
We describe a
reliable and accurate
method for detecting
least significant bit
(LSB) nonsequential
embedding in digital
images. The secret
message length is
derived by inspecting
the lossless capacity
in the LSB and
shifted LSB plane. An
upper bound of
0.005 bits per pixel
was experimentally
determined for safe
LSB embedding.

S
teganography is the art of secret commu-
nication. Its purpose is to hide the pres-
ence of communication, as opposed to
cryptography, which aims to make com-

munication unintelligible to those who don’t pos-
sess the right keys.1 We can use digital images,
videos, sound files, and other computer files that
contain perceptually irrelevant or redundant
information as covers or carriers to hide secret
messages. After embedding a secret message into
the cover image, we obtain a so-called stego-
image. It’s important that the stego-image doesn’t
contain any detectable artifacts due to message
embedding. A third party could use such artifacts
as an indication that a secret message is present.
Once a third party can reliably identify which
images contain secret messages, the stegano-
graphic tool becomes useless.

Obviously, the less information we embed into
the cover image, the smaller the probability of
introducing detectable artifacts by the embedding
process. Another important factor is the choice of
the cover image. The selection is at the discretion
of the person who sends the message. Images with
a low number of colors, computer art, and images
with unique semantic content (such as fonts)
should be avoided as cover images. Some stegano-
graphic experts recommend grayscale images as
the best cover images.2 They recommend uncom-
pressed scans of photographs or images obtained
with a digital camera containing a high number of
colors and consider them safe for steganography. 

In previous work,3 we’ve shown that images
stored previously in the JPEG format are a poor
choice for cover images. This is because the quan-
tization introduced by JPEG compression can
serve as a watermark or unique fingerprint, and
you can detect even small modifications of the
cover image by inspecting the compatibility of the
stego-image with the JPEG format.

In Fridrich et al.,4 we developed a stegano-
graphic method for detecting LSB embedding in
24-bit color images—the  Raw Quick Pairs (RQP)
method. We based it on analyzing close pairs of
colors created by LSB embedding. It works rea-
sonably well as long as the number of unique col-
ors in the cover image is less than 30 percent of
the number of pixels. The RQP method can only
provide a rough estimate of the size of the secret
message. The results become progressively unreli-
able once the number of unique colors exceeds
about 50 percent of the number of pixels. This fre-
quently happens for high resolution raw scans
and images taken with digital cameras stored in
an uncompressed format. Another disadvantage
of the RQP method is that it can’t be applied to
grayscale images.

Pfitzmann and Westfeld5 introduced a method
based on statistical analysis of pairs of values
(PoVs) exchanged during message embedding.
Pairs of colors that differ in the LSB only, for exam-
ple, could form these PoVs. This method provides
reliable results when we know the message place-
ment (such as sequential). However, we can only
detect randomly scattered messages with this
method when the message length becomes com-
parable with the number of pixels in the image.

Johnson and Jajodia6,7 pointed out that
steganographic methods for palette images that
preprocess the palette before embedding are very
vulnerable. Several steganographic programs cre-
ate clusters of close palette colors that can be
swapped for each other to embed message bits.
These programs decrease the color depth and then
expand it to 256 by making small perturbations to
the colors. This preprocessing, however, will cre-
ate suspicious pairs (clusters) of colors that others
can detect easily.

Lossless data embedding
In our previous work on lossless (or invertible)

data embedding,8 we proposed an idea for a new
steganalytic method for detection of LSB embed-
ding in color and grayscale images. The method
originated by analyzing the capacity for lossless
data embedding in the LSBs. Randomizing the

22 1070-986X/01/$10.00 © 2001 IEEE

Detecting LSB
Steganography in
Color and Gray-
Scale Images

Jessica Fridrich, Miroslav Goljan, and Rui Du
State University of New York, Binghamton

Multimedia and Security



LSBs decreases the lossless capacity in the LSB
plane, but it has a different influence on the
capacity for embedding that isn’t constrained to
one bit plane. Thus, the lossless capacity became
a sensitive measure for the degree of randomiza-
tion of the LSB plane. Note that for most images
the LSB plane is essentially random and doesn’t
contain any easily recognizable structure. Using
classical statistical quantities constrained to the
LSB plane to capture the degree of randomization
is unreliable. The lossless capacity reflects the fact
that the LSB plane—even though it looks ran-
dom—is related nonetheless to the other bit
planes. This relationship, however, is nonlinear,
and the lossless capacity seems to measure this
relationship fairly well. This is why we proposed
it for steganography detection.

To explain the details of our new steganalytic
technique, we’ll first briefly explore the main par-
adigms behind lossless embedding. 

Let’s assume that we have a cover image with M
× N pixels and with pixel values from the set P. For
example, for an 8-bit grayscale image, P = {0, …,
255}. The lossless embedding starts with dividing
the image into disjoint groups of n adjacent pixels
(x1, ..., xn). As an example, we can choose groups of
n = 4 consecutive pixels in a row. We further define
a so-called discrimination function f that assigns a
real number f(x1, ..., xn) ∈R to each pixel group 
G = (x1, ..., xn). The purpose of the discrimination
function is to capture the smoothness or regularity
of the group of pixels G. The noisier the group of
pixels G = (x1, ..., xn), the larger the value of the dis-
crimination function becomes. For example, we can
choose the variation of the group of pixels (x1, ...,
xn) as the discrimination function f:

(1)

We can use image models or statistical assump-
tions about the cover image for the design of
other discrimination functions. 

Finally, we define an invertible operation F on
P called flipping. Flipping is a permutation of gray
levels that entirely consists of 2-cycles. Thus, F will
have the property that F2 = Identity or F(F(x)) = x
for all x ∈ P. The permutation F1: 0 ↔ 1, 2 ↔ 3, …,
254 ↔ 255 corresponds to flipping (negating) the
LSB of each gray level. We further define shifted
LSB flipping F−1 as −1 ↔ 0, 1 ↔ 2, 3 ↔ 4, …, 253
↔ 254, 255 ↔ 256, or

F−1(x) = F1(x + 1) − 1 for all x (2)

For completeness, we also define F0 as the iden-
tity permutation F(x) = x for all x ∈ P. We use the
discrimination function f and the flipping opera-
tion F to define three types of pixel groups—R, S,
and U:

Regular groups: G ∈ R ⇔ f(F(G)) > f(G)
Singular groups: G ∈ S ⇔ f(F(G)) < f(G)
Unusable groups: G ∈ U ⇔ f(F(G)) = f(G)

In these expressions, F(G) means that we apply
the flipping function F to the components of the
vector G = (x1, …, xn). We may wish to apply differ-
ent flipping to different pixels in the group G. We
can capture the assignment of flipping to pixels
with a mask M, which is an n-tuple with values −1,
0, and 1. We define the flipped group F(G) as
(FM(1)(x1), FM(2)(x2), ..., FM(n)(xn)). The purpose of the
flipping F is perturbing the pixel values in an invert-
ible way by some small amount, thus simulating
the act of invertible noise adding. In typical pic-
tures, adding a small amount of noise (for example,
flipping by a small amount) will lead to an increase
in the discrimination function rather than a
decrease. Thus, the total number of regular groups
will be larger than the total number of singular
groups. This bias allows for lossless imperceptible
embedding of a potentially large amount of infor-
mation (for more details, see Fridrich et al.8).

Steganalytic technique
Let’s denote the number of regular groups for

mask M as RM (percent of all groups). Similarly, SM

will denote the relative number of singular
groups. We have RM + SM ≤ 1 and R−M + S−M ≤ 1, for
the negative mask. The statistical hypothesis of
our steganalytic method is that in a typical image,
the expected value of RM equals that of R−M, and
the same is true for SM and S−M

RM ≅ R−M and SM ≅ S−M (3)

We can justify this hypothesis heuristically by
inspecting Equation 2. Using the flipping opera-
tion F−1 is the same as applying F1 to an image
whose colors have been shifted by one. For a typ-
ical image, there’s no a priori reason why the
number of R and S groups should change signifi-
cantly by shifting the colors by one.

Indeed, we have extensive experimental evi-
dence that the hypothesis in Equation 3 holds
very accurately for images taken with a digital
camera for both lossy and lossless formats. It also
holds well for images processed with common
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image processing operations and for most scanned
images. The relationship in Equation 3, however,
is violated after randomizing the LSB plane
(because of LSB steganography, for example). 

Randomization of the LSB plane forces the dif-
ference between RM and SM to zero as the length m
of the embedded message increases. After flipping
the LSB of 50 percent of pixels (which is what
would happen after embedding a random message
bit into every pixel), we obtain RM ≅ SM. This is like
saying that the lossless embedding capacity in the
LSB plane is zero.8 What’s surprising is that the
influence of randomizing the LSB plane has the
opposite effect on R−M and S−M. Their difference
increases with the length m of the embedded mes-
sage. The graph that shows RM, SM, R−M, and S−M as
functions of the number of pixels with flipped
LSBs appears in Figure 1 (the RS diagram). 

We have a simple explanation for the peculiar
increase in the difference between R−M and S−M for
the mask M = [0 1 0]. We define sets Ci = {2i, 2i + 1},
i = 0, ..., 127, and cliques of groups Crst = {G | G ∈ Cr

× Cs × Ct}. There exist 1283 cliques, each clique con-
sisting of eight groups (triples). The cliques are
closed under LSB randomization. For the purpose
of our analysis, we recognize four different types of
cliques ignoring horizontally and vertically sym-
metrical cliques. Table 1 shows the four types and
the number of R, S, and U groups under F1 and F−1

for each type. From the table, you can see that while
randomization of LSBs has a tendency to equalize
the number of R and S groups in each clique under

F1, it will increase the number of R groups and
decrease the number of S groups under F−1.

The principle of our new steganalytic method,
which we call the RS Steganalysis, is to estimate
the four curves of the RS diagram and calculate
their intersection using extrapolation. The gener-
al shape of the four curves in Figure 1 varies with
the cover image from almost perfectly linear to
curved. We’ve collected experimental evidence
that the R−M and S−M curves are modeled well with
straight lines, while second-degree polynomials
can approximate the inner curves RM and SM rea-
sonably well. (Part of our future effort is a theo-
retical explanation of their shapes.) We can
determine the parameters of the curves from the
points marked in Figure 1.

If we have a stego-image with a message of an
unknown length p (in percent of pixels) embed-
ded in the LSBs of randomly scattered pixels, our
initial measurements of the number of R and S
groups correspond to the points RM(p/2), SM(p/2),
R−M(p/2), and S−M(p/2) (see Figure 1). The factor of
one half is because—assuming the message is a
random bit-stream—on average message embed-
ding will flip only one half of the pixels.

If we flip the LSBs of all pixels in the image and
calculate the number of R and S groups, we’ll
obtain the four points RM(1 − p/2), SM(1 − p/2), 
R−M(1 − p/2), and S−M(1 − p/2) in Figure 1. By ran-
domizing the LSB plane of the stego-image, we
obtain the middle points RM(1/2) and SM(1/2).
Because these two points depend on the particu-
lar randomization of the LSBs, we should repeat
the process many times and estimate RM(1/2) and
SM(1/2) from the statistical samples.

We can fit straight lines through the points 
R−M(p/2) R−M(1 − p/2) and S−M(p/2) S−M(1 − p/2). The
points RM(p/2), RM(1/2), RM(1 − p/2) and SM(p/2),
SM(1/2), SM(1 − p/2) determine two parabolas. Each
parabola and a corresponding line intersect to the
left. The arithmetic average of the x coordinates
of both intersections lets us estimate the
unknown message length p. 

We can avoid the time consuming statistical
estimation of the middle points RM(1/2) and
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Figure 1. RS-diagram of

an image taken by a

digital camera. The x-

axis is the percentage of

pixels with flipped LSBs,

the y-axis is the relative

number of regular and

singular groups with

masks M and −M, 

M = [0 1 1 0].

Table 1. Four different types of cliques.

Clique Type F1 Flipping F−1 Flipping
r = s = t 2R, 2S, 4U 8R

r = s > t 2R, 2S, 4U 4R, 4U

r < s > t 4R, 4S 4R, 4S

r > s > t 8U 8U



SM(1/2) and simultaneously make the message
length estimation more elegant by accepting two
more (natural) assumptions:

1. The point of intersection of the curves RM and
R−M has the same x coordinate as the point of
intersection for the curves SM and S−M. This is
essentially a stronger version of Equation 3. 

2. The curves RM and SM intersect at m = 50 per-
cent, or RM(1/2) = SM(1/2). This assumption is
like saying that the lossless embedding capac-
ity for a randomized LSB plane is zero.

We experimentally verified these assumptions
for a large database of images with unprocessed raw
BMPs, JPEGs, and processed BMP images. The two
assumptions make it possible to derive a simple for-
mula for the secret message length p. After rescal-
ing the x axis so that p/2 becomes 0 and 100 − p/2
becomes 1, the x-coordinate of the intersection
point is a root of the following quadratic equation:

2(d1 + d0)x2 + (d−0 − d−1 − d1 − 3d0)x + d0 − d−0 = 0,

where

d0 = RM(p/2) − SM(p/2)
d1 = RM(1 − p/2) − SM(1 − p/2)
d−0 = R−M(p/2) − S−M(p/2)
d−1 = R−M(1 − p/2) − S−M(1 − p/2)

We calculate the message length p from the
root x whose absolute value is smaller by

p = x/(x − 1/2) (4)

Because of space limitations, we omit the
derivation of these equations. Suffice it to say that
the number of R and S groups at p/2 and 1 − p/2
define the straight lines, and in Assumptions 1
and 2 provide enough constraints to uniquely
determine the parabolas and their intersections. 

Accuracy
We can use Equation 4 to estimate the size of

the secret message embedded in the stego-image.
The initial bias, the noise level of the cover image,
and the placement of message bits in the image
are the three main factors that influence the accu-
racy of the estimated message length. 

Initial bias. Even original cover images may
indicate a small nonzero message length due to

random variations. This initial nonzero bias could
be both positive and negative and puts a limit on
the theoretical accuracy of our steganalytic
method. We tested this initial bias for a large data-
base of 331 grayscale JPEG images and obtained a
Gaussian distribution with a standard deviation
of 0.5 percent (see Figure 2). Smaller images tend
to have higher variation in the initial bias because
of the smaller number of R and S groups. Scans of
half-toned images and noisy images exhibit larg-
er variations in the bias as well. On the other
hand, the bias is typically low for JPEG images,
uncompressed images obtained by a digital cam-
era, and high resolution scans. As another rule of
thumb, color images exhibit larger variation in
the initial bias than grayscales.

If we can estimate the initial message length
ml0 (the bias), we can use the following formula to
correct the detected message length mldet:

(5)

Noise. For noisy images, the difference
between the number of regular and singular pix-
els in the cover image is small. Consequently, the
lines in the RS diagram intersect at a small angle
and the accuracy of the RS Steganalysis decreases. 

Message placement. The RS Steganalysis is more
accurate for messages that are randomly scattered
in the stego-image than for messages concentrated
in a localized area of the image. To address this
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issue, we can apply the same algorithm to a sliding
rectangular region of the image. For sequentially
embedded messages, the method described in
Fridrich et al.5 is also a good alternative.

Experimental results
In our first test, we used the Kodak DC260 dig-

ital camera and converted a color 1536 × 1024
image to grayscale and downsampled to 384 × 256
pixels (Figure 3). We created a series of stego-
images from the original image by randomizing
the LSBs of 0 to 100 percent pixels in 5 percent
increments. Using our method, we detected the
number of pixels with flipped LSBs in each stego-
image (for groups of of 2 × 2 pixels with the mask

[1 0; 0 1]). We plotted the result in Figure 4, which
is typical for images with an initial bias close to
zero. As the chart shows, the error between the
actual and estimated percentage of flipped pixels
is almost always smaller than 1 percent.

The RS Steganalysis is applicable to most com-
mercial steganographic software products (to see
some of the steganography software available for
Windows, you might want to check out http://
members.tripod.com/steganography/stego/
software.html). Examples of vulnerable programs
include Steganos, Windstorm, S-Tools, and
Hide4PGP. WbStego and Encrypt Pic incorporate
LSB embedding into sequential pixels, so it’s bet-
ter to use the method described in Westfeld and
Pfitzmann5 to analyze them. We tested the RS ste-
ganalytic method on a small sample of images
processed with these software products with dif-
ferent message sizes. In all cases, it readily distin-
guished stego-images from original cover images
and the estimated message length was within a
few percent of the actual message length. 

StegoDos (public domain software by Black
Wolf) and Hide&Seek (freeware by Allan Latham)
use LSB embedding in indices to palette entries
(for palette images or GIFs). Although testing our
RS steganography for palette images remains a
part of our future work, we believe that similar
concepts are equally applicable to GIFs with ran-
domly scattered messages.

To test the performance of the RS Steganalysis
on images obtained using current steganographic
software, we used a relatively small image (Figure
5) with a short message. The test image was a
scanned color photograph 422 × 296 and the mes-
sage was a random bit sequence with 375 Kbytes or
20 percent of the image full capacity (100 percent
equals 3 bits per pixel). Since the initial bias is
about 2.5 percent in each color channel (see Table
1), as indicated in the first row of Table 2, accord-
ing to Equation 5, the expected detected percent-
age of flipped pixels would be about 12.25 percent.

As another test, we took a 24-bit color photo-
graph (Figure 6) originally stored in the JPEG for-
mat, taken by the Kodak DC260 digital camera
(original resolution 1536 × 1024) cropped to 1024
× 744 pixels, with a short embedded message of
length 5 percent (100 percent equals 3 bits per
pixel). The results in Table 3 demonstrate the
accuracy of the RS Steganalysis. 

Conclusions and future directions
Steganography is a tool for concealing the very

act of communication. In combination with cryp-
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Figure 3. The test image

kyoto.bmp used to test

the RS Steganalysis’

performance. 
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tography, it provides a very secure mode of com-
munication. While privacy is an important aspect
of our lives, steganography can be and has already
been misused. Recently, the USA Today printed an
article, “Terror Groups Hide behind Web
Encryption,” by Jack Kelley (printed 19 June 2001
and updated 5:05 p.m. eastern time). In his arti-
cle, Mr. Kelley writes: 

…U.S. officials and experts say [steganogra-
phy] is the latest method of communication
being used by Osama bin Laden and his asso-
ciates to outfox law enforcement…”All the
Islamists and terrorist groups are now using
the Internet to spread their messages,” says
Reuven Paz, academic director of the Institute
for Counter-Terrorism, an independent Israeli
think tank… The Internet has proven to be a
boon for terrorists.

(A full version of this article can be found at
http://www.usatoday.com/life/cyber/tech/2001-
02-05-binladen.htm.)

The importance of techniques that can reliably
detect the presence of secret messages in images is
increasing. Images can hide a large amount of
malicious code that could be activated by a small
Trojan horse type of virus. Indeed, we believe that
detection of hidden information in images should
be a part of every virus-detection software. Because
most software packages currently available employ
a form of LSB embedding information, we believe
that the new RS Steganalysis is an important con-
tribution that will find numerous applications for
law enforcement and industry in general.

The experimental results obtained by RS
Steganalysis also provide a new estimate on the
safe size of secret messages embedded using LSB
embedding. For high quality images from scan-
ners and digital cameras, we estimate that mes-
sages requiring less than 0.005 bits per pixel are
undetectable using RS Steganalysis. Higher bit
rates are in the range of detectability using RS
Steganalysis. 

We’re focusing our future research on applying
RS Steganalysis for palette images. We’re also
studying the possibility of estimating the initial
bias from stego-images to improve the sensitivity
of the RS detection method to short messages in
digital images. MM
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Figure 5. The test image siesta.bmp used to test the RS

Steganalysis’ performance.

Table 2. Initial bias and estimated number of pixels with

flipped LSBs for the test image in Figure 5. The actual numbers

that should be detected in an ideal case (zero bias assumption)

are in parenthesis.

Image Red (%) Green (%) Blue (%)
Cover image 2.5 (0.0) 2.4 (0.0) 2.6 (0.0)

Steganos 10.6 (9.8) 13.3 (9.9) 12.4 (9.8)

S-Tools 13.4 (10.2) 11.4 (10.2) 10.3 (10.2)

Hide4PGP 12.9 (10.0) 13.8 (10.1) 13.0 (10.0)

Figure 6. The test image

cat.bmp image used to

test the RS Steganalysis’

performance.

Table 3. Initial bias and estimated number of pixels with flipped LSBs for the

test image in Figure 6. The actual numbers that should be detected in an

ideal case (zero bias assumption) are in parenthesis.

Image Red ( %) Green ( %) Blue ( %)
Cover image 0.00 (0.00) 0.17 (0.00) 0.33 (0.00)

Steganos 2.41 (2.44) 2.70 (2.46) 2.78 (2.49)

S-Tools 2.45 (2.45) 2.62 (2.43) 2.75 (2.44)

Hide4PGP 2.44 (2.46) 2.62 (2.46) 2.85 (2.45)
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For further information on this or any other computing

topic, please visit our Digital Library at http://computer.

org/publications/dlib.


