
7.14. Applications of LLL to Cryptanalysis 451

7.14.1 Congruential Cryptosystems

Recall the congruential cipher described in Sect. 7.1. Alice chooses a modulus q
and two small secret integers f and g, and her public key is the integer h ≡
f−1g (mod q). Eve knows the public values of q and h, and she wants to
recover the private key f . One way for Eve to find the private key is to look
for small vectors in the lattice L generated by

v1 = (1, h) and v2 = (0, q),

since as we saw, the vector (f, g) is in L, and given the size constraints on f
and g, it is likely to be the shortest nonzero vector in L.

We illustrate by breaking Example 7.1. In that example,

q = 122430513841 and h = 39245579300.

We apply Gaussian lattice reduction (Proposition 7.66) to the lattice gener-
ated by

(1, 39245579300) and (0, 122430513841).

The algorithm takes 11 iterations to find the short basis

(−231231,−195698) and (−368222, 217835).

Up to an irrelevant change of sign, this gives Alice’s private key f = 231231
and g = 195698.

7.14.2 Applying LLL to Knapsacks

In Sect. 7.2 we described how to reformulate a knapsack (subset-sum) prob-
lem described by M = (m1, . . . ,mn) and S as a lattice problem using the
lattice LM ,S with basis given by the rows of the matrix (7.4) on page 383. We
further explained in Example 7.33 why the target vector t ∈ LM ,S , which has
length ‖t‖ = √n, is probably about half the size of all other nonzero vectors
in LM ,S .

We illustrate the use of the LLL algorithm to solve the knapsack problem

M = (89, 243, 212, 150, 245) and S = 546

considered in Example 7.7. We apply LLL to the lattice generated by the rows
of the matrix

AM ,S =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 89
0 2 0 0 0 243
0 0 2 0 0 212
0 0 0 2 0 150
0 0 0 0 2 245
1 1 1 1 1 546

⎞
⎟⎟⎟⎟⎟⎟⎠

.


