖2 ≈
8.33 · 1013, so again we swap,

v1 = (1446860, 1420089) and v2 = (6513996, 6393464).

We repeat the process with m =
⌊
v1 · v2

/‖v1‖2
⌉
= 	4.502
 = 5, which

gives the new vector

v2 −mv1 = (−720304,−706981)

having norm ‖v2‖2 ≈ 1.01 · 1012, so again we swap v1 and v2. Continuing
this process leads to smaller and smaller bases until, finally, the algorithm
terminates. The step by step results of the algorithm, including the value
of m used at each stage, are listed in the following table:

Step v1 v2 m

1 (6513996, 6393464) (66586820, 65354729) 10
2 (1446860, 1420089) (6513996, 6393464) 5
3 (−720304,−706981) (1446860, 1420089) −2
4 (6252, 6127) (−720304,−706981) −115
5 (−1324,−2376) (6252, 6127) −3
6 (2280,−1001) (−1324,−2376) 0

The final basis is quite small, and (2280,−1001) is a solution to SVP for the
lattice L.

7.13. Lattice Reduction Algorithms 439

7.13.2 The LLL Lattice Reduction Algorithm

Gauss’s lattice reduction algorithm (Proposition 7.66) gives an efficient way to
find a shortest nonzero vector in a lattice of dimension 2, but as the dimension
increases, the shortest vector problem becomes much harder . A major advance
came in 1982 with the publication of the LLL algorithm [77]. In this section
we give a full description of the LLL algorithm, and in the next section we
briefly describe some of its generalizations.

Suppose that we are given a basis {v1,v2, . . . ,vn} for a lattice L. Our
object is to transform the given basis into a “better” basis. But what do we
mean by a better basis? We would like the vectors in the better basis to be
as short as possible, beginning with the shortest vector that we can find, and
then with vectors whose lengths increase as slowly as possible until we reach
the last vector in the basis. Alternatively, we would like the vectors in the
better basis to be as orthogonal as possible to one another, i.e., so that the
dot products vi · vj are as close to zero as possible.

Recall that Hadamard’s inequality (Proposition 7.19) says that

detL = Vol(F) ≤ ‖v1‖ ‖v2‖ · · · ‖vn‖, (7.52)

where Vol(F) is the volume of a fundamental domain for L. The closer that the
basis comes to being orthogonal, the closer that the inequality (7.52) comes
to being an equality.

To assist us in creating an improved basis, we begin by constructing a
Gram–Schmidt orthogonal basis as described in Theorem 7.13. Thus we start
with v∗1 = v1, and then for i ≥ 2 we let

v∗i = vi −
i−1∑
j=1

μi,jv
∗
j , where μi,j =

vi · v∗j
‖v∗j‖2

for 1 ≤ j ≤ i− 1. (7.53)

The collection of vectors B∗ = {v∗1,v∗2, . . . ,v∗n} is an orthogonal basis for the
vector space spanned by B = {v1,v2, . . . ,vn}, but note that B∗ is not a basis
for the lattice L spanned by B, because the Gram–Schmidt process (7.53)
involves taking linear combinations with nonintegral coefficients. However, as
we now prove, it turns out that the two bases have the same determinant.

Proposition 7.68. Let B = {v1,v2, . . . ,vn} be a basis for a lattice L and
let B∗ = {v∗1,v∗2, . . . ,v∗n} be the associated Gram–Schmidt orthogonal basis as
described in Theorem 7.13. Then

det(L) =

n∏
i=1

‖v∗i ‖.

Proof. Let F = F (v1, . . . ,vn) be the matrix (7.11) described in Proposi-
tion 7.20. This is the matrix whose rows are the coordinates of v1, . . . ,vn.
The proposition tells us that det(L) = | detF |.

440 7. Lattices and Cryptography

Let F ∗ = F (v∗1, . . . ,v
∗
n) be the analogous matrix whose rows are the vec-

tors v∗1, . . . ,v
∗
n. Then (7.53) tells us that the matrices F and F ∗ are related by

MF ∗ = F,

where M is the change of basis matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
μ2,1 1 0 · · · 0 0
μ3,1 μ3,2 1 · · · 0 0
...

...
...

. . .
...

μn−1,1 μn−1,2 μn−1,3 · · · 1 0
μn,1 μn,2 μn,3 · · · μn,n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that M is lower diagonal with 1’s on the diagonal, so det(M) = 1. Hence

det(L) = | detF | = | det(MF ∗)| = |(detM)(detF ∗)| = | detF ∗| =
n∏

i=1

‖v∗i ‖.

(The last equality follows from the fact that the v∗i , which are the rows of F ∗,
are pairwise orthogonal.)

Definition. Let V be a vector space, and let W ⊂ V be a vector subspace
of V . The orthogonal complement of W (in V) is

W⊥ =
{
v ∈ V : v ·w = 0 for all w ∈W}.

It is not hard to see that W⊥ is also a vector subspace of V and that every
vector v ∈ V can be written as a sum v = w +w′ for unique vectors w ∈W
and w′ ∈W⊥. (See Exercise 7.46.)

Using the notion of orthogonal complement, we can describe the intuition
behind the Gram–Schmidt construction as follows:

v∗i = Projection of vi onto Span(v1, . . . ,vi−1)
⊥.

Although B∗ = {v∗1,v∗2, . . . ,v∗n} is not a basis for the original lattice L, we
use the set B∗ of associated Gram–Schmidt vectors to define a concept that
is crucial for the LLL algorithm.

Definition. Let B = {v1,v2, . . . ,vn} be a basis for a lattice L and let
B∗ = {v∗1,v∗2, . . . ,v∗n} be the associated Gram–Schmidt orthogonal basis as
described in Theorem 7.13. The basis B is said to be LLL reduced if it satisfies
the following two conditions:

(Size Condition) |μi,j | =
|vi · v∗j |
‖v∗j‖2

≤ 1

2
for all 1 ≤ j < i ≤ n.

(Lovász Condition) ‖v∗i ‖2 ≥
(
3

4
− μ2

i,i−1

)
‖v∗i−1‖2 for all 1 < i ≤ n.

7.13. Lattice Reduction Algorithms 441

There are several different ways to state the Lovász condition. For example,
it is equivalent to the inequality

‖v∗i + μi,i−1v
∗
i−1‖2 ≥

3

4
‖v∗i−1‖2,

and it is also equivalent to the statement that

∥∥Projection of vi onto Span(v1, . . . ,vi−2)
⊥∥∥

≥ 3

4

∥∥Projection of vi−1 onto Span(v1, . . . ,vi−2)
⊥∥∥.

The fundamental result of Lenstra, Lenstra, and Lovász [77] says that
an LLL reduced basis is a good basis and that it is possible to compute
an LLL reduced basis in polynomial time. We start by showing that an LLL
reduced basis has desirable properties, after which we describe the LLL lattice
reduction algorithm.

Theorem 7.69. Let L be a lattice of dimension n. Any LLL reduced basis
{v1,v2, . . . ,vn} for L has the following two properties:

n∏
i=1

‖vi‖ ≤ 2n(n−1)/4 detL, (7.54)

‖vj‖ ≤ 2(i−1)/2‖v∗i ‖ for all 1 ≤ j ≤ i ≤ n. (7.55)

Further, the initial vector in an LLL reduced basis satisfies

‖v1‖ ≤ 2(n−1)/4| detL|1/n and ‖v1‖ ≤ 2(n−1)/2 min
0 �=v∈L

‖v‖. (7.56)

Thus an LLL reduced basis solves apprSVP to within a factor of 2(n−1)/2.

Proof. The Lovász condition and the fact that |μi,i−1| ≤ 1
2 imply that

‖v∗i ‖2 ≥
(
3

4
− μ2

i,i−1

)
‖v∗i−1‖2 ≥

1

2
‖v∗i−1‖2. (7.57)

Applying (7.57) repeatedly yields the useful estimate

‖v∗j‖2 ≤ 2i−j‖v∗i ‖2. (7.58)

We now compute

‖vi‖2 =

∥∥∥∥v∗i +
i−1∑
j=1

μi,jv
∗
j

∥∥∥∥
2

from (7.53),

= ‖v∗i ‖2 +
i−1∑
j=1

μ2
i,j‖v∗j‖2 since v∗1, . . . ,v

∗
n are orthogonal,

442 7. Lattices and Cryptography

≤ ‖v∗i ‖2 +
i−1∑
j=1

1

4
‖v∗j‖2 since |μi,j | ≤ 1

2
,

≤ ‖v∗i ‖2 +
i−1∑
j=1

2i−j−2‖v∗i ‖2 from (7.58),

=
1 + 2i−1

2
‖v∗i ‖2

≤ 2i−1‖v∗i ‖2 since 1 ≤ 2i−1 for all i ≥ 1. (7.59)

Multiplying (7.59) by itself for 1 ≤ i ≤ n yields

n∏
i=1

‖vi‖2 ≤
n∏

i=1

2i−1‖v∗i ‖2 = 2n(n−1)/2
n∏

i=1

‖v∗i ‖2 = 2n(n−1)/2(detL)2,

where for the last equality we have used Proposition 7.68. Taking square roots
completes the proof of (7.54).

Next, for any j ≤ i, we use (7.59) (with i = j) and (7.58) to estimate

‖vj‖2 ≤ 2j−1‖v∗j‖2 ≤ 2j−1 · 2i−j‖v∗i ‖2 = 2i−1‖v∗i ‖2.
Taking square roots gives (7.55).

Now we set j = 1 in (7.55), multiply over 1 ≤ i ≤ n, and use Proposi-
tion 7.68 to obtain

‖v1‖n ≤
n∏

i=1

2(i−1)/2‖v∗i ‖ = 2n(n−1)/4
n∏

i=1

‖v∗i ‖ = 2n(n−1)/4 detL.

Taking nth roots gives the first estimate in (7.56).
To prove the second estimate, let v ∈ L be a nonzero lattice vector and

write

v =
i∑

j=1

ajvj =
i∑

j=1

bjv
∗
j

with ai �= 0. Note that a1, . . . , ai are integers, while bi, . . . , bi are real numbers.
In particular, |ai| ≥ 1.

By construction, for any k we know that the vectors v∗1, . . . ,v
∗
k are pairwise

orthogonal, and we proved (Theorem 7.13) that they span the same space as
the vectors v1, . . . ,vk. Hence

v · v∗i = aivi · v∗i = biv
∗
i · v∗i and vi · v∗i = v∗i · v∗i ,

from which we conclude that ai = bi. Therefore |bi| = |ai| ≥ 1, and using this
and (7.55) (with j = 1) gives the estimate

‖v‖2 =

i∑
j=1

b∗j‖v∗j‖2 ≥ b2i ‖v∗i ‖2 ≥ ‖v∗i ‖2 ≥ 2−(i−1)‖v1‖2 ≥ 2−(n−1)‖v1‖2.

Taking square roots gives the second estimate in (7.56).

7.13. Lattice Reduction Algorithms 443

Remark 7.70. Before describing the technicalities of the LLL algorithm, we
make some brief remarks indicating the general underlying idea. Given a basis
{v1,v2, . . . ,vn}, it is easy to form a new basis that satisfies the Size Condition.
Roughly speaking, we do this by subtracting from vk appropriate integer
multiples of the previous vectors v1, . . . ,vk−1 so as to make vk smaller. In
the LLL algorithm, we do this in stages, rather than all at once, and we’ll
see that the size reduction condition depends on the ordering of the vectors.
After doing size reduction, we check to see whether the Lovász condition is
satisfied. If it is, then we have a (nearly) optimal ordering of the vectors. If
not, then we reorder the vectors and do further size reduction.

For simplicity, and because it is the case that we need, we state and analyze
the LLL algorithm for lattices in Z

n. See Exercise 7.54 for the general case.

Theorem 7.71 (LLL Algorithm). Let {v1, . . . ,vn} be a basis for a lattice L
that is contained in Z

n. The algorithm described in Fig. 7.8 terminates in a
finite number of steps and returns an LLL reduced basis for L.

More precisely, let B = max ‖vi‖. Then the algorithm executes the main
k loop (Steps [4–14]) no more than O(n2 log n+n2 logB) times. In particular,
the LLL algorithm is a polynomial-time algorithm.

Remark 7.72. The problem of efficiently implementing the LLL algorithm
presents many challenges. First, size reduction and the Lovász condition use
the Gram–Schmidt orthogonalized basis v∗1, . . . ,v

∗
n and the associated projec-

tion factors μi,j = vi · v∗j/‖v∗j‖2. In an efficient implementation of the LLL
algorithm, one should compute these quantities as needed and store them for
future use, recomputing only when necessary. We have not addressed this is-
sue in Fig. 7.8, since it is not relevant for understanding the LLL algorithm,
nor for proving that it returns an LLL reduced basis in polynomial time. See
Exercise 7.50 for a more efficient version of the LLL algorithm.

Another major challenge arises from the fact that if one attempts to per-
form LLL reduction on an integer lattice using exact values, the intermedi-
ate calculations involve enormous numbers. Thus in working with lattices of
high dimension, it is generally necessary to use floating point approximations,
which leads to problems with round-off errors. We do not have space here to
discuss this practical difficulty, but the reader should be aware that it exists.

Remark 7.73. Before embarking on the somewhat technical proof of
Theorem 7.71, we discuss the intuition behind the swap step (Step [11]).
The swap step is executed when the Lovász condition fails for vk, so

∥∥Projection of vk onto Span(v1, . . . ,vk−2)
⊥∥∥

<
3

4

∥∥Projection of vk−1 onto Span(v1, . . . ,vk−2)
⊥∥∥. (7.60)

The goal of LLL is to produce a list of short vectors in increasing order of
length. For each 1 ≤ � ≤ n, let L� denote the lattice spanned by v1, . . . ,v�.

444 7. Lattices and Cryptography

[1] Input a basis {v1 , . . . ,vn} for a lattice L
[2] Set k = 2
[3] Set v1 = v1

∗

[4] Loop while k ≤ n
[5] Loop Down j = k − 1, k − 2, . . . , 2, 1
[6] Set vk = vk − �μk,j�vj [Size Reduction]
[7] End j Loop

[8] If ‖vk
∗‖2 ≥

(
3
4 − μk,k−1

2
)

‖vk−1
∗ ‖2 [Lovasz Condition]

[9] Set k = k + 1
[10] Else
[11] Swap vk−1 and vk [Swap Step]
[12] Set k = max(k − 1, 2)
[13] End If
[14] End k Loop
[15] Return LLL reduced basis {v1, . . . , vn}
Note: At each step, v1

∗, . . . ,vk is the orthogonal set of vectors obtained∗

by applying Gram–Schmidt (Theorem 7.13) to the current values of
v1, . . . ,vk , and μi,j is the associated quantity (vi · vj)/∗ ‖vj

∗‖2.

´

Figure 7.8: The LLL lattice reduction algorithm

Note that as LLL progresses, the sublattices L� change due to the swap step;
only Ln remains the same, since it is the entire lattice. What LLL attempts
to do is to find an ordering of the basis vectors (combined with size reduc-
tions whenever possible) that minimizes the determinants det(L�), i.e., LLL
attempts to minimize the volumes of the fundamental domains of the sublat-
tices L1, . . . , Ln.

If the number 3/4 in (7.60) is replaced by the number 1, then the LLL
algorithm does precisely this; it swaps vk and vk−1 whenever doing so reduces
the value of detLk−1. Unfortunately, if we use 1 instead of 3/4, then it is an
open problem whether the LLL algorithm terminates in polynomial time.

If we use 3/4, or any other constant strictly less than 1, then LLL runs
in polynomial time, but we may miss an opportunity to reduce the size of a
determinant by passing up a swap. For example, in the very first step, we swap
only if ‖v2‖ < 3

4‖v1‖, while we could reduce the determinant by swapping
whenever ‖v2‖ < ‖v1‖. In practice, one often takes a constant larger than 3/4,
but less than 1, in the Lovász condition. (See Exercise 7.51.)

Note that an immediate effect of swapping at stage k is (usually) to make
the new value of μk,k−1 larger. This generally allows us to size reduce the

7.13. Lattice Reduction Algorithms 445

new vk using the new vk−1, so swapping results in additional size reduction
among the basis vectors, making them more orthogonal.

Proof (sketch) of Theorem 7.71. For simplicity, and because it is the case
that we need, we will assume that L ⊂ Z

n is a lattice whose vectors have
integral coordinates.

It is clear that if the LLL algorithm terminates, then it terminates with
an LLL reduced basis, since the j-loop (Steps [5–7]) ensures that the basis
satisfies the size condition, and the fact that k = n+1 on termination means
that every vector in the basis has passed the Lovász condition test in Step [8].

However, it is not clear that the algorithm actually terminates, because
the k-increment in Step [9] is offset by the k-decrement in Step [12]. What we
will do is show that Step [12] is executed only a finite number of times. Since
either Step [9] or Step [12] is executed on each iteration of the k-loop, this
ensures that k eventually becomes larger than n and the algorithm terminates.

Let v1, . . . ,vn be a basis of L and let v∗1, . . . ,v
∗
n be the associated Gram–

Schmidt orthogonalized basis from Theorem 7.13. For each � = 1, 2, . . . , n,
we let

L� = lattice spanned by v1,. . . ,v�,

and we define quantities

d� =

�∏
i=1

‖v∗i ‖2 and D =

n∏
�=1

d� =

n∏
i=1

‖v∗i ‖2(n+1−i).

Using an argument similar to the proof of Theorem 7.68, one can show
that det(L�)

2 = d�; see Exercise 7.14(b,d).
During the LLL algorithm, the value of D changes only when we execute

the swap step (Step [11]). More precisely, when [11] is executed, the only d�
that changes is dk−1, since if � < k− 1, then d� involves neither v

∗
k−1 nor v∗k,

while if � ≥ k, then the product defining d� includes both v∗k−1 and v∗k, so the
product doesn’t change if we swap them.

We can estimate the change in dk−1 by noting that when [11] is executed,
the Lovász condition in Step [8] is false, so we have

‖v∗k‖2 <

(
3

4
− μ2

k,k−1

)
‖v∗k−1‖2 ≤

3

4
‖v∗k−1‖2.

Hence the effect of swapping v∗k and v∗k−1 in Step [11] is to change the value
of dk−1 as follows:

dnewk−1 = ‖v∗1‖2 · ‖v∗2‖2 · · · ‖v∗k−2‖2 · ‖v∗k‖2

= ‖v∗1‖2 · ‖v∗2‖2 · · · ‖v∗k−2‖2 · ‖v∗k−1‖2 ·
‖v∗k‖2
‖v∗k−1‖2

= doldk−1 ·
‖v∗k‖2
‖v∗k−1‖2

≤ 3

4
doldk−1.

446 7. Lattices and Cryptography

Hence if the swap step [11] is executed N times, then the value of D is reduced
by a factor of at least (3/4)N , since each swap reduces the value of some d�
by at least a factor of 3/4 and D is the product of all of the d�’s.

Since we have assumed that the lattice L is contained in Z
n, the basis

vectors v1, . . . ,v� of L� have integer coordinates. It follows from the definition
of d� and Exercise 7.14(d) that

d� =
�∏

i=1

‖v∗i ‖2 = det
((

vi · vj

)
1≤i,j≤�

)
,

which shows d� is a positive integer. Hence

D =
n∏

�=1

d� ≥ 1. (7.61)

Hence D is bounded away from 0 by a constant depending only on the di-
mension of the lattice L, so it can be multiplied by 3/4 only a finite number
of times. This proves that the LLL algorithm terminates.

In order to give an upper bound on the running time, we do some fur-
ther estimations. Let Dinit denote the initial value of D for the original basis,
let Dfinal denote the value of D for the basis when the LLL algorithm termi-
nates, and as above, let N denote the number of times that the swap step
(Step [11]) is executed. (Note that the k loop is executed at most 2N + n
times, so it suffices to find a bound for N .) The lower bound for D is valid for
every basis produced during the execution of the algorithm, so by our earlier
results we know that

1 ≤ Dfinal ≤ (3/4)NDinit.

Taking logarithms yields (note that log(3/4) < 1)

N = O(logDinit).

To complete the proof, we need to estimate the size of Dinit. But this is easy,
since by the Gram–Schmidt construction we certainly have ‖v∗i ‖ ≤ ‖vi‖, so

Dinit =

n∏
i=1

‖v∗i ‖n+1−i ≤
n∏

i=1

‖vi‖n+1−i ≤ (
max
1≤i≤n

‖vi‖
)2(1+2+···+n)

= Bn2+n.

Hence logDinit = O(n2 logB).

Remark 7.74. Rather than counting the number of times that the main loop
is executed, we might instead count the number of basic arithmetic operations
required by LLL. This means counting how many times the internal j-loop
is executed and also how many times we perform operations on the coordi-
nates of a vector. For example, adding two vectors or multiplying a vector
by a constant is n basic operations. Counted in this way, it is proven in [77]
that the LLL algorithm (if efficiently implemented) terminates after no more
than O(

n6(logB)3
)
basic operations.

7.13. Lattice Reduction Algorithms 447

Example 7.75. We illustrate the LLL algorithm on the 6-dimensional lattice L
with (ordered) basis given by the rows of the matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

19 2 32 46 3 33
15 42 11 0 3 24
43 15 0 24 4 16
20 44 44 0 18 15
0 48 35 16 31 31

48 33 32 9 1 29

⎞
⎟⎟⎟⎟⎟⎠
.

The smallest vector in this basis is ‖v2‖ = 51.913.
The output from LLL is the basis consisting of the rows of the matrix

MLLL =

⎛
⎜⎜⎜⎜⎜⎝

7 −12 −8 4 19 9
−20 4 −9 16 13 16

5 2 33 0 15 −9
−6 −7 −20 −21 8 −12
−10 −24 21 −15 −6 −11

7 4 −9 −11 1 31

⎞
⎟⎟⎟⎟⎟⎠
.

We check that both matrices have the same determinant,

det(M) = det(MLLL) = ±777406251.
Further, as expected, the LLL reduced matrix has a much better (i.e., larger)
Hadamard ratio than the original matrix,

H(M) = 0.46908 and H(MLLL) = 0.88824,

so the vectors in the LLL basis are more orthogonal. (The Hadamard ratio
is defined in Remark 7.27.) The smallest vector in the LLL reduced basis is
‖v1‖ = 26.739, which is a significant improvement over the original basis. This
may be compared with the Gaussian expected shortest length (Remark 7.32)
of σ(L) = (3! detL)1/3/

√
π = 23.062.

The LLL algorithm executed 19 swap steps (Step [11] in Fig. 7.8). The
sequence of k values from start to finish was

2, 2, 3, 2, 3, 4, 3, 2, 2, 3, 4, 5, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5,

4, 3, 4, 5, 6, 5, 4, 3, 2, 2, 3, 2, 3, 4, 5, 6.

Notice how the algorithm almost finished twice (it got to k = 6) before finally
terminating the third time. This illustrates how the value of k moves up and
down as the algorithm proceeds.

We next reverse the order of the rows of M and apply LLL. Then LLL
executes only 11 swap steps and gives the basis

MLLL =

⎛
⎜⎜⎜⎜⎜⎝

−7 12 8 −4 −19 −9
20 −4 9 −16 −13 −16

−28 11 12 −9 17 −14
−6 −7 −20 −21 8 −12
−7 −4 9 11 −1 −31
10 24 −21 15 6 11

⎞
⎟⎟⎟⎟⎟⎠
.

448 7. Lattices and Cryptography

We find the same smallest vector, but the Hadamard ratio H(MLLL) =
0.878973 is a bit lower, so the basis isn’t quite as good. This illustrates the
fact that the output from LLL is dependent on the order of the basis vectors.

We also ran LLL with the original matrix, but using 0.99 instead of 3
4

in the Lovász Step [8]. The algorithm did 22 swap steps, which is more than
the 19 swap steps required using 3

4 . This is not surprising, since increasing the
constant makes the Lovász condition more stringent, so it is harder for the al-
gorithm to get to the k-increment step. Using 0.99, the LLL algorithm returns
the basis

MLLL =

⎛
⎜⎜⎜⎜⎜⎝

−7 12 8 −4 −19 −9
−20 4 −9 16 13 16

6 7 20 21 −8 12
−28 11 12 −9 17 −14
−7 −4 9 11 −1 −31
−10 −24 21 −15 −6 −11

⎞
⎟⎟⎟⎟⎟⎠
.

Again we get the same smallest vector, but now the basis has H(MLLL) =
0.87897. This is actually slightly worse than the basis obtained using 3

4 , again
illustrating the unpredictable dependence of the LLL algorithm’s output on
its parameters.

7.13.3 Using LLL to Solve apprCVP

We explained in Sect. 7.6 that if a lattice L has an orthogonal basis, then it
is very easy to solve both SVP and CVP. The LLL algorithm does not return
an orthogonal basis, but it does produce a basis in which the basis vectors are
quasi-orthogonal, i.e., they are reasonably orthogonal to one another. Thus
we can combine the LLL algorithm (Fig. 7.8) with Babai’s algorithm (Theo-
rem 7.34) to form an algorithm that solves apprCVP.

Theorem 7.76 (LLL apprCVP Algorithm). There is a constant C such that
for any lattice L of dimension n given by a basis v1, . . . ,vn, the following
algorithm solves apprCVP to within a factor of Cn.

Apply LLL to v1, . . . ,vn to find an LLL reduced basis.

Apply Babai’s algorithm using the LLL reduced basis.

Proof. We leave the proof for the reader; see Exercise 7.52.

Remark 7.77. In [8], Babai suggested two ways to use LLL as part of an ap-
prCVP algorithm. The first method uses the closest vertex algorithm that we
described in Theorem 7.34. The second method uses the closest plane algo-
rithm. Combining the closest plane method with an LLL reduced basis tends
to give a better result than using the closest vertex method. See Exercise 7.53
for further details.

