Eastern Mediterranean University Department of Computer Engineering

CMxE 318: In-Class Practice March 27th, 2025

Instructor:	Behnam Bojnordi Arbab						
	Name/Surname	/	Student #				
Student 1:							
Student 2:							
Student 3:							
Student 4:							
Student 5:							

Student 6:

Instructions to Students::

- Discuss the tasks within your groups.
- Use <u>slides</u> provided, textbooks, credible internet sources, or any other resources (such as <u>ChatGPT</u>) to assist your answers.
- Write down your group's answers clearly.
- 100 Minutes to submit your answers on Teams.
- You may submit both the Digital and/or On-paper (scanned) answers together as a . zip file.
- Any other questions? Do it anyhow you want!

PART I : Questions from previous Midterms (2018 – 2019 Spring Semester)

- 1. Give the internal representation of the Lisp list " (A (B C) D)".
- 2. We are given the following grammar.

Give a **rightmost** derivation for the string "b a b d".

- 3. Show that the following grammar is ambiguous.
- 4. Give an equivalent grammar in **BNF** to the following grammar in **EBNF**.

 $S \rightarrow \{ (b \mid e) g \} [h]$

5. Eliminate left recursion from the grammar given below (give an equivalent grammar without left recursion).

 $X \rightarrow X a b | c | X d | X e$

6. We are given a context free grammar and its **LR** parsing tables below:

1. $E \rightarrow E + T$ 2. $E \rightarrow T$ 3. $T \rightarrow T * F$ 4. $T \rightarrow F$ 5. $F \rightarrow (E)$ 6. $F \rightarrow id$

	Action						Goto		
State	id	+	*	()	\$	E	Т	F
0	\$5			S4			1	2	3
1		S6				accept			
2		R2	S7		R2	R2			
3		R4	R4		R4	R4			
4	S5			S4			8	2	3
5		R6	R6		R6	R6			
6	\$5			S4				9	3
7	\$5			S4					10
8		S6			S11				
9		R1	S7		R1	R1			
10		R3	R3		R3	R3			
11		R5	R5		R5	R5			

Give the configurations of the $LR\ parser$ for the input " ($\$ (id)) \$".

PART II: Essential questions

Question 7: Programming Paradigms

- What are the main differences between imperative, functional, and logic programming paradigms?
- Provide a clear definition and one example language for each paradigm.
- Explain briefly how each of these languages would approach solving the same simple task: "Calculating the factorial of a number."

Question 8: Parsing Techniques

- Explain clearly the difference between **Top-Down** (Recursive Descent) Parsing and **Bottom-Up** (LR) Parsing techniques.
- For the given grammar, demonstrate briefly how each parser type would start analyzing the input:

```
Grammar:
S \rightarrow aSb | ab
```

Input: aaabbb

• Which parsing technique do you think is easier to implement by hand and why?

Question 9: Language Implementation

- What are the major differences between a **Compiler**, an **Interpreter**, and a **Just-In-Time** (JIT) compilation system?
- For each type, name one popular programming language implementation that uses this approach.
- Briefly discuss one advantage and one disadvantage of each implementation method.