This basis has Hadamard ratio $\mathcal{H}=0.956083$, which is even better than Alice's good basis. Eve next applies Babai's algorithm (Theorem 7.34) to find a lattice vector

$$
\boldsymbol{v}=(-79081423,-35617459,11035471)
$$

that is very close to \boldsymbol{e}. Finally she writes \boldsymbol{v} in terms of the original lattice vectors,

$$
\boldsymbol{v}=86 \boldsymbol{w}_{1}-35 \boldsymbol{w}_{2}-32 \boldsymbol{w}_{3}
$$

which retrieves Bob's plaintext $\boldsymbol{m}=(86,-35,-32)$.

7.14.4 Applying LLL to NTRU

We apply LLL to the NTRU cryptosystem described in Example 7.53. Thus $N=7, q=41$, and the public key is the polynomial

$$
\boldsymbol{h}(x)=30+26 x+8 x^{2}+38 x^{3}+2 x^{4}+40 x^{5}+20 x^{6} .
$$

As explained in Sect. 7.11, the associated NTRU lattice is generated by the rows of the matrix

$$
M_{\boldsymbol{h}}^{\mathrm{NTRU}}=\left(\begin{array}{cccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 26 & 8 & 38 & 2 & 40 & 20 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 20 & 30 & 26 & 8 & 38 & 2 & 40 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 40 & 20 & 30 & 26 & 8 & 38 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 2 & 40 & 20 & 30 & 26 & 8 & 38 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 38 & 2 & 40 & 20 & 30 & 26 & 8 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 8 & 38 & 2 & 40 & 20 & 30 & 26 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 26 & 8 & 38 & 2 & 40 & 20 & 30 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 41 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 41 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 41 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 41 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 41 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 41 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 41
\end{array}\right) .
$$

Eve applies LLL reduction to $M_{h}^{\text {NTRU }}$. The algorithm performs 96 swap steps and returns the LLL reduced matrix

$$
M_{\text {red }}^{\text {NTRU }}=\left(\begin{array}{cccccccccccccc}
1 & 0 & -1 & 1 & 0 & -1 & -1 & -1 & 0 & -1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 & 1 & -1 & -1 & -1 & 0 & 1 & 0 & 1 & 0 \\
-1 & 1 & 0 & -1 & -1 & 1 & 0 & -1 & 0 & 1 & 1 & 0 & -1 & 0 \\
-1 & -1 & 1 & 0 & -1 & 1 & 0 & 1 & 0 & -1 & 0 & -1 & 0 & 1 \\
-1 & 1 & 0 & -1 & 1 & 0 & -1 & 0 & -1 & 0 & -1 & 0 & 1 & 1 \\
-1 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 & 1 & -1 & -1 & 0 & 0 & 2 & 0 & 0 \\
-8 & -1 & 0 & 9 & 0 & -1 & 0 & -4 & 2 & 6 & 0 & -4 & 7 & -7 \\
8 & 1 & 0 & 0 & -8 & -1 & 2 & 0 & -5 & 8 & -7 & -3 & 1 & 6 \\
0 & -9 & -2 & 1 & 9 & -1 & 0 & -6 & -3 & 2 & 5 & 0 & -5 & 7 \\
0 & 8 & 0 & -9 & -1 & -8 & 8 & 2 & 7 & -11 & 3 & -5 & 2 & 2 \\
1 & 0 & 0 & 9 & 2 & -1 & -9 & 5 & -7 & 6 & 3 & -2 & -5 & 0 \\
-2 & 1 & 9 & -1 & 0 & 0 & -9 & 2 & 5 & 0 & -5 & 7 & -6 & -3 \\
3 & 2 & 3 & 3 & -6 & 2 & -6 & 11 & 6 & 8 & 0 & 9 & 5 & 2
\end{array}\right) .
$$

We can compare the relative quasi-orthogonality of the original and the reduced bases by computing the Hadamard ratios,

$$
\mathcal{H}\left(M_{h}^{\mathrm{NTRU}}\right)=0.1184 \quad \text { and } \quad \mathcal{H}\left(M_{\mathrm{red}}^{\mathrm{NTRU}}\right)=0.8574
$$

The smallest vector in the reduced basis is the top row of the reduced matrix,

$$
(1,0,-1,1,0,-1,-1,-1,0,-1,0,1,1,0)
$$

Splitting this vector into two pieces gives polynomials

$$
\boldsymbol{f}^{\prime}(x)=1-x^{2}+x^{3}-x^{5}-x^{6} \quad \text { and } \quad \boldsymbol{g}^{\prime}(x)=-1-x^{2}+x^{4}+x^{5}
$$

Note that $\boldsymbol{f}^{\prime}(x)$ and $\boldsymbol{g}^{\prime}(x)$ are not the same as Alice's original private key polynomials $\boldsymbol{f}(x)$ and $\boldsymbol{g}(x)$ from Example 7.53. However, they are simple rotations of Alice's key,

$$
\boldsymbol{f}^{\prime}(x)=-x^{3} \star \boldsymbol{f}(x) \quad \text { and } \quad \boldsymbol{g}^{\prime}(x)=-x^{*} \star \boldsymbol{g}(x)
$$

so Eve can use $\boldsymbol{f}^{\prime}(x)$ and $\boldsymbol{g}^{\prime}(x)$ to decrypt messages.

Exercises

Section 7.1. A Congruential Public Key Cryptosystem

7.1. Alice uses the congruential cryptosystem with $q=918293817$ and private key $(f, g)=(19928,18643)$.
(a) What is Alice's public key h ?
(b) Alice receives the ciphertext $e=619168806$ from Bob. What is the plaintext?
(c) Bob sends Alice a second message by encrypting the plaintext $m=10220$ using the random element $r=19564$. What is the ciphertext that Bob sends to Alice?

Section 7.2. Subset-Sum Problems and Knapsack Cryptosystems

7.2. Use the algorithm described in Proposition 7.5 to solve each of the following subset-sum problems. If the "solution" that you get is not correct, explain what went wrong.
(a) $\boldsymbol{M}=(3,7,19,43,89,195), \quad S=260$.
(b) $\boldsymbol{M}=(5,11,25,61,125,261), \quad S=408$.
(c) $\boldsymbol{M}=(2,5,12,28,60,131,257), \quad S=334$.
(d) $\boldsymbol{M}=(4,12,15,36,75,162), \quad S=214$.
7.3. Alice's public key for a knapsack cryptosystem is

$$
M=(5186,2779,5955,2307,6599,6771,6296,7306,4115,637) .
$$

Eve intercepts the encrypted message $S=4398$. She also breaks into Alice's computer and steals Alice's secret multiplier $A=4392$ and secret modulus $B=8387$. Use this information to find Alice's superincreasing private sequence r and then decrypt the message.

