
Quantitative Models of Cohesion and
Coupling in Software

Harpal Dhama
Development and Methodology/Tools, The MITRE Corporation, Bedford Massachusetts

Our project goal is to specify, implement, and verify
quantitative models for measuring cohesion and cou-
pling (C &C) in software modules. This article is our
project interim report on the specification of the C & C
quantitative models and preliminary verification effort.
To quantify cohesion, we subdivided it into four cate-
gories and then quantified each category. Coupling is
subdivided into four categories, followed by the quan-
tification of each category. Although the C&C con-
cepts are applicable to any procedural language such
as FORTRAN, PASCAL, or Ada, we chose to apply
the C & C formulas to Ada programs. We have
hand-calculated C&C values for a number of pro-
grams, but here we report and discuss in detail only a
typical result of our calculations obtained by applying
the C&C formulas to two different implementations of
an algorithm. We have found that the formulas are
sensitive enough to distinguish between the two im-
plementations. and the obtained quantitative values
agree with the qualitative assessment of the imple-
mentations.

1. INTRODUCTION

Software life cycle costs depend on software quality
factors such as complexity, maintainability, reusabil-
ity, reliability, and portability. The two properties of
software that have a great impact on software qual-
ity are cohesion and coupling (C&C>. Figure 1
shows that 8 of the 13 software quality factors iden-
tified by the Rome Laboratory (Bowen et al., 1983)
are dependent on C&C. Thus, the identification,
measurement, and management of C & C in soft-

Address correspondence to Harpal Dhama, Development Method-
ology / Tools, The MITRE Corporation, 202 Burlington Road, Bed-
ford, MA 01730. e-mail: dhama@mitre.org

ware can have a major influence on reducing soft-
ware costs.

Cohesion in a module refers to that software prop-
erty that binds together the various statements and
other smaller modules comprising the module. We
define a module to be a compilation unit of code. A
module can contain other smaller modules. There-
fore, a function, a procedure, or any combination of
these is referred to as a module. Cohesion is an
intramodule property that reflects the design consid-
erations for integrating the various components of
the module into one unit. It is the glue that holds a
module together, and it is a measure of the logical
strength of a software module. The strength and
consequently the “quality” of the module increase
with increasing cohesion.

Coupling is a measure of the interdependence
between two software modules. It is an intermodule
property. Because it is desirable that the changes
made in a module affect another module as little as
possible, the “quality” of a module increases as
module coupling decreases.

2. OBJECTIVES

Qualitative evaluation of C&C has been used to
measure the “good” qualities of software. However,
the subjective judgment and consequent inconsis-
tency inherent in qualitative assessments have raised
questions about the consistency and credibility of
such evaluations. Our goal is to build quantitative
models of C & C and then use the models to evalu-
ate C & C for existing software modules. To verify
our models, we will run a controlled experiment in
which we will take N 20 algorithms implemented in
more than one way. These implementations will be

J. SYSTEMS SOFTWARE 1995; 29:65-74
0 1995 by Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

0164-1212/95/$9.50
SSDI 0164-1212(94)00128-A

66 J. SYSTEMS SOFTWARE
1995; 296-14

H. Dhama

0 Correctness

0 Reliability

0 Efficiency

0 Integrity

0 Usability

0 Survivability

0 Maintainability

0 Verifiability

0 Flexibility

0 Portability

0 Reusability

0 Interoperability

0 Expandability 9@ C&C

Figure 1. Hierarchy of software qualities as proposed by
Rome Laboratory (Bowen et al., 1983).

evaluated by use of our C & C formulas and will also
be evaluated qualitatively by experts for C & C. The
two evaluations will then be compared to demon-
strate that the models are a valid characterization of
C & C. We have chosen Ada software for our experi-
ment. The results of this initial pilot study will be
used as feedback to tune our model as needed.

Because hand calculation of C & C values is te-
dious and error prone, we are in the process of
building a tool to apply our formulas. After running
our controlled experiment, the tool can be used to
calculate C&C values for a large number of soft-
ware modules from existing Ada software. This will
allow us to establish an approximate average and
range of C&C values. These values can then be
used to construct a scale of “goodness” to be used
for software evaluation purposes.

In this article, we discuss and describe only the
first part of our project: the development of the
quantitative models of C & C and the results of our
hand application of the C & C formulas to a few
sample programs. This represents our initial effort
at building these models.

2.1 Motivation for this Research

The significance of C&C was established by Your-
don, Constantine, and Myers (1976) in the period
1973-1979, and their analysis forms a part of Your-
don and Constantine’s (1979) book, Structured De-
sign. A large portion of the subsequent work on
software metrics has been done by Rome Labora-
tory-funded research, and in the early 198Os, there
were a number of Rome Laboratory publications

(Bowen et al., 1983) promoting and outlining the use
of software metrics.

Although the importance of C&C in software
metrics has been well established, there have been
limited attempts to quantify C & C. In 1989, Ott and
Thuss at Michigan Technological University devel-
oped a quantitative model of cohesion using a slice-
based’ methodology. In June 1992, Zage et al. built
a model of module coupling and showed that the
number of module errors increases as coupling in-
creases. In an empirical study done by Card et al. in
1986 at Computer Sciences Corporation, high cohe-
sion values have been related to fewer software
errors. Because a correlation between C&C and
number of errors has been established, the C&C
metric can be used for

l forecasting testing costs and reliability

l allocating the testing effort according to the error
proneness of the module

l software quality assurance

l assessing the quality of reusable software

3. MODEL DEVELOPMENT

There are only a few quantitative models in the
software metrics area, and of these, only a handful
have been verified empirically. In the development
of our prototype model of C & C, we make some
assumptions and then carry out experiments to ver-
ify the assumptions. The model that we propose has
a number of constants built into it. As a first esti-
mate, these constants have been assumed to be 1
and 2. These values may change, depending on our
experimentation results.

To build quantitative models for C & C, we have
divided cohesion into functional, data flow, action-
bundling, and logical bundling cohesion; coupling
has been divided into data and control flow, global,
and environmental coupling. We have then quanti-
fied the various categories of C & C by analyzing the
source lines of Ada code and gathering statistics that
characterize the code. To gain confidence in our
theoretical work, we have hand calculated C & C
values for N 15 Ada modules, and in each case, the
C & C values agree with the qualitative evaluation of
the modules. As a sample of our calculations, Ap-

‘A slice-based methodology is the reduction of a program to a
minimal form that reflects a chosen program behvior called the
slicing criteria. For example, a subset of a program consisting of
only the statements that affect the value of a particular variable
X would be a program slice with respect to X.

Models of Cohesion and Coupling

pendix A shows the results of the hand application
of the C & C formulas to two implementations of a
“selection sort” algorithm, which sorts integers in
ascending or descending order. The first implemen-
tation, titled MODULEl, consists of a single mod-
ule, whereas the second implementation, titled
MODULE2, consists of four submodules but uses
the same algorithm to do the sorting. Although we
have hand calculated values of C& C for other
programs, the chosen example offers some interest-
ing insights into the C & C calculation process; the
example is by no means a verification of our theoret-
ical work. In this application, as in others, we have
found that our C & C formulas are sensitive enough
to distinguish between the two implementations, and
the obtained quantitative values agree with the qual-
itative assessment of the implementations.

When a module contains a number of other sub-
modules, we calculate the C & C values of each of
the submodules, and the average of these values is
used in determining the C & C value of the contain-
ing module. Because C & C is an interval scale, we
feel that this is a legitimate approach and has been
used by other researchers (Bowen et al., 1983; Henry
and Kafura, 1981; Zage et al., 1992).

3.1 Development of a Theoretical Model of
Cohesion

We categorize cohesion into the following four cate-
gories:

Functional cohesion

Data flow cohesion

Action-bundling cohesion

Logical bundling cohesion

The definition and development of a metric for each
of these different types of cohesion follows. In the
development of our C&C formulas, we have a
series of constants, ql, q2, q3,. . . that are used to
weigh the effect of the various factors that influence
C & C. These constants have been assumed to be 2
and may be revised at a later date.

3.1.1 Functional cohesion. This type of cohesion
results from the single-purpose functional design of
the module. The more focused the module goal, the
greater its functional cohesiveness. The functional
strength is inversely proportional to the generality of
the functional purpose of the module, the meaning
of generality being the ability to perform multiple
functions within a given capability. If we can now

J. SYSTEMS SOFTWARE 67
1995; 29:65-14

find a measure of generality, then we have indirectly
evaluated functionality.

One of the measures of module generality is the
action content of the module. The action content in
turn is dependent on the number of parameters in
the interface of the module and on the number of
global and local variables. The intuitive notion used
here is that the module capability depends on the
number of different items available for manipulation
within the module, whether the items come into the
module from the outside or are locally defined.
McCabe Associate’s (1993) object-oriented software
evaluation tool uses this aspect of cohesion to mea-
sure cohesion in a “method” for manipulating ob-
jects. We also postulate that variables used as con-
trol variables, for example, those used in IF-THEN
or WHILE statements, have the potential of increas-
ing functionality by twice that of data variables. The
action content of a module also depends on the
number of other modules called because this repre-
sents a group of related actions to be carried out by
a subordinate. Lacking any other guidelines, we make
the simple assumption that such calls have twice as
much effect on functionality as simple data vari-
ables.

To quantify generality, let us consider a module.
Let

F = functional cohesion of a module
il = in data parameters
i2 = in control parameters
ul = out data parameters
u2 = out control parameters
11 = number of local variables used as data
12 = number of local variables used as control
gl = number of global variables used as data
g2 = number of global variables used as control
W = number of modules called

Because we have assumed a singular functionality to
be inversely proportional to generality, there is an
inverse relationship between functional cohesion and
the variables enumerated above.

Now let p = il + q,i2 + ul + q,u2 + I1 + q,12

+ gl + q,g2 + qsw, where ql, q2, q3, q4, and q5 are
constants, and, as a first heuristic estimate, are as-
sumed to be 2 in our calculations.

Then,

P

When a module is called, there is an implicit trans-
fer of control to the module, that is, an implied
system control parameter is being passed to the
module. Therefore, when all the constituents of p

68 J. SYSTEMS SOFTWARE
1995; 2965-14

H. Dhama

Figure 2. Actions of a module linked together
by data flow.

are 0, then the minimum value of p is assumed to
be 1. With this assumption, functional cohesion is an
interval scale with values > 0 but < 1. Therefore,

F = Kl/maximum (p, 1)

where Kl is the proportionality constant. Assuming
Kl = 1,

F = l/maximum(p, 1) (1)

From the calculations of Appendix A, the func-
tional cohesion of the two modules is as given below:

F(MODULE1) = 0.08

F(MODULE2) = 0.12

Not only is the functional cohesion of MODULE2
higher than that of MODULEl, but the functional
cohesion of each of the submodules of MODULE2
is higher than or equal to the functional cohesion of
MODULEl. This is to be expected, because each
individual submodule of MODULE2 does a smaller
amount of work than MODULE1 and is conse-
quently more functionally cohesive. The results of
this calculation are in keeping with the defined
notion of functional cohesion. We also note that
the calculations can distinguish MODULE1 from
MODULE2 on the basis of functional cohesion.

3.1.2 Data flow cohesion. Data flow cohesion de-
scribes the interdependencies among the different
statements of the module depending on the process-
ing of data. Data flow exists when a piece of data,
after undergoing some transformation in a state-
ment, must undergo another transformation in a
following statement. This is shown in Figure 2, where
the actions (statements) of the module are linked
together like a chain by the data that flows from one
action to the next. As a simple example, if a module
was constructed to read, calculate, and write the
sum of two values, then the sequence of statements
to accomplish that would have data flow cohesion.

In considering data flow cohesion between state-
ments, the type of the statement and the position of
the variable in the statement are taken into account.

The general criterion for two statements to be linked
by data flow cohesion is that a piece of data, after
undergoing a transformation, be used in another
transformation or action. For example, let us con-
sider the pairs of adjacent statements as shown in
Figure 3. Data flows from the lefthand side of the
first statement to the righthand side of the second
statement. In Figure 3, we have considered an as-
signment statement followed by three different types
of statements; similarly, we must consider each of
the n different types of statements of the language
followed by any one of the n different types of
statements. Each pair of statements will then be
evaluated for data flow cohesion depending on the
position of the identifiers used in the pair of state-
ments. Therefore, we have an (n x n) data flow
connectivity matrix in which the rows and columns
are the same and show the functional position of a
variable in a statement. The intersection of a row
and column indicates that the row statement with a
variable in a given functional position is followed by
the column statement with the same variable. We
mark the intersection of those statements that have
data flow cohesion.

In Figure 3, we have considered adjacent pairs of
statements, but a case for data flow cohesion can be
made when the pairs of statements linked by data
flow are separated by two or more intervening state-
ments. In general, let the pair of statements be
separated by j number of statements; then j takes
on values from 1 to (s - 1). The data flow bond
weakens as it is stretched to cover a bigger span.
Therefore, we assume that the value of data flow
cohesion decreases as the value of j increases. As a
result of our many hand calculations, we have found
that the increase in data flow cohesion due to the
contribution of those data-cohesive statements that
are separated by three or more statements is
marginal. Therefore, we have limited our calculation
of data flow cohesion to j s 3 or j I (s - l),
whichever is smaller.

Data flow cohesion in a module increases as the

4

B<A
C B :=

4

B := A

\

IF (B < D) . . .

4
Figure 3. Example of statements linked by data

B := A flow cohesion. In each pair of statements, the
variable B, after being on the lefthand side in the
first statement, is used again on the righthand

WRITE (IS) side. The flow of data is marked by arrows.

Models of Cohesion and Coupling J. SYSTEMS SOFTWARE 69
1995; 2955-74

number of statements connected by data flow in-
creases. The ratio of such statements to the total
number of statements is used as a measure of the
data flow cohesion of a module. Based on the ratio-
nale given above, we have the following model of
data flow cohesion. Let

D=
s =
j =

dj =

data flow cohesion in a module
total number of statements in the module
number of statements separating pairs of
statements being evaluated for data flow cohe-
sion. When the pair of statements are adja-
cent, then j = 1. The value of j goes from 1
to (s - 1).
number of pairs of statements that have data
flow cohesion when j = 1, 2,. . . (s - 1).

Now

Dadj

DA
j

Therefore, for a single variable, data flow cohesion
normalized over the total lines of code s is given by

j=(s- 1)

D = 1(2/s c d,/j
/=1

where K2 is a. constant. Assuming K2 to be 1, data
flow cohesion

j=(s- 1)

D = l/s c d,/j
;=1

The same data flow considerations have to be given
for each variable in the module, that is, the calcula-
tions shown above have to be repeated for each
variable in the module. We now make the simple
assumption that the contribution of each variable
toward the module data flow cohesion is additive.
Therefore, summing up the data flow cohesion con-

Figure 4. Action-bundling cohesion.

tribution of each variable, if L’ = total number of
variables in the module, then

i=u j=(s-1)

D = l/s c c dij/j
i=l I=1

(2)

In the example worked out in Appendix A, we
have limited ourselves to j = 1,2,3, because the
value of data flow cohesion drops off sharply as j
increases. After more empirical work, we may be in
a position to recommend a value of j < (s - 1). For
the modules in the example, we have

D(MODULE1) = 0.64

D(MODULE2) = 0.71

The results are in keeping with the expectation that
data flow cohesion would be higher in MODULE2
than in MODULEl. In MODULEl, all the data and
the actions to be performed on this data are in one
unit, so there is greater likelihood of interleaved
transformations as opposed to sequential transfor-
mations on the same data. The statements in the
submodules of MODULE2 are partitioned into
smaller units of code according to the data manipu-
lated; after some statement has manipulated the
data, it “flows” on to the next statement in the same
module. This establishes strong data flow ties. For
example, the statements that manipulate data to find
the minimum value are concentrated in the subpro-
gram FIND-MIN, and after finding the minimum
value, the data are passed on to a separate subpro-
gram. Subprogram EXCHANGE is an exception to
this because it does not perform sequential transfor-
mations on one particular data item.

3.1.3 Action-bundling cohesion. Action-bundling
cohesion takes place as a result of the collection of
several actions to be performed on a single piece of
data (Figure 4). Suppose the task was to read, up-

A number of actions manipulate the same data

70 J. SYSTEMS SOFlWARE
1995; 29:65-14

date, and write out an array or a file; if all these
actions were gathered together in one unit of code,
then this unit of code would exhibit action-bundling
cohesion.

The general rule for determining action bundling
between two statements is to examine if the same
data item is being manipulated in the two state-
ments. For example, Figure 5 illustrates three pairs
of adjacent statements that exhibit action-bundling
cohesion. The first statement of each pair is an
assignment statement, followed by three of the many
different types of statements of the language. Ac-
tion-bundling cohesion between the statements of
each pair exists because in each pair the variable C
is used without being transformed, that is, the ac-
tions of the two statements are “bundled” because
of the variable C.

The algorithm used for determining action-bun-
dling cohesion is the same as that used in determin-
ing data flow cohesion except that the rules for
determining cohesion between statements are dif-
ferent. This merely means a change in the connectiv-
ity matrix used for determining the relevant cohesive
pairs of statements. We have the following model of
action-bundling cohesion. Let

A=
S =

j =

tj =

Now

A’a tj

A$
I

action-bundling cohesion in a module
total number of statements in the module
number of statements separating pairs of
statements being evaluated for action-bun-
dling cohesion. When the pair of statements
are adjacent then j = 1. The value of. j goes
from 1 to (s - 1).
number of pairs of statements that have ac-
tion-bundling cohesion when j = 1,2,. . . (s -

1).

Normalizing over s, the total number of lines of
code, we have, for a single variable, the action-bun-
dling cohesion

j=(s-1)’

A = K3/s c t/j
j=l

H. Dhama

where K3 is a constant. Assuming K3 to be 1,
action-bundling cohesion

j=(s- 1)

A = l/s c tj/j
j=l

The same action-bundling considerations must be
given for each variable in the module. Using the
same argument as for summing up the data flow
contribution of each variable, we sum the action-
bundling cohesion contribution of each of the vari-
ables in the module. Therefore, if u = total number
of variables in the module, then

i=u j=(s-1)

A = l/s c c tii/j (3)
i=l j=l

With reference to the example worked out in
Appendix A,

A(MODULE1) = 1.01

A(MODULE2) = 1.43

Although two of the subprograms of MODULE2
have lower action-bundling cohesion than MOD-
ULE& the total action-bundling cohesion of MOD-
ULE2 is higher than that of MODULEl. This is
primarily due to the main program of MODULE2
(procedure A in Table Al), which has the highest
vaIue of action-bundling cohesion. This is an ex-
pected result because this procedure calls the other
subprograms and coordinates their activity; it parcels
out all the data and receives all the results, so that
its actions are closely related. Procedure D of
MODULE2 also exhibits high action-bundling cohe-
sion because all of the procedure’s actions are per-
formed on two data items, causing the actions to be
closely related.

Once again, on the basis of action-bundling cohe-
sion, MODULE1 can be distinguished from MOD-
ULE2,. signifying that the developed formula is sen-
sitive to varying implementations.

3.1.4 Logical bundling cohesion. It is common to
have a “logical block” of program statements exe-
cuted based on a Boolean condition. Such a condi-
tion can be part of an IF-THEN statement or the
terminating condition of a WHILE, REPEAT, or
FOR Ioop. The block structure of this type is held
together by the common Boolean condition that
forms the basis for the execution of the block. The

B := C

\

Figare 5. Example of statements exhibiting
action-bundling cohesion. In each pair of
statements, the variable C is used in both

w&e (C) the statements on the r@hthand side.

Models of Cohesion and Coupling

cohesion exhibited by the statements of the block is
categorized as logical bundling cohesion because the
statements “bundle” together following a “logical”
decision.

Logical decisions are often nested, that is, logical
blocks of statements are contained within logical
blocks. In such cases, the statements in the core
block are logically more cohesive because they share
a larger number of logical decisions than those
statements that are in the outer blocks. As the
number of statements increases, the logical binding
weakens. An analogy is that of a bundle of sticks
tied together by a string. The bundle becomes more
secure (more cohesive) as the number of loops
around the bundle increases and less secure as the
number of sticks in the bundle increases.

Let

L = logical bundling cohesion
w = nesting depth of block in which a block of

statements is located
t = number of statements in the block under con-

sideration
k = total number of blocks in the module

Then for a block i

L,(YWi

Liff 1/t,

Therefore, Li = (K4* wr)/ti where K4 is a con-
stant. Assuming K4 = 1, we have for the ith block
L, = wi/ti. To find the logical bundling cohesion of
the module, we follow the same reasoning except
that we take the average depth of all the statement
blocks in the module and divide by the average
number of statements in a block.

i=k

Average nesting depth = l/k c wi
i= I

i=k

Average number of statements in a block = l/k c ti
i= 1

Therefore

r=k i=k

L = c wi
r=l I

c t;
i= 1

(4)

With reference to the example worked out in
Appendix A,

L(MODULE1) = 0.54

L(MODULE2) = 0.40

It is not surprising that the logical bundling cohesion
of MODULE1 is higher than that of MODULE2;
the smaller units of code of MODULE2 are likely to

J. SYSTEMS SOFTWARE 71
1995; 29x5-74

have fewer loops than MODULEl, in which the
entire logic is represented in one unit.

3.1.5 Cohesion summary and discussion. Our inves-
tigation shows that the four types of cohesion are
independent of each other. In adding up these four
types of cohesion to obtain the total cohesion, we
have chosen to weigh them equally because there is
no evidence for any other weighting scheme. How-
ever, in the literature, various authors have rank
ordered the categories of cohesion in the order that
they have been presented here. If in our follow-up
empirical work we find that an unequal weighting
scheme is warranted, we will consider it at that time.

The total cohesion of a module = F + D + A + L
(the sum of the four types of cohesion). From the
example in Appendix A,

Cohesion (M~DuLEI) = 2.27
Cohesion (MODULE21 = 2.65
We make the following observations regarding these
final results:

The calculated value of the total cohesion sup-
ports the expected qualitative notion of cohesion.
MODULE2, with its small components, is qualita-
tively judged to be more maintainable, easier to
reuse, and less error prone than MODULEl. On
the basis of this metric, it is also possible to
distinguish MODULE1 from MODULE2. There-
fore, it appears that the metrics developed are
sufficiently sensitive to implementation.

More empirical work needs to be done to be able
to draw some general conclusions regarding soft-
ware using cohesion as a metric.

The cohesion metrics can be used for comparative
purposes to pick between two modules that imple-
ment the same function. The module with the
higher cohesion index will indicate a better design
from the cohesion point of view.

3.2 Development of a Theoretical Model of
Coupling

When modules are linked together, the four cate-
gories of coupling exhibited and their causes are as
shown below:

Data flow coupling caused by the parameters at
the interface

Control flow coupling also caused by the parame-
ters at the interface

Global coupling caused by global variables

Environmental coupling caused by calling and be-
ing called by other modules

72 J. SYSTEMS SOFTWARE
1995; 2955-74

H. Dhama

Any parameter or shared variable can be used as
data or as a “control variable”; the latter is defined
as a variable that determines operational execution,
such as when used in a LOOP or IF-THEN type of
statement. A variable used as a diagnostic or error
recovery variable is also classified as a control vari-
able. As a start, our premise is that control variables
result in twice as tight a coupling as an equal num-
ber of data variables. At present, we also assume
that the extent of coupling exercised by parameters
and global variables is the same. However, we agree
with the qualitative notion that global variables cause
more insidious coupling than parameters. We will be
in a better position to make comments on this issue
after some empirical work to evaluate a large num-
ber of modules for coupling.

We would like the coupling between modules to
be as low as possible, because this lowers the proba-
bility that a change in a module will cascade to the
module coupled to it. In the development of our
formula for coupling, low coupling will be indicated
by high numbers because increasing numbers are
generally associated with increasing “goodness.” This
association is also in keeping with our calculations
of module cohesion, in which high numbers indicate
high cohesion, which is “good.” We have the follow-
ing quantitative model for the four types of coupling.
Let

C = total module coupling

For data and control flow coupling:

il = in data parameters
i2 = in control parameters
ul = out data parameters
u2 = out control parameters

For global coupling:

gl = number of global variables used as data
g2 = number of global variables used as control

For environmental coupling:

w = number of modules called
r = number of modules calling the module under

consideration

Now let m = il + q&2 + ul + q,u2 + gl + qsg2
+ w + r, where q6, q,, and q8 are constants, and, as
a first heuristic estimate, are assumed to be 2 in our
calculations. The minimum value of r is 1, because
every module executed, including a main program,
must be called by some other program.

cc2
m

Therefore, C = K5/m where K5 is a constant. As-
suming K5 = 1, we have

C = l/m (5)

From the example worked out in Appendix A, we
have the following results:

C(MODULE1) = 0.10

C(MODULE2) = 0.15

We note that, although MODULE2 has four inter-
faces, the coupling of MODULE2 is better than the
coupling of MODULEl. It may have been expected
that because of the increased number of interfaces,
the average coupling would be worse than the cou-
pling in the single interface of MODULEl. The
coupling for each individual module of MODULE2
is also better than that of MODULEl. This may be
related to the fact that each of the small modules of
MODULE2 has a higher functional cohesion and
requires less interaction with the outside world. This
result can be an input to answer the often-asked
question, “How many modules are optimal to imple-
ment a given functionality?” The answer is, “The
coupling of each of the modules should be better
than or equal to that of the single module.”

The coupling values obtained for MODULE1 and
MODULE2 are also in agreement with the qualita-
tive notion of good coupling, in which four smaller
modules are expected to be easier to understand and
modify than a single monolithic module. The cou-
pling formula is also sensitive enough to distinguish
between the two implementations.

We are by no means suggesting that C & C be the
only metric considered in evaluating a software
module; software has many facets and C & C is but
one of them. However, we feel that C&C is an
important facet because so many of the higher level
software quality factors depend on it.

4. FUTURE WORK

In this article, we have quantified C & C, and the
preliminary calculations appear to support our anal-
ysis. On the basis of the hand-calculated samples, no
conclusions can be reached. The remainder of our
project will address this problem. We are nearing
completion of a tool that will do the C & C calcula-
tions for Ada programs. We will then verify the
formulas and build a C&C scale to be used for
evaluating programs. After the completion of our
project, there are several avenues open for research
to answer the following types of questions:

l What is the correlation between the number of
errors found in a module and its C & C values?

Models of Cohesion and Coupling

There is also a need to establish such correlations
between C & C and a number of management and

other software quality metrics, such as productivity

and complexity.

Are there optimal values for C & C, and are there

some general guidelines for achieving them?

Can the C&C concept be used to evaluate soft-

ware architecture?

How sensitive are the formulas to the various
factors that enter into the C & C calculations?

How applicable are the C & C metrics to “meth-
ods” of object-oriented programs?

REFERENCES

Bowen, T. P., Post, J. V., Tsai, J., Presson, P. E., Schmidt,
R. L., Software Quality Measurement for Distributed
Systems, Guidebook for Software Quality Measure-
ment, RADC-TR-83-175, Vol. II, Final Technical Re-
port, Rome Air Development Center, Air Force Sys-
tems Command, Griffis Air Force Base, NY, 1983.

Card, D. N., Church, V. E., and Agresti, W. W., An
Empirical Study of Software Design Practices, IEEE

Truns. So&we Eng. SE-12, 264-271 (1986).
Henry, S., and Kafura, D., Software Structure Metrics

Based on Information Flow, IEEE Trans. Software Eng.
SE-7 (1981).

McCabe Associates, 00 Tool Features New Metrics, The
Outlook (Fall 1993).

Myers, G. J., Software Reliability Principles and Practices,
John Wiley and Sons, New York, 1976.

Ott, L., and Thuss, J., The relationship between slices and
module cohesion, in IEEE 11th International Conference
on Software Engineeting, 1989, pp. 198-204.

Yourdon, E., and Constantine, L. L., Structured Design:
Fundamentals of a Discipline of Computer Program and
System Design, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1979.

Zage, W. M., Zage, D. M., Bhargava, M., and Gaumer,
D. J., Design and code metrics through a DIANA-based
tool, in 11th Ada-Europe International Conference, 1992,
pp. 60-71.

APPENDIX A: SAMPLE CALCULATION OF C &C
VALUES

This Appendix contains two implementations of a “selec-
tion sort” algorithm, which sorts integers in ascending or
descending order. The first implementation, titled MOD-
ULEl, consists of a single monolithic module, whereas the
second implementation, titled MODULE2, consists of four
subprograms but uses the same algorithm to do the sort-
ing. The quantitative metrics for C & C that have been
developed are applied to the two implementations to show
that (1) the metrics are in keeping with the qualitative
evaluation of C& C in the two modules, and (2) on the

J. SYSTEMS SOFTWARE 73
1995; 2965-74

basis of the calculated C & C metrics, the two modules can
be distinguished from each other.

MODULEl-Implementation #l-a single procedure im-
plements a “selection sort.”

MODULE1

package sort1 is
type array-type is array (l..lOOO) of integer;

Specifications of the procedure

procedure sort1 (n : in integer;
to-be-sorted: in out array-type;
a--or-d: in character);

end sortl;

The code in the body is evaluated

package body sort1 is

procedure sort1 (n : in integer;
to-be-sorted: in out array-type;
a-or-d: in character) is

location, temp : integer;
begin

for start in l..n loop
location := start;

-loop to get min or max each time

for i in (start + 1X.n loop
if a-or-d = ‘d’ then

if to-be-sorted(i) > to-be-sorted(location) then
location := i;

end if;
elsif to-be-sorted(i) < to-be-sorted(location) then

location := i;
end if;

end loop;

The exchange

temp := to-be-sortedcstart);
to-be-sortedcstart) := to-be-sorted(location);
to-be-sorted(location) := temp;

end loop;
end sortl;
end sortl;

MODULE2-Implementation #2-four procedures im-
plement a “selection sort.”

MODULE2

package sort2 is
type array-type is array (l..lOOO) of integer;

Specifications of the procedures

procedure sort2 (n : in integer;
to-be-sorted: in out array-type;
a-or-d: in character);

procedure find-max (n : in integer;
to-be-sorted: in out array-type;
location : in out integer);

procedure find-min (n, start : in integer;

74 J. SYSTEMS SOmARE H. Dhama
1995; 2965-74

Table Al. Calculation of the Different Types of Cohesion for the Two Implementations

Type of Single Procedure in
Cohesion Implementation 1

Four Procedures in Implementation 2
Average Cohesion

Values in
A B C D Implementation 2

Functional 0.08
Data flow 0.64
Action bundling 1.01
Logical bundling 0.54
Total cohesion* 2.27

*The different types of cohesion are equally weighted.

0.08 0.11 0.11 0.17 0.12
1.17 0.75 0.75 0.17 0.71
2.87 0.50 0.50 1.85 1.43
0.38 0.60 0.60 0.0 0.40
4.50 1.96 1.96 2.19 2.66

Table A2. Calculation of Coupling for the Two Implementations

Coupling
Single Procedure

in Implementation 1

Four Procedures in Implementation 2 Average Coupling
Values in

A B C D Implementation 2

C 0.10 0.13 0.14 0.14 0.20 0.15

to-be-sorted: in out array-type;
location : in out integer);

procedure exchange (start : in integer;
to-be-sorted: in out array-type;
location :in out integer);

end sort2;
package body sort2 is

Only body code evaluated
Procedure find-max body (‘Proc. B’ in Tables Al and A2)

procedure find-max (n, start : in integer;
to-be-sorted: in array-type;
location : in out integer); is

begin
location := start;
for i in start + l..n loop

if to-be-sorted(i) > to-be-sorted (location) then
location := i;

end if;
end loop;

end find-max;

Procedure find-min body (‘Proc. c’ in Tables Al and A2)

procedure find-min (n, start : in integer;
to-be-sorted: in array-type;
location : in out integer) is

begin
location := start;
for i in start + l..n loop

if to-be-sorted(i) < to-be-sorted (location) then
location := i;

end if;
end loop;

end find-min;

Procedure exchange body (‘Proc. D’ in Tables Al and A2)

procedure exchange (start : in integer;

temp := to-be-sorted(start);

to-be-sorted: in out array-type;

to-be-sortedcstart) := to-be-sorted(location);

location : in integer) is
temp : integer;
begin

to-be-sorted(location) := temp;
end exchange;

Procedure sort2 body CProc. A’ in Tables Al and A2)

procedure sort2 (n : in integer;
to-be-sorted: in out array-type;
a-or-d: in character) is

location : integer;
begin

for start in l..n loop
if a-or-d =‘d’ then

find-max(n, start, to-be-sorted, location);

find-min(n, start, to-be-sorted, location);
end if;
exchange (start, to-be-sorted, location);

end loop;
end sort2;
end sort2;

