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Steganalysis by Subtractive Pixel Adjacency Matrix
Tomáš Pevný, Patrick Bas, and Jessica Fridrich, Member, IEEE

Abstract—This paper presents a method for detection of stegano-
graphic methods that embed in the spatial domain by adding a
low-amplitude independent stego signal, an example of which is
least significant bit (LSB) matching. First, arguments are provided
for modeling the differences between adjacent pixels using first-
order and second-order Markov chains. Subsets of sample transi-
tion probability matrices are then used as features for a stegana-
lyzer implemented by support vector machines. The major part
of experiments, performed on four diverse image databases, fo-
cuses on evaluation of detection of LSB matching. The comparison
to prior art reveals that the presented feature set offers superior
accuracy in detecting LSB matching. Even though the feature set
was developed specifically for spatial domain steganalysis, by con-
structing steganalyzers for ten algorithms for JPEG images, it is
demonstrated that the features detect steganography in the trans-
form domain as well.

Index Terms—Communication security, steganalysis, steganog-
raphy.

I. INTRODUCTION

A LARGE number of practical steganographic algorithms
performs embedding by applying a mutually independent

embedding operation to all or selected elements of the cover [8].
The effect of embedding is equivalent to adding to the cover an
independent noise-like signal called the stego noise. A popular
method falling under this paradigm is the least significant bit
(LSB) replacement, in which LSBs of individual cover elements
are replaced with message bits. In this case, the stego noise de-
pends on cover elements and the embedding operation is LSB
flipping, which is asymmetrical. It is exactly this asymmetry
that makes LSB replacement easily detectable [16], [18], [19]. A
trivial modification of LSB replacement is LSB matching (also
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called 1 embedding), which randomly increases or decreases
pixel values by one to match the LSBs with the communicated
message bits. Although both steganographic schemes are very
similar in that the cover elements are changed by at most one and
the message is read from LSBs, LSB matching is much harder
to detect. Moreover, while the accuracy of LSB replacement
steganalyzers is only moderately sensitive to the cover source,
most current detectors of LSB matching exhibit performances
that vary significantly across different cover sources [4], [20].

One of the first heuristic detectors of embedding by noise
adding used the center of gravity of the histogram character-
istic function (HCF) [11], [17], [26]. A rather different heuristic
approach was taken in [36], where the quantitative steganalyzer
of LSB matching was based on maximum likelihood estima-
tion of the change rate. Alternative methods used features ex-
tracted as moments of noise residuals in the wavelet domain
[10], [13] and statistics of amplitudes of local extrema in the
graylevel histogram [5] (further called the ALE detector). A
recently published experimental comparison of these detectors
[4], [20] shows that the wavelet absolute moments (WAM) ste-
ganalyzer [10] is the most accurate and versatile, offering an
overall good performance on diverse images.

The heuristic behind embedding by noise adding is based on
the fact that during image acquisition many noise sources are
superimposed on the acquired image, such as the shot noise,
readout noise, amplifier noise, etc. In the literature on digital
imaging sensors, these combined noise sources are usually mod-
eled as an iid signal largely independent of the content. While
this is true for the raw sensor output, subsequent in-camera pro-
cessing, such as color interpolation, denoising, color correction,
and filtering, introduces complex dependences into the noise
component of neighboring pixels. These dependences are vio-
lated by steganographic embedding where the stego noise is an
iid sequence independent of the cover image, thus opening the
door to possible attacks. Indeed, most steganalysis methods in
one way or another try to use these dependences to detect the
presence of the stego noise.

The steganalysis method described in this paper exploits the
independence of the stego noise as well. By modeling the dif-
ferences between adjacent pixels in natural images, the method
identifies deviations from this model and postulates that such de-
viations are due to steganographic embedding. The steganalyzer
is constructed as follows. A filter suppressing the image con-
tent and exposing the stego noise is applied. Dependences be-
tween neighboring pixels of the filtered image (noise residuals)
are modeled as a higher order Markov chain. The sample transi-
tion probability matrix is then used as a vector feature for a fea-
ture-based steganalyzer implemented using machine learning
algorithms.

The idea to model differences between pixels by Markov
chains was proposed for the first time in [37]. In [41], it was
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used to attack embedding schemes based on spread spectrum
and quantization index modulation and LSB replacement al-
gorithms. The same technique was used in [34] to model de-
pendences between discrete cosine transformation (DCT) coef-
ficients to attack JPEG steganographic algorithms. The major
contributions of our work are the use of higher order Markov
chains, exploiting of symmetry in natural images to reduce the
dimensionality of the extracted features, proper justification of
the model, and exhaustive evaluation of the method. Although
the presented steganalytic method is developed and verified for
grayscale images, it can be easily extended to color images by
creating a specialized classifier for each color plane and fusing
their outputs by means of ensemble methods.

This paper expands on our previously published work on this
topic [28]. The novel additions include experimental evalua-
tion of the proposed steganalytic method on algorithms hiding
in the transformed (DCT) domain, comparison of intradatabase
and interdatabase errors, steganalysis of YASS [33], [35], and a
more thorough theoretical explanation of the benefits of using
the pixel-difference model of natural images.

This paper is organized as follows. Section II starts with a
description of the filter used to suppress the image content and
expose the stego noise. It continues with the calculation of the
features as the sample transition probability matrix of a higher
order Markov model of the filtered image. Section III briefly
describes the rest of the steganalyzer construction, which is the
training of a support vector machine (SVM) classifier. The sub-
sequent Section IV presents the major part of experiments con-
sisting of 1) comparison of several versions of the feature set dif-
fering in the range of modeled differences and the degree of the
Markov model, 2) estimation of intradatabase and interdatabase
errors on four diverse image databases, and 3) comparison to
prior art. In Section V, it is shown that the presented feature set is
also useful for detecting steganography in block-transform DCT
domain (JPEG images). The paper is concluded in Section VI.

II. SUBTRACTIVE PIXEL ADJACENCY MATRIX

A. Rationale

In principle, higher order dependences between pixels in nat-
ural images can be modeled by histograms of pairs, triples, or
larger groups of neighboring pixels. However, these histograms
possess several unfavorable aspects that make them difficult to
be used directly as features for steganalysis.

1) The number of bins in the histograms grows exponentially
with the number of pixels. The curse of dimensionality may
be encountered even for the histogram of pixel pairs in an
8-bit grayscale image bins .

2) The estimates of some bins may be noisy because they have
a very low probability of occurrence, such as completely
black and completely white pixels next to each other.

3) It is rather difficult to find a statistical model for pixel
groups because their statistics are influenced by the image
content. By working with the noise component of images,
which contains the most energy of the stego noise signal,

Fig. 1. Distribution of two horizontally adjacent pixels �� � � � in
8-bit grayscale images estimated from approximately 10 700 images from the
BOWS2 database (see Section IV for more details about the database). The
degree of gray at ��� �� is the probability ���� � � � � � �� at the
logarithmic scale.

we increase the signal-to-noise ratio (SNR) and, at the
same time, obtain a tighter model.1

The second point indicates that a good model should capture
those characteristics of images that can be robustly estimated.
The third point indicates that some preprocessing, such as de-
noising or calibration, should be applied to increase the SNR.
An example of this step is working with a noise residual as for
WAM [10]. Representing a grayscale image with a matrix

Fig. 1 shows the probability of occurrence of
two horizontally adjacent pixels estimated from
approximately 10 700 8-bit grayscale images from the BOWS2
database. Due to high spatial correlation in natural images, the
colors of neighboring pixels are similar, a fact that shapes the
probability distribution into a ridge that follows the major diag-
onal. A close inspection of Fig. 1 suggests that the profile of the
ridge along the major diagonal does not change much with the
pixel value. This observation is confirmed in Fig. 2 showing the
ridge profile at three locations . The fact
that the profile shape is approximately constant (it starts devi-
ating only for high intensity pixels ) suggests that the
pixel difference is approximately independent of

. We quantified this statement by evaluating the mutual in-
formation from a corpus of 10 700 grayscale
images from the BOWS2 database. Because

1Here, “signal” is the stego noise and “noise” is the image content.
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Fig. 2. Probability ���� � � �� � (horizontal cuts of the graph shown
in Fig. 1) for � � ��, � � �	
, and � � ��� in 8-bit grayscale images
estimated from approximately 10 700 images from the BOWS2 database (see
Section IV for more details about the database).

the mutual information can be estimated by evaluating the two
entropy terms from their corresponding definitions

yielding to . Thus, knowing
, the entropy of the difference decreases only by

, which shows that any dependence between
the pixel differences and pixel values is fairly
small.2

The arguments above allow us to model the pixels in natural
images by working with the differences instead
of the co-occurrences , which greatly reduces the
model dimensionality from 65 536 to 511 in an 8-bit grayscale
image. It is, however, still impossible to model the differences
using a Markov chain as the transition probability matrix would
have elements. Further simplification and reduction can
be achieved by realizing that, for the purpose of blind steganal-
ysis, the statistical quantities estimated from pixels have to be
estimable even from small images. Hence, only pixel pairs close
to the ridge, alternatively, with pairs with a small difference

, are relevant for steganalysis. This ap-
proach was already pursued in [37], where probabilities of se-
lected pixel pairs were used as steganalytic features.

B. The SPAM Features

We now explain the subtractive pixel adjacency model
(SPAM) that will be used to compute the features for steganal-
ysis. The reference implementation is available for download
on http://dde.binghamton.edu/download/spam/. First, the tran-
sition probabilities along eight directions are computed.3 The
differences and the transition probability are always computed
along the same direction. We explain further calculations only
on the horizontal direction as the other directions are obtained

2Following a similar reasoning, Huang [15] estimated the mutual information
between � � � and � � � to 0.0255.

3There are four axes: horizontal, vertical, major and major diagonal, and two
directions along each axis, which leads to eight directions in total.

in a similar manner. All direction-specific quantities will be
denoted by a superscript showing
the direction of the calculation.

The calculation of features starts by computing the difference
array . For a horizontal direction left-to-right

where , .
As introduced in Section II-A, the first-order SPAM features

model the difference arrays by a first-order Markov
process. For the horizontal direction, this leads to

where . If , then
.

The second-order SPAM features model the difference
arrays by a second-order Markov process. Again, for the hor-
izontal direction

where . If
, then

.
To decrease the feature dimensionality, we make a plausible

assumption that the statistics in natural images are symmetric
with respect to mirroring and flipping (the effect of portrait/land-
scape orientation is negligible). Thus, we separately average the
horizontal and vertical matrices and then the diagonal matrices
to form the final feature sets , . With a slight abuse of
notation, this can be formally written

(1)

where for the first-order features and
for the second-order features. In experiments described in

Section IV, we used and for the first-order fea-
tures, obtaining thus , features, and
for the second-order features, leading to features (cf.,
Table I).

Fig. 3 summarizes the extraction process of SPAM features.
The features are formed by the average sample Markov tran-
sition probability matrices (1) in the range . The com-
plexity of the model is determined by the order of the Markov
model and by the range of differences .

The calculation of the difference array can be interpreted as
high-pass filtering with the kernel , which is, in fact,
the simplest edge detector. The filtering suppresses the image
content and exposes the stego noise, which results in a higher
SNR. The idea of using filtering to enhance SNR in steganal-
ysis has been already used, for example, in the WAM features
calculating moments from noise residual in the wavelet domain
and it implicitly appeared in the construction of Farid’s features
[6] and in [40]. The filtering can also be seen as a different form
of calibration [7]. From this point of view, it would make sense
to use more sophisticated filters with a better SNR. Interestingly,
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Fig. 3. Schema of extraction of SPAM features.

TABLE I
DIMENSION OF MODELS USED IN OUR EXPERIMENTS. THE COLUMN “ORDER”

SHOWS THE ORDER OF THE MARKOV CHAIN AND � IS THE RANGE OF

DIFFERENCES

none of the filters we tested4 provided consistently better perfor-
mance. This is likely due to the fact that the averaging caused
by more sophisticated filters distorts the statistics of the stego
noise, which results in worse detection accuracy. The
filter is also a projection of the pixel values co-occurrence ma-
trix on one of the independent directions—the anti-diagonal.

III. EVALUATION PROCEDURE

The construction of steganalyzers based on SPAM fea-
tures relies on pattern-recognition classifiers. All ste-
ganalyzers presented in this paper were constructed by
using soft-margin SVMs [38] with the Gaussian kernel

, . Since the construction
and subsequent evaluation of steganalyzers always followed
the same procedure, the procedure is described here to avoid
tedious repetition later.

Let us assume that the set of stego images available for the
experiment was created from some set of cover images and that
both sets of images are available for the experiment. Prior to all
experiments, the images are divided into a training and testing
set of equal size, so that the cover image and the corresponding
stego image are either in the training or in the testing set. In
this way, it is ensured that images in the testing set used to esti-
mate the error of steganalyzers were not used in any form during
training.

Before training the soft-margin SVM on the training set, the
values of the penalization parameter and the kernel parameter

need to be set. These hyper-parameters balance the complexity
and accuracy of the classifier. The hyper-parameter penal-
izes the error on the training set. Higher values of produce
classifiers more accurate on the training set but also more com-
plex with a possibly worse generalization.5 On the other hand, a
smaller value of produces simpler classifiers with worse accu-
racy on the training set but hopefully with better generalization.

4We experimented with the adaptive Wiener filter with 3� 3 neigh-
borhood, the wavelet filter [27] used in WAM, and discrete filters,

� �� �

�� �� ��

� �� �

� ����������, and ����������������.

5The ability of classifiers to generalize is described by the error on samples
unknown during the training phase of the classifier.

The role of the kernel parameter is similar to . Higher values
of make the classifier more pliable but likely prone to over-fit-
ting the data, while lower values of have the opposite effect.

The values of and should be chosen to give the classi-
fier the ability to generalize. The standard approach is to esti-
mate the error on unknown samples using cross-validation on
the training set on a fixed grid of values and then select the value
corresponding to the lowest error (see [14] for details). In this
paper, we used five-fold cross-validation with the multiplicative
grid

where is of number of features in the subset.
The steganalyzer performance is always evaluated on the

testing set using the minimal average decision error under equal
probability of cover and stego images

(2)

where and stand for the probability of false alarm
or false positive (detecting cover as stego) and probability of
missed detection (false negative).

IV. DETECTION OF LSB MATCHING

To evaluate the performance of the proposed feature sets, we
subjected them to extensive tests on a well-known archetype
of embedding by noise adding—the LSB matching. First,
we constructed and compared steganalyzers using first-order
Markov chain features with differences in the range
and (further called first-order SPAM features) and
second-order Markov chain features with differences in the
range (further called second-order SPAM features) on
four different image databases. Then, we compared the SPAM
steganalyzers to prior art, namely to detectors based on WAM
[10] and ALE [5] features. We also investigated the problem
of training the steganalyzer on images coming from a different
database than images in the testing set (interdatabase error).

1) Image Databases: It is a well-known fact that the ac-
curacy of steganalysis may vary significantly across different
cover sources. In particular, images with a large noise compo-
nent, such as scans of photographs, are much more challenging
for steganalysis than images with a low noise component or fil-
tered images (JPEG compressed). In order to assess the SPAM
models and compare them to prior art under different conditions,
we measured their accuracy on the following four databases.

a) CAMERA contains approximately 9200 images with
sizes in the range between 1 and 6 Mpix captured by
23 different digital cameras in the raw format and con-
verted to grayscale.
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TABLE II
MINIMAL AVERAGE DECISION ERROR (2) OF STEGANALYZERS IMPLEMENTED

USING SVMs WITH GAUSSIAN KERNELS ON IMAGES FROM THE TESTING SET.
THE LOWEST ERROR FOR A GIVEN DATABASE AND MESSAGE LENGTH IS IN

BOLDFACE. THE LSB MATCHING DID NOT USE ANY MATRIX EMBEDDING

b) BOWS2 contains approximately 10 700 grayscale images
with fixed size 512 512 coming from rescaled and
cropped natural images of various sizes. This database
was used during the BOWS2 contest [3].

c) NRCS consists of 1576 raw scans of film converted to
grayscale with fixed size 2100 1500 [1].

d) JPEG85 contains 9200 images from CAMERA com-
pressed by JPEG with quality factor 85.

e) JOINT contains images from all four databases above,
approximately 30 800 images.

In each database, two sets of stego images were created with
payloads 0.5 bits per pixel (bpp) and 0.25 bpp. According to the
recent evaluation of steganalytic methods of LSB matching [4],
these two embedding rates are already difficult to detect reliably.
These two embedding rates were also used in [10].

A. Order of Markov Chains

This paragraph compares the accuracy of steganalyzers cre-
ated as described in Section III employing the first-order SPAM
features with and , and second-order SPAM fea-
tures with . The reported errors (2), measured on images
from the testing set, are intradatabase errors, which means that
the images in the training and testing set came from the same
database.

The results, summarized in Table II, show that steganalyzers
employing the second-order SPAM features that model the pixel
differences in the range are always the best. First, no-
tice that increasing the model scope by enlarging does not re-
sult in better accuracy as first-order SPAM features with
produce more accurate steganalyzers than first-order SPAM fea-
tures with . We believe that this phenomenon is due
to the curse of the dimensionality, since first-order SPAM fea-
tures with have dimension 162, while first-order SPAM
features with have dimension 578. The contribution to
the classification of additional features far from the center of
the ridge is probably not very large and it is outweighted by
the increased number of features. It is also possible that the
added features are simply not informative and deceptive. On
the other hand, increasing the order of the Markov chain (using
second-order SPAM features) proved to be highly beneficial as
the accuracy of the resulting steganalyzers has significantly in-
creased, despite having the highest dimension.

In the rest of this paragraph, we discuss the time needed to
train the SVM classifier and to perform the classification. In

TABLE III
TIME IN HH:MM:SS TO PERFORM THE GRID-SEARCH TO FIND SUITABLE

PARAMETERS FOR TRAINING OF SVM CLASSIFIERS

TABLE IV
TIME IN MM:SS TO TRAIN THE SVM CLASSIFIER AND TO CLASSIFY ALL

SAMPLES FROM THE RELEVANT DATABASE (ALL EXAMPLES FROM THE

TRAINING AND TESTING SET)

theory, the complexity of training an SVM classifier grows with
the cube of the number of training samples and linearly with
the number of features. On the other hand, state-of-the-art al-
gorithms train SVMs using heuristics to considerably speed up
the training. In our experiments, we have observed that the ac-
tual time to train an SVM greatly depends on the complexity
of the classification problem. SVMs solving an easily separable
problem require a small number of support vectors and are thus
trained quickly, while training an SVM for highly overlapping
features requires a large number of support vectors and is thus
very time consuming. The same holds for the classification,
whose complexity grows linearly with the number of support
vectors and the number of features.

Tables III and IV show the actual times6 to perform grid-
search, and to train and evaluate accuracy of the classifiers. We
can observe a linear dependency on the number of features—the
running time of steganalyzers using the first-order SPAM fea-
tures is approximately two times shorter than the rest. A similar
linear dependence is observed for the number of training sam-
ples. (Note that the times for the smaller NRCS database are
shorter than for the rest.)

B. Interdatabase Error

It is well known that steganalysis in the spatial domain is very
sensitive to the type of cover images. This phenomenon can
be observed in the results presented in the previous section as
steganalysis is more accurate on less noisy images (previously
JPEG compressed images) than on very noisy images (scanned
images from the NRCS database). We can expect this problem
to be more pronounced if the images in the training and testing

6All experiments were performed on one core of AMD opteron 2.2 GHz with
2 Gb of ram per core.
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TABLE V
INTERDATABASE ERROR� OF STEGANALYZERS EMPLOYING SECOND-ORDER

SPAM FEATURES WITH � � �. THE CAPTION OF COLUMNS DENOTES

THE SOURCE OF TEST IMAGES. THE ROWS CAPTIONED “DISJOINT”
SHOW THE ERROR OF STEGANALYZERS ESTIMATED ON IMAGES FROM

THE DATABASE NOT USED TO CREATE THE TRAINING SET (EIGHT

STEGANALYZERS IN TOTAL). THE ROWS CAPTIONED “JOINT” SHOW

THE ERROR OF STEGANALYZERS TRAINED ON IMAGES FROM ALL FOUR

DATABASES (TWO STEGANALYZERS IN TOTAL)

sets come from different databases (interdatabase error). The in-
terdatabase error reflects more closely the performance of the
steganalyzer in real life because the adversary rarely has infor-
mation about the cover source. This problem was already inves-
tigated in [4] using the WAM and ALE features and the HCF
detector.

In our experiments, we used images from CAMERA,
BOWS2, JPEG85, and NRCS. These image sources are very
different: NRCS images are very noisy, while JPEG85 images
are smoothed by the lossy compression. BOWS2 images are
small with a fixed size, while images in CAMERA are large
and of varying dimensions.

The training set of steganalyzers consists of 5000 cover and
5000 stego images randomly selected from three databases. The
accuracy was evaluated on images from the remaining fourth
database, which was not used during training. For testing pur-
poses, we did not use all images from the fourth database, but
only images reserved for testing as in the previous two sections
to allow fair comparison with the results presented in Table II.
All steganalyzers used second-order SPAM features with
and were created as described in Section III. The error is shown
in rows denoted as “Disjoint” in Table V.

The error rates of all eight steganalyzers are summarized
in Table V in rows captioned “Disjoint.” Comparing the in-
terdatabase errors to the intradatabase errors in Table II, we
observe a significant drop in accuracy. This drop is expected
because of the mismatch between the sources for testing and
training as explained above.

If the adversary does not know anything about the cover
source, her best strategy is to train the steganalyzer on as diverse
image database as possible. To investigate if it is possible to
create a steganalyzer based on the SPAM features capable of
reliably classifying images from various sources, we created
two steganalyzers targeted to a fixed message length trained on
5000 cover and 5000 stego images randomly selected from the
training portions of all four databases. The errors are shown in
Table V in rows captioned by “Joint.” Comparing their errors
to the interdatabase errors, we observe a significant increase
in accuracy, which means that it is possible to create a single
steganalyzer with SPAM features capable of handling diverse
images simultaneously. Moreover, the errors are by 0.04 higher
than the errors of steganalyzers targeted to a given database

TABLE VI
ERROR (2) OF STEGANALYZERS FOR LSB MATCHING WITH MESSAGE LENGTH

0.25 AND 0.5 BPP. STEGANALYZERS WERE IMPLEMENTED AS SVMs WITH

GAUSSIAN KERNEL. THE LOWEST ERROR FOR A GIVEN DATABASE AND

MESSAGE LENGTH IS IN BOLDFACE

(see Table II), which tells us that this approach to universal
steganalysis has a great promise.

An alternative approach to constructing a steganalyzer that
is less sensitive to the cover image type is to train a bank of
classifiers for several cover types and equip this bank with a
forensic preclassifier that would attempt to recognize the cover
image type and then send the image to the appropriate classifier.
This approach is not pursued in this paper and is left as a possible
future effort.

C. Comparison to Prior Art

Table VI shows the classification error (2) of the stegana-
lyzers using the second-order SPAM features (686 features),
WAM [10] (contrary to the original features, we calculate mo-
ments from three decomposition levels yielding to 81 features),
and ALE [5] (10 features) on all four databases for two relative
payloads. We have created a special steganalyzer for each com-
bination of database, features, and payload (total
steganalyzers). The steganalyzers were implemented by SVMs
with a Gaussian kernel as described in Section III.

In all cases, the steganalyzers employing the second-order
SPAM features perform the best, the WAM steganalyzers are
second with about three times higher error, and ALE stegana-
lyzers are the worst. Fig. 4 compares the steganalyzers in se-
lected cases using the receiver operating characteristic (ROC)
curve, plotted by varying the threshold of trained SVMs with a
Gaussian kernel. The dominant performance of SPAM stegana-
lyzers is quite apparent.

V. STEGANALYSIS OF JPEG IMAGES

Although the SPAM features were primarily developed for
blind steganalysis in the spatial domain, it is worth investigating
their potential to detect steganographic algorithms hiding in
transform domains, such as the block DCT domain of JPEG.
The next paragraph compares the accuracy of SPAM-based
steganalyzers to steganalyzers employing the Merged features
[29], which represent the state-of-the-art for steganalysis of
JPEG images today. We do so on ten different steganographic
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Fig. 4. ROC curves of steganalyzers using second-order SPAM, WAM, and ALE features calculated on CAMERA and JOINT databases.

algorithms. Interestingly enough, the SPAM features are not
always inferior to the Merged features despite the fact that
the Merged features were developed specifically to detect
modifications to JPEG coefficients.

We note that the SPAM features were computed in the spatial
domain from the decompressed JPEG image.

A. Steganography Modifying DCT Coefficients

The database used for the comparison contained approx-
imately 6000 single-compressed JPEG images with quality
factor 70 and sizes ranging from 1.5 to 6 Mpix, embedded by
the following ten popular steganographic algorithms for JPEG
images: F5 [39], F5 with shrinkage removed by wet paper codes
[24] (nsF5), model-based steganography without deblocking
(MB1) [32], JP Hide&Seek [2], MMx [21], Steghide [12],
and perturbed quantization [9] (PQ) and its variants PQe and
PQt [24] with payloads 5%, 10%, 15%, and 20% of bits per
nonzero AC coefficient (bpac). The total number of images in
the database was . The quality factor
of JPEG images was fixed because steganalyzers employing
Merged features, which are used as a reference, are sensitive to
the mismatch between quality factors of the training and testing
images. In fact, as reported in [30], JPEG images should be
steganalyzed by classifiers separately designed for each quality
factor.

For each steganographic algorithm and payload, a stegan-
alyzer embodied by an SVM with a Gaussian kernel (total
number of steganalyzers was ) was created
using the procedure described in Section III. For ease of com-
parison, the error rates of steganalyzers estimated from
the testing set are displayed in Fig. 5. Generally, the accuracy
of steganalyzers using the SPAM features is inferior to stegan-
alyzers that use the Merged features, but still their performance
is far from random guessing except for small payloads of 5%
and the PQe algorithm. Surprisingly, for small payloads of
5% and 10%, the SPAM features are better in detecting JP
Hide&Seek and the variation of perturbed quantization PQt.

B. Detecting YASS

YASS steganography for JPEG images published in [35] and
further improved in [33] was developed to evade calibration-
based steganalysis. Indeed, the accuracy of steganalysis with
Merged features, where the calibration plays the central role, is
very poor. Kodovský et al. [22] showed that YASS is more de-
tectable using an uncalibrated version of Merged features. Since
YASS significantly distorts the image due to repeated JPEG
compression and robust embedding, it makes sense to use SPAM
features to detect this distortion.

Although it would be valuable to compare the error rates of
detection of YASS on the same payloads as in the previous sub-
section, the implementation of the algorithm (kindly provided
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Fig. 5. Error rates � of steganalyzers employing the second-order SPAM features with � � � and the Merged features.

by authors of [33]) does not allow setting an exact payload or
hide a particular message. The implementation always hides
the maximum embeddable message whose length significantly
varies with image content and is also a function of the hiding
block size, the hiding and the advertising quality factors, and the
error correction phase. The embedding rates shown in Table VII
are average payloads over the corpus of the images. This is why
we have estimated the detectability of five different YASS set-
tings (see Appendix A for the settings) on 6500 JPEG images
using the second-order SPAM features with , calibrated,
and uncalibrated Merged features. Since the implementation of
YASS is rather slow, we resized all images in the database so
that their smaller side was 512 pixels. Note that this is exactly
the same database that was used in [23].

As in all previous sections, we divided all images evenly into
the training and testing set and created 3 5 SVM-based ste-
ganalyzers following the methodology described in Section III.
The errors are summarized in Table VII. We can see that
steganalyzers based on the second-order SPAM features are su-

TABLE VII
ERRORS � OF STEGANALYZERS EMPLOYING THE CALIBRATED MERGED

(CAL. MERGED), NONCALIBRATED MERGED (NON-CAL. MERGED), AND THE

SECOND-ORDER SPAM FEATURES ON YASS STEGANOGRAPHY. THE ERRORS

ARE CALCULATED ON THE TESTING SET

perior to steganalyzers based on the Merged feature set and its
uncalibrated version. The important aspect of the presented at-
tack is that it is blind in the sense that it is not based on any
implementation shortcoming of the specific implementation of
YASS, unlike the targeted attack reported in [25].

VI. CONCLUSION

A majority of steganographic methods can be interpreted
as adding independent realizations of stego noise to the cover
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TABLE VIII
SETTINGS FOR YASS AS TESTED IN THE PAPER

digital media object. This paper presents a novel approach
to steganalysis of such embedding methods by utilizing the
fact that the noise component of typical digital media exhibits
short-range dependences while the stego noise is an indepen-
dent random component typically not found in digital media.
The local dependences between differences of neighboring
cover elements are modeled as a Markov chain, whose empir-
ical probability transition matrix is taken as a feature vector for
steganalysis.

The accuracy of the presented feature sets was carefully ex-
amined by using four different databases of images. The inter-
database and intradatabase errors were estimated and the feature
set was compared to prior art. It was also shown that even though
the presented feature set was developed primarily to attack spa-
tial domain steganography, it reliably detects algorithms hiding
in the block DCT domain as well.

In the future, we would like to investigate the accuracy of re-
gression-based quantitative steganalyzers [31] of LSB matching
with second-order SPAM features. We also plan to investigate
third-order Markov chain features, where the major challenge
would be dealing with high feature dimensionality.

APPENDIX

We use five different configurations for YASS, including both
the original version of the algorithm published in [35] as well
as its modifications [33]. Using the same notation as in the
corresponding original publications, is the hiding quality
factor(s) and is the big block size. Settings 1, 4, and 5 incor-
porate a mixture-based modification of YASS embedding with
several different values of based on block variances (the
decision boundaries are in the column “DBs”). Setting 3 uses
attack-aware iterative embedding (column rep). Since the imple-
mentation of YASS we used in our tests did not allow direct con-
trol over the real payload size, we were repetitively embedding
in order to find minimal payload that would be reconstructed
without errors. Payload values obtained this way are listed in
Table VIII in terms of bits per nonzero AC DCT coefficient
(bpac), averaged over all images in our database. In all experi-
ments, the advertising quality factor was fixed at and
the input images were in the raw (uncompressed) format. With
these choices, YASS appears to be the least detectable [22].
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