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This introduces a great deal of redundancy and interdependence into the  message 

blocks that are compressed, which complicates the task of finding a different 

 message block that maps to the same compression function output. Figure 11.13 

summarizes the SHA-512 logic.

The SHA-512 algorithm has the property that every bit of the hash code is a 

function of every bit of the input. The complex repetition of the basic function F 

produces results that are well mixed; that is, it is unlikely that two messages cho-

sen at random, even if they exhibit similar regularities, will have the same hash 

code. Unless there is some hidden weakness in SHA-512, which has not so far been 

published, the difficulty of coming up with two messages having the same message 

 digest is on the order of 2256 operations, while the difficulty of finding a message 

with a given digest is on the order of 2512 operations.

Example

We include here an example based on one in FIPS 180. We wish to hash a  one-block 

message consisting of three ASCII characters: “abc,” which is equivalent to the 

 following 24-bit binary string:

01100001 01100010 01100011

Recall from step 1 of the SHA algorithm, that the message is padded to a 

length congruent to 896 modulo 1024. In this case of a single block, the padding 

consists of 896 - 24 = 872 bits, consisting of a “1” bit followed by 871 “0” bits. 

Then a 128-bit length value is appended to the message, which contains the length 

of the original message in bits (before the padding). The original length is 24 bits, 

or a hexadecimal value of 18. Putting this all together, the 1024-bit message block, 

in hexadecimal, is

6162638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

This block is assigned to the words W0, . .  .  , W15 of the message schedule, 

which appears as follows.

 

W0 = 6162638000000000 W8 = 0000000000000000

W1 = 0000000000000000 W9 = 0000000000000000

W2 = 0000000000000000 W10 = 0000000000000000

W3 = 0000000000000000 W11 = 0000000000000000

W4 = 0000000000000000 W12 = 0000000000000000

W5 = 0000000000000000 W13 = 0000000000000000

W6 = 0000000000000000 W14 = 0000000000000000

W7 = 0000000000000000 W15 = 0000000000000018
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The padded message consists blocks M1, M2, c , MN. Each message 

block Mi consists of 16 64-bit words Mi,0, Mi,1, c , Mi,15. All addition 

is performed modulo 264.

H0,0 = 6A09E667F3BCC908 H0,4 = 510E527FADE682D1

H0,1 = BB67AE8584CAA73B H0,5 = 9B05688C2B3E6C1F

H0,2 = 3C6EF372FE94F82B H0,6 = 1F83D9ABFB41BD6B

H0,3 = A54FF53A5F1D36F1 H0,7 = 5BE0CD19137E2179

for i = 1 to N

1. Prepare the message schedule W
 for t = 0 to 15

 Wt = Mi,t
 for t = 16 to 79

 Wt = s1
512(Wt-2) + Wt-7 + s0

512(Wt-15) + Wt-16 

2. Initialize the working variables

a = Hi-1, 0 e = Hi-1, 4

b = Hi-1, 1 f = Hi-1, 5

c = Hi-1, 2 g = Hi-1, 6

d = Hi-1, 3 h = Hi-1, 7

 

3. Perform the main hash computation

 for t = 0 to 79

 T1 = h + Ch(e, f, g) + ¢Σ512
1 e≤ + Wt + Kt

 T2 = ¢Σ512
0 a≤ + Maj(a, b, c)

 h = g
 g = f
 f = e
 e = d + T1

 d = c
 c = b
 b = a
 a = T1 + T2 

4. Compute the intermediate hash value

Hi, 0 = a + Hi-1, 0 Hi, 4 = e + Hi-1,4

Hi, 1 = b + Hi-1, 1 Hi, 5 = f + Hi-1, 5

Hi, 2 = c + Hi-1, 2 Hi, 6 = g + Hi-1, 6

Hi, 3 = d + Hi-1, 3 Hi, 7 = h + Hi-1, 7

return {HN, 0 }HN, 1 }HN, 2 }HN, 3 }HN, 4 }HN, 5 }HN, 6 }HN, 7} 

Figure 11.13 SHA-512 Logic
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As indicated in Figure 11.13, the eight 64-bit variables, a through h, are 

 initialized to values H0,0 through H0,7. The following table shows the initial values of 

these variables and their values after each of the first two rounds.

a 6a09e667f3bcc908 f6afceb8bcfcddf5 1320f8c9fb872cc0

b bb67ae8584caa73b 6a09e667f3bcc908 f6afceb8bcfcddf5

c 3c6ef372fe94f82b bb67ae8584caa73b 6a09e667f3bcc908

d a54ff53a5f1d36f1 3c6ef372fe94f82b bb67ae8584caa73b

e 510e527fade682d1 58cb02347ab51f91 c3d4ebfd48650ffa

f 9b05688c2b3e6c1f 510e527fade682d1 58cb02347ab51f91

g 1f83d9abfb41bd6b 9b05688c2b3e6c1f 510e527fade682d1

h 5be0cd19137e2179 1f83d9abfb41bd6b 9b05688c2b3e6c1f

Note that in each of the rounds, six of the variables are copied directly from 

variables from the preceding round.

The process continues through 80 rounds. The output of the final round is

73a54f399fa4b1b2 10d9c4c4295599f6 d67806db8b148677 654ef9abec389ca9
d08446aa79693ed7 9bb4d39778c07f9e 25c96a7768fb2aa3 ceb9fc3691ce8326

The hash value is then calculated as

 H1,0 = 6a09e667f3bcc908 + 73a54f399fa4b1b2 = ddaf35a193617aba
 H1,1 = bb67ae8584caa73b + 10d9c4c4295599f6 = cc417349ae204131
 H1,2 = 3c6ef372fe94f82b + d67806db8b148677 = 12e6fa4e89a97ea2
 H1,3 = a54ff53a5f1d36f1 + 654ef9abec389ca9 = 0a9eeee64b55d39a
 H1,4 = 510e527fade682d1 + d08446aa79693ed7 = 2192992a274fc1a8
 H1,5 = 9b05688c2b3e6c1f + 9bb4d39778c07f9e = 36ba3c23a3feebbd
 H1,6 = 1f83d9abfb41bd6b + 25c96a7768fb2aa3 = 454d4423643ce80e
 H1,7 = 5be0cd19137e2179 + ceb9fc3691ce8326 = 2a9ac94fa54ca49f

The resulting 512-bit message digest is

ddaf35a193617aba cc417349ae204131 12e6fa4e89a97ea2 0a9eeee64b55d39a
2192992a274fc1a8 36ba3c23a3feebbd 454d4423643ce80e 2a9ac94fa54ca49f

Suppose now that we change the input message by one bit, from “abc” to 

“cbc.” Then, the 1024-bit message block is

6362638000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 0000000000000000 0000000000000018

And the resulting 512-bit message digest is

531668966ee79b70 0b8e593261101354 4273f7ef7b31f279 2a7ef68d53f93264
319c165ad96d9187 55e6a204c2607e27 6e05cdf993a64c85 ef9e1e125c0f925f

The number of bit positions that differ between the two hash values is 253, 

almost exactly half the bit positions, indicating that SHA-512 has a good avalanche 

effect.
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 11.6 SHA-3

As of this writing, the Secure Hash Algorithm (SHA-1) has not yet been “broken.” 

That is, no one has demonstrated a technique for producing collisions in a practical 

amount of time. However, because SHA-1 is very similar, in structure and in the 

basic mathematical operations used, to MD5 and SHA-0, both of which have been 

broken, SHA-1 is considered insecure and has been phased out for SHA-2.

SHA-2, particularly the 512-bit version, would appear to provide unassailable 

security. However, SHA-2 shares the same structure and mathematical operations 

as its predecessors, and this is a cause for concern. Because it will take years to find 

a suitable replacement for SHA-2, should it become vulnerable, NIST decided to 

begin the process of developing a new hash standard.

Accordingly, NIST announced in 2007 a competition to produce the next gen-

eration NIST hash function, to be called SHA-3. The winning design for SHA-3 

was announced by NIST in October 2012 and published as FIP 102 in August 2015. 

SHA-3 is a cryptographic hash function that is intended to complement SHA-2 as 

the approved standard for a wide range of applications.

Appendix V looks at the evaluation criteria used by NIST to select from 

among the candidates for AES, plus the rationale for picking Keccak, which was 

the winning candidate. This material is useful in understanding not just the SHA-3 

design but also the criteria by which to judge any cryptographic hash algorithm.

The Sponge Construction

The underlying structure of SHA-3 is a scheme referred to by its designers as a 

sponge construction [BERT07, BERT11]. The sponge construction has the same 

general structure as other iterated hash functions (Figure 11.8). The sponge func-

tion takes an input message and partitions it into fixed-size blocks. Each block is 

processed in turn with the output of each iteration fed into the next iteration, finally 

producing an output block.

The sponge function is defined by three parameters:

f = the internal function used to process each input block3

r = the size in bits of the input blocks, called the bitrate
pad = the padding algorithm

A sponge function allows both variable length input and output, making it a 

flexible structure that can be used for a hash function (fixed-length output), a pseu-

dorandom number generator (fixed-length input), and other cryptographic func-

tions. Figure 11.14 illustrates this point. An input message of n bits is  partitioned 

into k fixed-size blocks of r bits each. The message is padded to achieve a length 

that is an integer multiple of r bits. The resulting partition is the sequence of blocks 

P0, P1, c , Pk-1, with length k * r. For uniformity, padding is always added, so 

3The Keccak documentation refers to f as a permutation. As we shall see, it involves both permutations 
and substitutions. We refer to f as the iteration function, because it is the function that is executed once 
for each iteration, that is, once for each block of the message that is processed.


