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This basis has Hadamard ratio H = 0.956083, which is even better than
Alice’s good basis. Eve next applies Babai’s algorithm (Theorem 7.34) to find
a lattice vector

v = (−79081423,−35617459, 11035471)

that is very close to e. Finally she writes v in terms of the original lattice
vectors,

v = 86w1 − 35w2 − 32w3,

which retrieves Bob’s plaintext m = (86,−35,−32).

7.14.4 Applying LLL to NTRU

We apply LLL to the NTRU cryptosystem described in Example 7.53. Thus
N = 7, q = 41, and the public key is the polynomial

h(x) = 30 + 26x+ 8x2 + 38x3 + 2x4 + 40x5 + 20x6.

As explained in Sect. 7.11, the associated NTRU lattice is generated by the
rows of the matrix

MNTRU
h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 30 26 8 38 2 40 20
0 1 0 0 0 0 0 20 30 26 8 38 2 40
0 0 1 0 0 0 0 40 20 30 26 8 38 2
0 0 0 1 0 0 0 2 40 20 30 26 8 38
0 0 0 0 1 0 0 38 2 40 20 30 26 8
0 0 0 0 0 1 0 8 38 2 40 20 30 26
0 0 0 0 0 0 1 26 8 38 2 40 20 30
0 0 0 0 0 0 0 41 0 0 0 0 0 0
0 0 0 0 0 0 0 0 41 0 0 0 0 0
0 0 0 0 0 0 0 0 0 41 0 0 0 0
0 0 0 0 0 0 0 0 0 0 41 0 0 0
0 0 0 0 0 0 0 0 0 0 0 41 0 0
0 0 0 0 0 0 0 0 0 0 0 0 41 0
0 0 0 0 0 0 0 0 0 0 0 0 0 41

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Eve applies LLL reduction to MNTRU
h . The algorithm performs 96 swap steps

and returns the LLL reduced matrix

MNTRU
red =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 1 0 −1 −1 −1 0 −1 0 1 1 0
0 1 1 −1 0 1 −1 −1 −1 0 1 0 1 0
−1 1 0 −1 −1 1 0 −1 0 1 1 0 −1 0
−1 −1 1 0 −1 1 0 1 0 −1 0 −1 0 1
−1 1 0 −1 1 0 −1 0 −1 0 −1 0 1 1
−1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0
0 1 0 1 0 −1 1 −1 −1 0 0 2 0 0
−8 −1 0 9 0 −1 0 −4 2 6 0 −4 7 −7
8 1 0 0 −8 −1 2 0 −5 8 −7 −3 1 6
0 −9 −2 1 9 −1 0 −6 −3 2 5 0 −5 7
0 8 0 −9 −1 −8 8 2 7 −11 3 −5 2 2
1 0 0 9 2 −1 −9 5 −7 6 3 −2 −5 0
−2 1 9 −1 0 0 −9 2 5 0 −5 7 −6 −3
3 2 3 3 −6 2 −6 11 6 8 0 9 5 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can compare the relative quasi-orthogonality of the original and the
reduced bases by computing the Hadamard ratios,
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H(MNTRU
h ) = 0.1184 and H(MNTRU

red ) = 0.8574.

The smallest vector in the reduced basis is the top row of the reduced
matrix,

(1, 0,−1, 1, 0,−1,−1,−1, 0,−1, 0, 1, 1, 0).
Splitting this vector into two pieces gives polynomials

f ′(x) = 1− x2 + x3 − x5 − x6 and g′(x) = −1− x2 + x4 + x5.

Note that f ′(x) and g′(x) are not the same as Alice’s original private key
polynomials f(x) and g(x) from Example 7.53. However, they are simple
rotations of Alice’s key,

f ′(x) = −x3 � f(x) and g′(x) = −x3 � g(x),

so Eve can use f ′(x) and g′(x) to decrypt messages.

Exercises

Section 7.1. A Congruential Public Key Cryptosystem

7.1. Alice uses the congruential cryptosystem with q = 918293817 and private
key (f, g) = (19928, 18643).
(a) What is Alice’s public key h?

(b) Alice receives the ciphertext e = 619168806 from Bob. What is the plaintext?

(c) Bob sends Alice a second message by encrypting the plaintext m = 10220 using
the random element r = 19564. What is the ciphertext that Bob sends to Alice?

Section 7.2. Subset-Sum Problems and Knapsack Cryptosystems

7.2. Use the algorithm described in Proposition 7.5 to solve each of the following
subset-sum problems. If the “solution” that you get is not correct, explain what
went wrong.
(a) M = (3, 7, 19, 43, 89, 195), S = 260.

(b) M = (5, 11, 25, 61, 125, 261), S = 408.

(c) M = (2, 5, 12, 28, 60, 131, 257), S = 334.

(d) M = (4, 12, 15, 36, 75, 162), S = 214.

7.3. Alice’s public key for a knapsack cryptosystem is

M = (5186, 2779, 5955, 2307, 6599, 6771, 6296, 7306, 4115, 637).

Eve intercepts the encrypted message S = 4398. She also breaks into Alice’s com-
puter and steals Alice’s secret multiplier A = 4392 and secret modulus B = 8387.
Use this information to find Alice’s superincreasing private sequence r and then
decrypt the message.

cmpe1
Sticky Note
Note that multiplying a polynomial by x^i corresponds to the polynomial's coefficients vector rotation i-steps right, and x^(-i), to rotation N-i positions right, or i positions left. It follows from equality x^(-i) = x^(N-i) mod (x^N-1)




