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Our project goal is to specify, implement, and verify 
quantitative models for measuring cohesion and cou- 
pling (C &C) in software modules. This article is our 
project interim report on the specification of the C & C 
quantitative models and preliminary verification effort. 
To quantify cohesion, we subdivided it into four cate- 
gories and then quantified each category. Coupling is 
subdivided into four categories, followed by the quan- 
tification of each category. Although the C&C con- 
cepts are applicable to any procedural language such 
as FORTRAN, PASCAL, or Ada, we chose to apply 
the C & C formulas to Ada programs. We have 
hand-calculated C&C values for a number of pro- 
grams, but here we report and discuss in detail only a 
typical result of our calculations obtained by applying 
the C&C formulas to two different implementations of 
an algorithm. We have found that the formulas are 
sensitive enough to distinguish between the two im- 
plementations. and the obtained quantitative values 
agree with the qualitative assessment of the imple- 
mentations. 

1. INTRODUCTION 

Software life cycle costs depend on software quality 
factors such as complexity, maintainability, reusabil- 
ity, reliability, and portability. The two properties of 
software that have a great impact on software qual- 
ity are cohesion and coupling (C&C>. Figure 1 
shows that 8 of the 13 software quality factors iden- 
tified by the Rome Laboratory (Bowen et al., 1983) 
are dependent on C&C. Thus, the identification, 
measurement, and management of C & C in soft- 
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ware can have a major influence on reducing soft- 
ware costs. 

Cohesion in a module refers to that software prop- 
erty that binds together the various statements and 
other smaller modules comprising the module. We 
define a module to be a compilation unit of code. A 
module can contain other smaller modules. There- 
fore, a function, a procedure, or any combination of 
these is referred to as a module. Cohesion is an 
intramodule property that reflects the design consid- 
erations for integrating the various components of 
the module into one unit. It is the glue that holds a 
module together, and it is a measure of the logical 
strength of a software module. The strength and 
consequently the “quality” of the module increase 
with increasing cohesion. 

Coupling is a measure of the interdependence 
between two software modules. It is an intermodule 
property. Because it is desirable that the changes 
made in a module affect another module as little as 
possible, the “quality” of a module increases as 
module coupling decreases. 

2. OBJECTIVES 

Qualitative evaluation of C&C has been used to 
measure the “good” qualities of software. However, 
the subjective judgment and consequent inconsis- 
tency inherent in qualitative assessments have raised 
questions about the consistency and credibility of 
such evaluations. Our goal is to build quantitative 
models of C & C and then use the models to evalu- 
ate C & C for existing software modules. To verify 
our models, we will run a controlled experiment in 
which we will take N 20 algorithms implemented in 
more than one way. These implementations will be 
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0 Correctness 

0 Reliability 

0 Efficiency 

0 Integrity 

0 Usability 

0 Survivability 

0 Maintainability 

0 Verifiability 

0 Flexibility 

0 Portability 

0 Reusability 

0 Interoperability 

0 Expandability 9@ C&C 

Figure 1. Hierarchy of software qualities as proposed by 
Rome Laboratory (Bowen et al., 1983). 

evaluated by use of our C & C formulas and will also 
be evaluated qualitatively by experts for C & C. The 
two evaluations will then be compared to demon- 
strate that the models are a valid characterization of 
C & C. We have chosen Ada software for our experi- 
ment. The results of this initial pilot study will be 
used as feedback to tune our model as needed. 

Because hand calculation of C & C values is te- 
dious and error prone, we are in the process of 
building a tool to apply our formulas. After running 
our controlled experiment, the tool can be used to 
calculate C&C values for a large number of soft- 
ware modules from existing Ada software. This will 
allow us to establish an approximate average and 
range of C&C values. These values can then be 
used to construct a scale of “goodness” to be used 
for software evaluation purposes. 

In this article, we discuss and describe only the 
first part of our project: the development of the 
quantitative models of C & C and the results of our 
hand application of the C & C formulas to a few 
sample programs. This represents our initial effort 
at building these models. 

2.1 Motivation for this Research 

The significance of C&C was established by Your- 
don, Constantine, and Myers (1976) in the period 
1973-1979, and their analysis forms a part of Your- 
don and Constantine’s (1979) book, Structured De- 
sign. A large portion of the subsequent work on 
software metrics has been done by Rome Labora- 
tory-funded research, and in the early 198Os, there 
were a number of Rome Laboratory publications 

(Bowen et al., 1983) promoting and outlining the use 
of software metrics. 

Although the importance of C&C in software 
metrics has been well established, there have been 
limited attempts to quantify C & C. In 1989, Ott and 
Thuss at Michigan Technological University devel- 
oped a quantitative model of cohesion using a slice- 
based’ methodology. In June 1992, Zage et al. built 
a model of module coupling and showed that the 
number of module errors increases as coupling in- 
creases. In an empirical study done by Card et al. in 
1986 at Computer Sciences Corporation, high cohe- 
sion values have been related to fewer software 
errors. Because a correlation between C&C and 
number of errors has been established, the C&C 
metric can be used for 

l forecasting testing costs and reliability 

l allocating the testing effort according to the error 
proneness of the module 

l software quality assurance 

l assessing the quality of reusable software 

3. MODEL DEVELOPMENT 

There are only a few quantitative models in the 
software metrics area, and of these, only a handful 
have been verified empirically. In the development 
of our prototype model of C & C, we make some 
assumptions and then carry out experiments to ver- 
ify the assumptions. The model that we propose has 
a number of constants built into it. As a first esti- 
mate, these constants have been assumed to be 1 
and 2. These values may change, depending on our 
experimentation results. 

To build quantitative models for C & C, we have 
divided cohesion into functional, data flow, action- 
bundling, and logical bundling cohesion; coupling 
has been divided into data and control flow, global, 
and environmental coupling. We have then quanti- 
fied the various categories of C & C by analyzing the 
source lines of Ada code and gathering statistics that 
characterize the code. To gain confidence in our 
theoretical work, we have hand calculated C & C 
values for N 15 Ada modules, and in each case, the 
C & C values agree with the qualitative evaluation of 
the modules. As a sample of our calculations, Ap- 

‘A slice-based methodology is the reduction of a program to a 
minimal form that reflects a chosen program behvior called the 
slicing criteria. For example, a subset of a program consisting of 
only the statements that affect the value of a particular variable 
X would be a program slice with respect to X. 
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pendix A shows the results of the hand application 
of the C & C formulas to two implementations of a 
“selection sort” algorithm, which sorts integers in 
ascending or descending order. The first implemen- 
tation, titled MODULEl, consists of a single mod- 
ule, whereas the second implementation, titled 
MODULE2, consists of four submodules but uses 
the same algorithm to do the sorting. Although we 
have hand calculated values of C& C for other 
programs, the chosen example offers some interest- 
ing insights into the C & C calculation process; the 
example is by no means a verification of our theoret- 
ical work. In this application, as in others, we have 
found that our C & C formulas are sensitive enough 
to distinguish between the two implementations, and 
the obtained quantitative values agree with the qual- 
itative assessment of the implementations. 

When a module contains a number of other sub- 
modules, we calculate the C & C values of each of 
the submodules, and the average of these values is 
used in determining the C & C value of the contain- 
ing module. Because C & C is an interval scale, we 
feel that this is a legitimate approach and has been 
used by other researchers (Bowen et al., 1983; Henry 
and Kafura, 1981; Zage et al., 1992). 

3.1 Development of a Theoretical Model of 
Cohesion 

We categorize cohesion into the following four cate- 
gories: 

Functional cohesion 

Data flow cohesion 

Action-bundling cohesion 

Logical bundling cohesion 

The definition and development of a metric for each 
of these different types of cohesion follows. In the 
development of our C&C formulas, we have a 
series of constants, ql, q2, q3,. . . that are used to 
weigh the effect of the various factors that influence 
C & C. These constants have been assumed to be 2 
and may be revised at a later date. 

3.1.1 Functional cohesion. This type of cohesion 
results from the single-purpose functional design of 
the module. The more focused the module goal, the 
greater its functional cohesiveness. The functional 
strength is inversely proportional to the generality of 
the functional purpose of the module, the meaning 
of generality being the ability to perform multiple 
functions within a given capability. If we can now 
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find a measure of generality, then we have indirectly 
evaluated functionality. 

One of the measures of module generality is the 
action content of the module. The action content in 
turn is dependent on the number of parameters in 
the interface of the module and on the number of 
global and local variables. The intuitive notion used 
here is that the module capability depends on the 
number of different items available for manipulation 
within the module, whether the items come into the 
module from the outside or are locally defined. 
McCabe Associate’s (1993) object-oriented software 
evaluation tool uses this aspect of cohesion to mea- 
sure cohesion in a “method” for manipulating ob- 
jects. We also postulate that variables used as con- 
trol variables, for example, those used in IF-THEN 
or WHILE statements, have the potential of increas- 
ing functionality by twice that of data variables. The 
action content of a module also depends on the 
number of other modules called because this repre- 
sents a group of related actions to be carried out by 
a subordinate. Lacking any other guidelines, we make 
the simple assumption that such calls have twice as 
much effect on functionality as simple data vari- 
ables. 

To quantify generality, let us consider a module. 
Let 

F = functional cohesion of a module 
il = in data parameters 
i2 = in control parameters 
ul = out data parameters 
u2 = out control parameters 
11 = number of local variables used as data 
12 = number of local variables used as control 
gl = number of global variables used as data 
g2 = number of global variables used as control 
W = number of modules called 

Because we have assumed a singular functionality to 
be inversely proportional to generality, there is an 
inverse relationship between functional cohesion and 
the variables enumerated above. 

Now let p = il + q,i2 + ul + q,u2 + I1 + q,12 

+ gl + q,g2 + qsw, where ql, q2, q3, q4, and q5 are 
constants, and, as a first heuristic estimate, are as- 
sumed to be 2 in our calculations. 

Then, 

P 

When a module is called, there is an implicit trans- 
fer of control to the module, that is, an implied 
system control parameter is being passed to the 
module. Therefore, when all the constituents of p 
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Figure 2. Actions of a module linked together 
by data flow. 

are 0, then the minimum value of p is assumed to 
be 1. With this assumption, functional cohesion is an 
interval scale with values > 0 but < 1. Therefore, 

F = Kl/maximum (p, 1) 

where Kl is the proportionality constant. Assuming 
Kl = 1, 

F = l/maximum( p, 1) (1) 

From the calculations of Appendix A, the func- 
tional cohesion of the two modules is as given below: 

F(MODULE1) = 0.08 

F(MODULE2) = 0.12 

Not only is the functional cohesion of MODULE2 
higher than that of MODULEl, but the functional 
cohesion of each of the submodules of MODULE2 
is higher than or equal to the functional cohesion of 
MODULEl. This is to be expected, because each 
individual submodule of MODULE2 does a smaller 
amount of work than MODULE1 and is conse- 
quently more functionally cohesive. The results of 
this calculation are in keeping with the defined 
notion of functional cohesion. We also note that 
the calculations can distinguish MODULE1 from 
MODULE2 on the basis of functional cohesion. 

3.1.2 Data flow cohesion. Data flow cohesion de- 
scribes the interdependencies among the different 
statements of the module depending on the process- 
ing of data. Data flow exists when a piece of data, 
after undergoing some transformation in a state- 
ment, must undergo another transformation in a 
following statement. This is shown in Figure 2, where 
the actions (statements) of the module are linked 
together like a chain by the data that flows from one 
action to the next. As a simple example, if a module 
was constructed to read, calculate, and write the 
sum of two values, then the sequence of statements 
to accomplish that would have data flow cohesion. 

In considering data flow cohesion between state- 
ments, the type of the statement and the position of 
the variable in the statement are taken into account. 

The general criterion for two statements to be linked 
by data flow cohesion is that a piece of data, after 
undergoing a transformation, be used in another 
transformation or action. For example, let us con- 
sider the pairs of adjacent statements as shown in 
Figure 3. Data flows from the lefthand side of the 
first statement to the righthand side of the second 
statement. In Figure 3, we have considered an as- 
signment statement followed by three different types 
of statements; similarly, we must consider each of 
the n different types of statements of the language 
followed by any one of the n different types of 
statements. Each pair of statements will then be 
evaluated for data flow cohesion depending on the 
position of the identifiers used in the pair of state- 
ments. Therefore, we have an (n x n) data flow 
connectivity matrix in which the rows and columns 
are the same and show the functional position of a 
variable in a statement. The intersection of a row 
and column indicates that the row statement with a 
variable in a given functional position is followed by 
the column statement with the same variable. We 
mark the intersection of those statements that have 
data flow cohesion. 

In Figure 3, we have considered adjacent pairs of 
statements, but a case for data flow cohesion can be 
made when the pairs of statements linked by data 
flow are separated by two or more intervening state- 
ments. In general, let the pair of statements be 
separated by j number of statements; then j takes 
on values from 1 to (s - 1). The data flow bond 
weakens as it is stretched to cover a bigger span. 
Therefore, we assume that the value of data flow 
cohesion decreases as the value of j increases. As a 
result of our many hand calculations, we have found 
that the increase in data flow cohesion due to the 
contribution of those data-cohesive statements that 
are separated by three or more statements is 
marginal. Therefore, we have limited our calculation 
of data flow cohesion to j s 3 or j I (s - l), 
whichever is smaller. 

Data flow cohesion in a module increases as the 

4 

B<A 
C B := 

4 

B := A 

\ 

IF (B < D) . . . 

4 
Figure 3. Example of statements linked by data 

B := A flow cohesion. In each pair of statements, the 
variable B, after being on the lefthand side in the 
first statement, is used again on the righthand 

WRITE (IS) side. The flow of data is marked by arrows. 
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number of statements connected by data flow in- 
creases. The ratio of such statements to the total 
number of statements is used as a measure of the 
data flow cohesion of a module. Based on the ratio- 
nale given above, we have the following model of 
data flow cohesion. Let 

D= 
s = 
j = 

dj = 

data flow cohesion in a module 
total number of statements in the module 
number of statements separating pairs of 
statements being evaluated for data flow cohe- 
sion. When the pair of statements are adja- 
cent, then j = 1. The value of j goes from 1 
to (s - 1). 
number of pairs of statements that have data 
flow cohesion when j = 1, 2,. . . (s - 1). 

Now 

Dadj 

DA 
j 

Therefore, for a single variable, data flow cohesion 
normalized over the total lines of code s is given by 

j=(s- 1) 

D = 1(2/s c d,/j 
/=1 

where K2 is a. constant. Assuming K2 to be 1, data 
flow cohesion 

j=(s- 1) 

D = l/s c d,/j 
;=1 

The same data flow considerations have to be given 
for each variable in the module, that is, the calcula- 
tions shown above have to be repeated for each 
variable in the module. We now make the simple 
assumption that the contribution of each variable 
toward the module data flow cohesion is additive. 
Therefore, summing up the data flow cohesion con- 

Figure 4. Action-bundling cohesion. 

tribution of each variable, if L’ = total number of 
variables in the module, then 

i=u j=(s-1) 

D = l/s c c dij/j 
i=l I=1 

(2) 

In the example worked out in Appendix A, we 
have limited ourselves to j = 1,2,3, because the 
value of data flow cohesion drops off sharply as j 
increases. After more empirical work, we may be in 
a position to recommend a value of j < (s - 1). For 
the modules in the example, we have 

D(MODULE1) = 0.64 

D(MODULE2) = 0.71 

The results are in keeping with the expectation that 
data flow cohesion would be higher in MODULE2 
than in MODULEl. In MODULEl, all the data and 
the actions to be performed on this data are in one 
unit, so there is greater likelihood of interleaved 
transformations as opposed to sequential transfor- 
mations on the same data. The statements in the 
submodules of MODULE2 are partitioned into 
smaller units of code according to the data manipu- 
lated; after some statement has manipulated the 
data, it “flows” on to the next statement in the same 
module. This establishes strong data flow ties. For 
example, the statements that manipulate data to find 
the minimum value are concentrated in the subpro- 
gram FIND-MIN, and after finding the minimum 
value, the data are passed on to a separate subpro- 
gram. Subprogram EXCHANGE is an exception to 
this because it does not perform sequential transfor- 
mations on one particular data item. 

3.1.3 Action-bundling cohesion. Action-bundling 
cohesion takes place as a result of the collection of 
several actions to be performed on a single piece of 
data (Figure 4). Suppose the task was to read, up- 

A number of actions manipulate the same data 
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date, and write out an array or a file; if all these 
actions were gathered together in one unit of code, 
then this unit of code would exhibit action-bundling 
cohesion. 

The general rule for determining action bundling 
between two statements is to examine if the same 
data item is being manipulated in the two state- 
ments. For example, Figure 5 illustrates three pairs 
of adjacent statements that exhibit action-bundling 
cohesion. The first statement of each pair is an 
assignment statement, followed by three of the many 
different types of statements of the language. Ac- 
tion-bundling cohesion between the statements of 
each pair exists because in each pair the variable C 
is used without being transformed, that is, the ac- 
tions of the two statements are “bundled” because 
of the variable C. 

The algorithm used for determining action-bun- 
dling cohesion is the same as that used in determin- 
ing data flow cohesion except that the rules for 
determining cohesion between statements are dif- 
ferent. This merely means a change in the connectiv- 
ity matrix used for determining the relevant cohesive 
pairs of statements. We have the following model of 
action-bundling cohesion. Let 

A= 
S = 

j = 

tj = 

Now 

A’a tj 

A$ 
I 

action-bundling cohesion in a module 
total number of statements in the module 
number of statements separating pairs of 
statements being evaluated for action-bun- 
dling cohesion. When the pair of statements 
are adjacent then j = 1. The value of. j goes 
from 1 to (s - 1). 
number of pairs of statements that have ac- 
tion-bundling cohesion when j = 1,2,. . . (s - 

1). 

Normalizing over s, the total number of lines of 
code, we have, for a single variable, the action-bun- 
dling cohesion 

j=(s-1)’ 

A = K3/s c t/j 
j=l 

H. Dhama 

where K3 is a constant. Assuming K3 to be 1, 
action-bundling cohesion 

j=(s- 1) 

A = l/s c tj/j 
j=l 

The same action-bundling considerations must be 
given for each variable in the module. Using the 
same argument as for summing up the data flow 
contribution of each variable, we sum the action- 
bundling cohesion contribution of each of the vari- 
ables in the module. Therefore, if u = total number 
of variables in the module, then 

i=u j=(s-1) 

A = l/s c c tii/j (3) 
i=l j=l 

With reference to the example worked out in 
Appendix A, 

A(MODULE1) = 1.01 

A(MODULE2) = 1.43 

Although two of the subprograms of MODULE2 
have lower action-bundling cohesion than MOD- 
ULE& the total action-bundling cohesion of MOD- 
ULE2 is higher than that of MODULEl. This is 
primarily due to the main program of MODULE2 
(procedure A in Table Al), which has the highest 
vaIue of action-bundling cohesion. This is an ex- 
pected result because this procedure calls the other 
subprograms and coordinates their activity; it parcels 
out all the data and receives all the results, so that 
its actions are closely related. Procedure D of 
MODULE2 also exhibits high action-bundling cohe- 
sion because all of the procedure’s actions are per- 
formed on two data items, causing the actions to be 
closely related. 

Once again, on the basis of action-bundling cohe- 
sion, MODULE1 can be distinguished from MOD- 
ULE2,. signifying that the developed formula is sen- 
sitive to varying implementations. 

3.1.4 Logical bundling cohesion. It is common to 
have a “logical block” of program statements exe- 
cuted based on a Boolean condition. Such a condi- 
tion can be part of an IF-THEN statement or the 
terminating condition of a WHILE, REPEAT, or 
FOR Ioop. The block structure of this type is held 
together by the common Boolean condition that 
forms the basis for the execution of the block. The 

B := C 

\ 

Figare 5. Example of statements exhibiting 
action-bundling cohesion. In each pair of 
statements, the variable C is used in both 

w&e ( C ) the statements on the r@hthand side. 
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cohesion exhibited by the statements of the block is 
categorized as logical bundling cohesion because the 
statements “bundle” together following a “logical” 
decision. 

Logical decisions are often nested, that is, logical 
blocks of statements are contained within logical 
blocks. In such cases, the statements in the core 
block are logically more cohesive because they share 
a larger number of logical decisions than those 
statements that are in the outer blocks. As the 
number of statements increases, the logical binding 
weakens. An analogy is that of a bundle of sticks 
tied together by a string. The bundle becomes more 
secure (more cohesive) as the number of loops 
around the bundle increases and less secure as the 
number of sticks in the bundle increases. 

Let 

L = logical bundling cohesion 
w = nesting depth of block in which a block of 

statements is located 
t = number of statements in the block under con- 

sideration 
k = total number of blocks in the module 

Then for a block i 

L,(YWi 

Liff 1/t, 

Therefore, Li = (K4* wr)/ti where K4 is a con- 
stant. Assuming K4 = 1, we have for the ith block 
L, = wi/ti. To find the logical bundling cohesion of 
the module, we follow the same reasoning except 
that we take the average depth of all the statement 
blocks in the module and divide by the average 
number of statements in a block. 

i=k 

Average nesting depth = l/k c wi 
i= I 

i=k 

Average number of statements in a block = l/k c ti 
i= 1 

Therefore 

r=k i=k 

L = c wi 
r=l I 

c t; 
i= 1 

(4) 

With reference to the example worked out in 
Appendix A, 

L(MODULE1) = 0.54 

L(MODULE2) = 0.40 

It is not surprising that the logical bundling cohesion 
of MODULE1 is higher than that of MODULE2; 
the smaller units of code of MODULE2 are likely to 
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have fewer loops than MODULEl, in which the 
entire logic is represented in one unit. 

3.1.5 Cohesion summary and discussion. Our inves- 
tigation shows that the four types of cohesion are 
independent of each other. In adding up these four 
types of cohesion to obtain the total cohesion, we 
have chosen to weigh them equally because there is 
no evidence for any other weighting scheme. How- 
ever, in the literature, various authors have rank 
ordered the categories of cohesion in the order that 
they have been presented here. If in our follow-up 
empirical work we find that an unequal weighting 
scheme is warranted, we will consider it at that time. 

The total cohesion of a module = F + D + A + L 
(the sum of the four types of cohesion). From the 
example in Appendix A, 

Cohesion (M~DuLEI) = 2.27 
Cohesion (MODULE21 = 2.65 
We make the following observations regarding these 
final results: 

The calculated value of the total cohesion sup- 
ports the expected qualitative notion of cohesion. 
MODULE2, with its small components, is qualita- 
tively judged to be more maintainable, easier to 
reuse, and less error prone than MODULEl. On 
the basis of this metric, it is also possible to 
distinguish MODULE1 from MODULE2. There- 
fore, it appears that the metrics developed are 
sufficiently sensitive to implementation. 

More empirical work needs to be done to be able 
to draw some general conclusions regarding soft- 
ware using cohesion as a metric. 

The cohesion metrics can be used for comparative 
purposes to pick between two modules that imple- 
ment the same function. The module with the 
higher cohesion index will indicate a better design 
from the cohesion point of view. 

3.2 Development of a Theoretical Model of 
Coupling 

When modules are linked together, the four cate- 
gories of coupling exhibited and their causes are as 
shown below: 

Data flow coupling caused by the parameters at 
the interface 

Control flow coupling also caused by the parame- 
ters at the interface 

Global coupling caused by global variables 

Environmental coupling caused by calling and be- 
ing called by other modules 
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Any parameter or shared variable can be used as 
data or as a “control variable”; the latter is defined 
as a variable that determines operational execution, 
such as when used in a LOOP or IF-THEN type of 
statement. A variable used as a diagnostic or error 
recovery variable is also classified as a control vari- 
able. As a start, our premise is that control variables 
result in twice as tight a coupling as an equal num- 
ber of data variables. At present, we also assume 
that the extent of coupling exercised by parameters 
and global variables is the same. However, we agree 
with the qualitative notion that global variables cause 
more insidious coupling than parameters. We will be 
in a better position to make comments on this issue 
after some empirical work to evaluate a large num- 
ber of modules for coupling. 

We would like the coupling between modules to 
be as low as possible, because this lowers the proba- 
bility that a change in a module will cascade to the 
module coupled to it. In the development of our 
formula for coupling, low coupling will be indicated 
by high numbers because increasing numbers are 
generally associated with increasing “goodness.” This 
association is also in keeping with our calculations 
of module cohesion, in which high numbers indicate 
high cohesion, which is “good.” We have the follow- 
ing quantitative model for the four types of coupling. 
Let 

C = total module coupling 

For data and control flow coupling: 

il = in data parameters 
i2 = in control parameters 
ul = out data parameters 
u2 = out control parameters 

For global coupling: 

gl = number of global variables used as data 
g2 = number of global variables used as control 

For environmental coupling: 

w = number of modules called 
r = number of modules calling the module under 

consideration 

Now let m = il + q&2 + ul + q,u2 + gl + qsg2 
+ w + r, where q6, q,, and q8 are constants, and, as 
a first heuristic estimate, are assumed to be 2 in our 
calculations. The minimum value of r is 1, because 
every module executed, including a main program, 
must be called by some other program. 

cc2 
m 

Therefore, C = K5/m where K5 is a constant. As- 
suming K5 = 1, we have 

C = l/m (5) 

From the example worked out in Appendix A, we 
have the following results: 

C(MODULE1) = 0.10 

C(MODULE2) = 0.15 

We note that, although MODULE2 has four inter- 
faces, the coupling of MODULE2 is better than the 
coupling of MODULEl. It may have been expected 
that because of the increased number of interfaces, 
the average coupling would be worse than the cou- 
pling in the single interface of MODULEl. The 
coupling for each individual module of MODULE2 
is also better than that of MODULEl. This may be 
related to the fact that each of the small modules of 
MODULE2 has a higher functional cohesion and 
requires less interaction with the outside world. This 
result can be an input to answer the often-asked 
question, “How many modules are optimal to imple- 
ment a given functionality?” The answer is, “The 
coupling of each of the modules should be better 
than or equal to that of the single module.” 

The coupling values obtained for MODULE1 and 
MODULE2 are also in agreement with the qualita- 
tive notion of good coupling, in which four smaller 
modules are expected to be easier to understand and 
modify than a single monolithic module. The cou- 
pling formula is also sensitive enough to distinguish 
between the two implementations. 

We are by no means suggesting that C & C be the 
only metric considered in evaluating a software 
module; software has many facets and C & C is but 
one of them. However, we feel that C&C is an 
important facet because so many of the higher level 
software quality factors depend on it. 

4. FUTURE WORK 

In this article, we have quantified C & C, and the 
preliminary calculations appear to support our anal- 
ysis. On the basis of the hand-calculated samples, no 
conclusions can be reached. The remainder of our 
project will address this problem. We are nearing 
completion of a tool that will do the C & C calcula- 
tions for Ada programs. We will then verify the 
formulas and build a C&C scale to be used for 
evaluating programs. After the completion of our 
project, there are several avenues open for research 
to answer the following types of questions: 

l What is the correlation between the number of 
errors found in a module and its C & C values? 
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There is also a need to establish such correlations 
between C & C and a number of management and 

other software quality metrics, such as productivity 

and complexity. 

Are there optimal values for C & C, and are there 

some general guidelines for achieving them? 

Can the C&C concept be used to evaluate soft- 

ware architecture? 

How sensitive are the formulas to the various 
factors that enter into the C & C calculations? 

How applicable are the C & C metrics to “meth- 
ods” of object-oriented programs? 
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APPENDIX A: SAMPLE CALCULATION OF C &C 
VALUES 

This Appendix contains two implementations of a “selec- 
tion sort” algorithm, which sorts integers in ascending or 
descending order. The first implementation, titled MOD- 
ULEl, consists of a single monolithic module, whereas the 
second implementation, titled MODULE2, consists of four 
subprograms but uses the same algorithm to do the sort- 
ing. The quantitative metrics for C & C that have been 
developed are applied to the two implementations to show 
that (1) the metrics are in keeping with the qualitative 
evaluation of C& C in the two modules, and (2) on the 
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basis of the calculated C & C metrics, the two modules can 
be distinguished from each other. 

MODULEl-Implementation #l-a single procedure im- 
plements a “selection sort.” 

MODULE1 

package sort1 is 
type array-type is array (l..lOOO) of integer; 

Specifications of the procedure 

procedure sort1 (n : in integer; 
to-be-sorted: in out array-type; 
a--or-d: in character); 

end sortl; 

The code in the body is evaluated 

package body sort1 is 

procedure sort1 (n : in integer; 
to-be-sorted: in out array-type; 
a-or-d: in character) is 

location, temp : integer; 
begin 

for start in l..n loop 
location := start; 

-loop to get min or max each time 

for i in (start + 1X.n loop 
if a-or-d = ‘d’ then 

if to-be-sorted(i) > to-be-sorted(location) then 
location := i; 

end if; 
elsif to-be-sorted(i) < to-be-sorted(location) then 

location := i; 
end if; 

end loop; 

The exchange 

temp := to-be-sortedcstart); 
to-be-sortedcstart) := to-be-sorted(location); 
to-be-sorted(location) := temp; 

end loop; 
end sortl; 
end sortl; 

MODULE2-Implementation #2-four procedures im- 
plement a “selection sort.” 

MODULE2 

package sort2 is 
type array-type is array (l..lOOO) of integer; 

Specifications of the procedures 

procedure sort2 (n : in integer; 
to-be-sorted: in out array-type; 
a-or-d: in character); 

procedure find-max (n : in integer; 
to-be-sorted: in out array-type; 
location : in out integer); 

procedure find-min (n, start : in integer; 
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Table Al. Calculation of the Different Types of Cohesion for the Two Implementations 

Type of Single Procedure in 
Cohesion Implementation 1 

Four Procedures in Implementation 2 
Average Cohesion 

Values in 
A B C D Implementation 2 

Functional 0.08 
Data flow 0.64 
Action bundling 1.01 
Logical bundling 0.54 
Total cohesion* 2.27 

*The different types of cohesion are equally weighted. 

0.08 0.11 0.11 0.17 0.12 
1.17 0.75 0.75 0.17 0.71 
2.87 0.50 0.50 1.85 1.43 
0.38 0.60 0.60 0.0 0.40 
4.50 1.96 1.96 2.19 2.66 

Table A2. Calculation of Coupling for the Two Implementations 

Coupling 
Single Procedure 

in Implementation 1 

Four Procedures in Implementation 2 Average Coupling 
Values in 

A B C D Implementation 2 

C 0.10 0.13 0.14 0.14 0.20 0.15 

to-be-sorted: in out array-type; 
location : in out integer); 

procedure exchange (start : in integer; 
to-be-sorted: in out array-type; 
location :in out integer); 

end sort2; 
package body sort2 is 

Only body code evaluated 
Procedure find-max body (‘Proc. B’ in Tables Al and A2) 

procedure find-max (n, start : in integer; 
to-be-sorted: in array-type; 
location : in out integer); is 

begin 
location := start; 
for i in start + l..n loop 

if to-be-sorted(i) > to-be-sorted (location) then 
location := i; 

end if; 
end loop; 

end find-max; 

Procedure find-min body (‘Proc. c’ in Tables Al and A2) 

procedure find-min (n, start : in integer; 
to-be-sorted: in array-type; 
location : in out integer) is 

begin 
location := start; 
for i in start + l..n loop 

if to-be-sorted(i) < to-be-sorted (location) then 
location := i; 

end if; 
end loop; 

end find-min; 

Procedure exchange body (‘Proc. D’ in Tables Al and A2) 

procedure exchange (start : in integer; 

temp := to-be-sorted(start); 

to-be-sorted: in out array-type; 

to-be-sortedcstart) := to-be-sorted(location); 

location : in integer) is 
temp : integer; 
begin 

to-be-sorted(location) := temp; 
end exchange; 

Procedure sort2 body CProc. A’ in Tables Al and A2) 

procedure sort2 (n : in integer; 
to-be-sorted: in out array-type; 
a-or-d: in character) is 

location : integer; 
begin 

for start in l..n loop 
if a-or-d =‘d’ then 

find-max(n, start, to-be-sorted, location); 

find-min(n, start, to-be-sorted, location); 
end if; 
exchange (start, to-be-sorted, location); 

end loop; 
end sort2; 
end sort2; 


