EENG224 Homework I

1. Find $i_{x}(t)$ if $v_{s}(t)=20 \operatorname{Cos}\left(100 t-40^{\circ}\right)$ in the circuit of Fig. 1

Soln.:

Converting the circuit to the frequency domain, we get:

We can solve this using nodal analysis.

$$
\begin{aligned}
& \frac{V_{1}-20 \angle-40^{\circ}}{10}+\frac{V_{1}-0}{\mathrm{j} 20}+\frac{\mathrm{V}_{1}-0}{30-\mathrm{j} 20}=0 \\
& \mathrm{~V}_{1}(0.1-\mathrm{j} 0.05+0.02307+\mathrm{j} 0.01538)=2 \angle-40^{\circ} \\
& \mathrm{V}_{1}=\frac{2 \angle 40^{\circ}}{0.12307-\mathrm{j} 0.03462}=15.643 \angle-24.29^{\circ} \\
& \mathrm{I}_{\mathrm{x}}=\frac{15.643 \angle-24.29^{\circ}}{30-\mathrm{i} 20}=0.4338 \angle 9.4^{\circ} \\
& \mathrm{i}_{\mathrm{x}}=0.4338 \cos \left(100 \mathrm{t}+9.4^{\circ}\right) \mathrm{A}
\end{aligned}
$$

2. By nodal analysis, find $\boldsymbol{i}_{0}(\boldsymbol{t})$ in the circuit of Fig. 2

Soln.:

$$
\begin{aligned}
& 20 \operatorname{Cos}(1000 \mathrm{t}) \longrightarrow 20 \angle 0^{\circ}, \quad \omega=1000 \\
& 10 \mathrm{mH} \longrightarrow \mathrm{j} \omega \mathrm{~L}=\mathrm{j} 10 \\
& 50 \mu \mathrm{~F} \longrightarrow \frac{1}{\mathrm{j} \omega \mathrm{C}}=\frac{1}{\mathrm{j}\left(10^{3}\right)\left(50 \times 10^{-6}\right)}=-\mathrm{j} 20
\end{aligned}
$$

Converting the circuit to the frequency domain, we get:

At node 1,

$$
\begin{align*}
& 20=2 \mathbf{I}_{\mathrm{o}}+\frac{\mathbf{V}_{1}}{20}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{10}, \text { where } \mathbf{I}_{\mathrm{o}}=\frac{\mathbf{V}_{2}}{\mathrm{j} 10} \\
& 20=\frac{2 \mathbf{V}_{2}}{\mathrm{j} 10}+\frac{\mathbf{V}_{1}}{20}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{10} \\
& 400=3 \mathbf{V}_{1}-(2+\mathrm{j} 4) \mathbf{V}_{2} \tag{1}\\
& \text { At node 2, } \\
& \text { or } \quad \begin{array}{l}
\frac{2 \mathbf{V}_{2}}{\mathrm{j} 10}+\frac{\mathbf{V}_{1}-\mathbf{V}_{2}}{10}=\frac{\mathbf{V}_{2}}{-\mathrm{j} 20}+\frac{\mathbf{V}_{2}}{\mathrm{j} 10} \\
\mathrm{j} 2 \mathbf{V}_{1}=(-3+\mathrm{j} 2) \mathbf{V}_{2} \\
\mathbf{V}_{1}=(1+\mathrm{j} 1.5) \mathbf{V}_{2}
\end{array}
\end{align*}
$$

Substituting (2) into (1),

$$
\begin{aligned}
& 400=(3+\mathrm{j} 4.5) \mathbf{V}_{2}-(2+\mathrm{j} 4) \mathbf{V}_{2}=(1+\mathrm{j} 0.5) \mathbf{V}_{2} \\
& \mathbf{V}_{2}=\frac{400}{1+\mathrm{j} 0.5} \\
& \mathbf{I}_{\mathrm{o}}=\frac{\mathbf{V}_{2}}{\mathrm{j} 10}=\frac{40}{\mathrm{j}(1+\mathrm{j} 0.5)}=35.74 \angle-116.6^{\circ}
\end{aligned}
$$

Therefore, $\quad i_{0}(t)=\underline{35.74 \quad \operatorname{Cos}\left(1000 t-116.6^{\circ}\right)} \mathbf{A}$
3. By using mesh analysis, find I_{1} and I_{2} in the circuit in Fig. 3 .

Soln.:

For mesh 1,

$$
\begin{align*}
& (5+\mathrm{j} 5) \mathbf{I}_{1}-(2+\mathrm{j}) \mathbf{I}_{2}-30 \angle 20^{\circ}=0 \\
& 30 \angle 20^{\circ}=(5+\mathrm{j} 5) \mathbf{I}_{1}-(2+\mathrm{j}) \mathbf{I} \tag{1}
\end{align*}
$$

For mesh 2,

$$
\begin{align*}
& (5+\mathrm{j} 3-\mathrm{j} 6) \mathbf{I}_{2}-(2+\mathrm{j}) \mathbf{I}_{1}=0 \\
& 0=-(2+\mathrm{j}) \mathbf{I}_{1}+(5-\mathrm{j} 3) \mathbf{I}_{2} \tag{2}
\end{align*}
$$

From (1) and (2),

$$
\left[\begin{array}{c}
30 \angle 20^{\circ} \\
0
\end{array}\right]=\left[\begin{array}{cc}
5+\mathrm{j} 5 & -(2+\mathrm{j}) \\
-(2+\mathrm{j}) & 5-\mathrm{j} 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]
$$

$\Delta=37+\mathrm{j} 6=37.48 \angle 9.21^{\circ}$

$$
\Delta_{1}=\left(30 \angle 20^{\circ}\right)\left(5.831 \angle-30.96^{\circ}\right)=175 \angle-10.96^{\circ}
$$

$I_{1}=\frac{\Delta_{1}}{\Delta}=\underline{4.67 \angle-20.17^{\circ} \mathrm{A}}$

$$
\Delta_{2}=\left(30 \angle 20^{\circ}\right)\left(2.356 \angle 26.56^{\circ}\right)=67.08 \angle 46.56^{\circ}
$$

$$
\mathbf{I}_{2}=\frac{\Delta_{2}}{\Delta}=\underline{1.79 \angle 37.35^{\circ} \mathrm{A}}
$$

4. In the circuit shown in Fig.4, use source transformation to find the current I_{o}

Soln.:

Transform the $5 \angle 0^{\circ} \mathrm{A}$ current source into a voltage source, and the $30 \angle 60^{\circ} \mathrm{V}$ source into a current source:

Transform the voltage source $50 \angle 0^{\circ} \mathrm{V}$ source into a current source; then combine the current sources and the impedances in parallel:

$$
\frac{50}{10-j 5}=4+j 2
$$

$$
\begin{aligned}
& j 15 \|(10-j 5)=\frac{j 15(10-j 5)}{10+j 10}=11.25+j 3.75 \\
& 4+j 2+2 \angle-30^{\circ}=5.732+j
\end{aligned}
$$

By current division:

$$
\begin{aligned}
& I_{0}=\frac{11.25+j 3.75}{31.25+j 3.75} \times(5.732+j) \mathrm{A} \\
& I_{0}=2.04+j 0.8031=2.1923 \angle 21.49^{\circ} \mathrm{A}
\end{aligned}
$$

5. Determine the load impedance Z_{L} that maximizes the average power drawn from the circuit shown in Fig.5. What is the maximum average power?

Soln.:

$\mathrm{V}_{\mathrm{Th}}:$

KVL for the loop:

$$
\begin{aligned}
& -20 \angle 0+j 8 I_{x}+4\left(4 I_{x}\right)=0 \Rightarrow I_{x}=\frac{20 \angle 0^{\circ}}{16+j 8} \\
& V_{\text {oc }}=4\left(4 I_{x}\right)=16 I_{x}=\frac{16}{16+j 8} 20 \angle 0^{\circ} \\
& \quad=16-j 8 \mathrm{~V}=17.89 \angle-26.57^{\circ} \mathrm{V}
\end{aligned}
$$

$\underline{\mathrm{Z}_{\mathrm{Th}}}$:

KCL eqn. at node V_{1} :

$$
\begin{gathered}
\frac{V_{1}}{j 8}+\frac{V_{1}}{4}+\frac{V_{1}-V_{o}}{-j 4}-3 I_{x}=0 \\
I_{x}=-\frac{V_{1}}{j 8}
\end{gathered}
$$

$$
V_{1}=-\frac{V_{o}}{1+j} \Rightarrow I_{o}=\frac{V_{o}-V_{1}}{-j 4}=\frac{2+j}{(-j 4)(1+j)} V_{o} \Rightarrow Z_{\mathrm{Th}}=\frac{V_{o}}{I_{o}}=0.8-j 2.4 \Omega
$$

The Load impedance draws the maximum power from the circuit when

$$
Z_{L}=Z_{T H}^{*}=0.8+\mathrm{j} 2.4 \Omega
$$

The maximum average power is $\mathrm{P}_{\max }=\frac{|V T H|^{2}}{8 R_{T H}}=\frac{17.89^{2}}{8 \times 0.8}=50 \mathrm{~W}$

