
Chapter 7

Lattices and Cryptography

The security of all of the public key cryptosystems that we have previously
studied has been based, either directly or indirectly, on either the difficulty
of factoring large numbers or the difficulty of finding discrete logarithms in a
finite group. In this chapter we investigate a new type of hard problem arising
in the theory of lattices that can be used as the basis for a public key cryp-
tosystem. Lattice-based cryptosystems offer several potential advantages over
earlier systems, including faster encryption/decryption and so-called quantum
resistance. The latter means that at present there are no known quantum al-
gorithms to rapidly solve hard lattice problems; see Sect. 8.11. Further, we
will see that the theory of lattices has applications in cryptography beyond
simply providing a new source of hard problems.

Recall that a vector space V over the real numbers R is a set of vectors,
where two vectors can be added together and a vector can be multiplied by a
real number. A lattice is similar to a vector space, except that we are restricted
to multiplying the vectors in a lattice by integers. This seemingly minor re-
striction leads to many interesting and subtle questions. Since the subject of
lattices can appear somewhat abstruse and removed from the everyday re-
ality of cryptography, we begin this chapter with two motivating examples
in which lattices are not mentioned, but where they are lurking in the back-
ground, waiting to be used for cryptanalysis. We then review the theory of
vector spaces in Sect. 7.3 and formally introduce lattices in Sect. 7.4.

7.1 A Congruential Public Key Cryptosystem

In this section we describe a toy model of a real public key cryptosystem. This
version turns out to have an unexpected connection with lattices of dimen-
sion 2, and hence a fatal vulnerability, since the dimension is so low. However,
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374 7. Lattices and Cryptography

it is instructive as an example of how lattices may appear in cryptanalysis
even when the underlying hard problem appears to have nothing to do with
lattices. Further, it provides a lowest-dimensional introduction to the NTRU
public key cryptosystem, which will be described in Sect. 7.10.

Alice begins by choosing a large positive integer q, which is a public
parameter, and two other secret positive integers f and g satisfying

f <
√
q/2,

√
q/4 < g <

√
q/2, and gcd(f, qg) = 1.

She then computes the quantity

h ≡ f−1g (mod q) with 0 < h < q.

Notice that f and g are small compared to q, since they are O(
√
q ), while

the quantity h will generally be O(q), which is considerably larger. Alice’s
private key is the pair of small integers f and g and her public key is the large
integer h.

In order to send a message, Bob chooses a plaintext m and a random
integer r (a random element) satisfying the inequalities

0 < m <
√
q/4 and 0 < r <

√
q/2.

He computes the ciphertext

e ≡ rh+m (mod q) with 0 < e < q

and sends it to Alice.
Alice decrypts the message by first computing

a ≡ fe (mod q) with 0 < a < q,

and then computing

b ≡ f−1a (mod g) with 0 < b < g. (7.1)

Note that f−1 in (7.1) is the inverse of f modulo g.
We now verify that b = m, which will show that Alice has recovered Bob’s

plaintext. We first observe that the quantity a satisfies

a ≡ fe ≡ f(rh+m) ≡ frf−1g + fm ≡ rg + fm (mod q).

The size restrictions on f, g, r,m imply that the integer rg + fm is small,

rg + fm <

√
q

2

√
q

2
+

√
q

2

√
q

4
< q.

Thus when Alice computes a ≡ fe (mod q) with 0 < a < q, she gets the exact
value
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Alice Bob

Key Creation
Choose a large integer modulus q.

Choose secret integers f and g with f <
√
q/2,√

q/4 < g <
√
q/2, and gcd(f, qg) = 1.

Compute h ≡ f−1g (mod q).
Publish the public key (q, h).

Encryption

Choose plaintext m with m <
√

q/4.
Use Alice’s public key (q, h)

to compute e ≡ rh+m (mod q).
Send ciphertext e to Alice.

Decryption
Compute a ≡ fe (mod q) with 0 < a < q.
Compute b ≡ f−1a (mod g) with 0 < b < g.
Then b is the plaintext m.

Table 7.1: A congruential public key cryptosystem

a = rg + fm. (7.2)

This is the key point: the formula (7.2) is an equality of integers and not
merely a congruence modulo q. Finally Alice computes

b ≡ f−1a ≡ f−1(rg + fm) ≡ f−1fm ≡ m (mod g) with 0 < b < g.

Since m <
√
q/4 < g, it follows that b = m. The congruential cryptosystem

is summarized in Table 7.1.

Example 7.1. Alice chooses

q = 122430513841, f = 231231, and g = 195698.

Here f ≈ 0.66
√
q and g ≈ 0.56

√
q are allowable values. Alice computes

f−1 ≡ 49194372303 (mod q) and h ≡ f−1g ≡ 39245579300 (mod q).

Alice’s public key is the pair (q, h) = (122430513841, 39245579300).
Bob decides to send Alice the plaintext m = 123456 using the random

value r = 101010. He uses Alice’s public key to compute the ciphertext

e ≡ rh+m ≡ 18357558717 (mod q),

which he sends to Alice.
In order to decrypt e, Alice first uses her secret value f to compute

a ≡ fe ≡ 48314309316 (mod q).
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(Note that a = 48314309316 < 122430513841 = q.) She then uses the value
f−1 ≡ 193495 (mod g) to compute

f−1a ≡ 193495 · 48314309316 ≡ 123456 (mod g),

and, as predicted by the theory, this is Bob’s plaintext m.

How might Eve attack this system? She might try doing a brute-force
search through all possible private keys or through all possible plaintexts, but
this takes O(q) operations. Let’s consider in more detail Eve’s task if she tries
to find the private key (f, g) from the known public key (q, h). It is not hard
to see that if Eve can find any pair of positive integers F and G satisfying

Fh ≡ G (mod q) and F = O(
√
q) and G = O(

√
q), (7.3)

then (F,G) is likely to serve as a decryption key. Rewriting the congru-
ence (7.3) as Fh = G + qR, we reformulate Eve’s task as that of finding
a pair of comparatively small integers (F,G) with the property that

F (1, h)︸ ︷︷ ︸−R (0, q)︸ ︷︷ ︸ =
︷ ︸︸ ︷
(F,G) .

known vectors

unknown integers

unknown
small
vector

Thus Eve knows two vectors v1 = (1, h) and v2 = (0, q), each of which has
length O(q), and she wants to find a linear combination w = a1v1+a2v2 such
that w has length O(

√
q ), but keep in mind that the coefficients a1 and a2

are required to be integers. Thus Eve needs to find a short nonzero vector in
the set of vectors

L = {a1v1 + a2v2 : a1, a2 ∈ Z}.

This set L is an example of a two-dimensional lattice. Notice that it looks sort
of like a two-dimensional vector space with basis {v1,v2}, except that we are
allowed to take only integer linear combinations of v1 and v2.

Unfortunately for Bob and Alice, there is an extremely rapid method for
finding short vectors in two-dimensional lattices. This method, which is due
to Gauss, is described in Sect. 7.13.1 and used to break the congruential cryp-
tosystem in Sect. 7.14.1.


