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5.6.2 DESIGN PRINCIPLES OF COMBINED FOOTINGS (TS500    
REQUIREMENTS) 
 
           In combined footings there may be beam parts and plate parts. If there is a 
beam part, total height of the beam should not be less than 1/10 of the clear span. 
Plate part of a continuous footing may not be thinner than 20 cm. Design shear 
force should be calculated at the face of the column. If there is not a beam part in 
a continuous footing, plate thickness should not be less than 30 cm. 
Requirements of TS500 for the reinforcement of the beams and the plates can 
also apply to the beam and plate parts of the footings. There must be 
reinforcement in the compression part of the `continuous footing equal to at least 
one third of the tension reinforcement. 



5.6.3 TWO-COLUMN COMBINED FOOTINGS  
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Figure 5.25 



           These footings generally combine two very close columns or two columns 
one of which is very close to the next building (or property line). They are 
usually designed such that the resultant of the column loads passes through the 
centroid of the bearing area. Thus it is assumed that the soil stresses under the 
footing are uniformly distributed. The shape of the bearing area may be 
rectangular, trapezoidal or T shaped depending on the relative values of the 
column loads. In Fig. 5.25 some equations are given to simplify the 
determination of the bearing area dimensions for these shapes. These equations 
are based on the assumption that the resultant (R) of the column loads passes 
through the centroid of the bearing area. 



Example 5.4 
 
                                                                                          
 
                                                                                            
     
 
 
 
 
 
 
 
 
 
 
One end of the footing is limited by the property line which is 30 cm away from 
the column center as shown in Fig.5.26. Design this combined footing. 
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Figure 5.26 

b 

Dead loads:   Nd1 = 235 kN 
                      Nd2 = 365 kN 
Live loads:    Nl1 = 180 kN 
                      Nl2 = 280 kN 
 
qa = 245 kN/m2 

 

Materials: C18     S420 



Solution: 
 
           Let h =100 cm >380/10=38cm qef  = 245−1*25 = 245 − 25 = 220 kN/m2 
 
Resultant of the column loads and the location of the resultant force: 
 
           N1 = 235 + 180 =415 kN          N2 = 365 + 280 =645 kN    
 
           R = 415 + 645 = 1060 kN 
 
 
 
 
 
 
 
 
 

415 kN 645 kN R 

n m 
4.20 m 

L 



Moment equilibrium: 
           R.n = 1060n = 645*4.2 = 2709 kN-m 
 
           n = 2709 / 1060 = 2.55 m.         m + n = 0.3 + 2.55 = 2.85 m 
 
           L = 2(n +m) = 2*2.85 = 5.70 m.   
 
 Required minimum bearing area and minimum b:   

            min (bL) = 
220

1060
=

q
R

ef
= 4.82 m2     min b = 85.0=

7.5
82.4

=
L
82.4

 m 

            Selected b = 95 cm. 



Two column combined footings may be analyzed like beams. The soil pressure 
corresponds to distributed load and column loads correspond to support 
reactions. First shear force diagram is drawn and then moments are calculated 
from the shear areas. In the following these calculations are given. 
Design in long direction: 
 
           N1u = 1.4*235 + 1.6*180 = 617 kN    N2u = 1.4*365 + 1.6*280 = 959 kN 
 
           Ru = 617 + 959 = 1576 kN 
 
Design soil pressure per linear meter: 
 

           qu = m/kN5.276=
7.5

1576
=

L
R u  



Shear forces and bending moments: 
 
                               
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           12.44 − 1.93*534.05/2 = − 502.92 kN-m 
           − 502.92 + 627.25* (4.2 − 1.93) /2 = 209.01 kN-m 
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82.95 

-534.05 

627.25 

-331.75 
xo 

-502.92 

209.01 
12.44 

Shear forces: 
 
276.5*.0.30 = 82.95 kN 
82.95 − 617 = − 534.05 kN 
 − 534.05 + 276.5*4.2 = 627.25 kN 
627.25 − 959 = − 331.75 kN 
− 331.75 + 276.5*1.2 = 0 
 

xo = 93.1=
5.276

05.534
m 

 
Moments: 
 
82.95*0.3/2 = 12.44 kN-m 
 
 
 
 

276.5 kN/m 



Punching shear: 
 
Punching perimeter can not develop in this narrow footing. Therefore punching 
shear failure is not possible. 
 
One-way shear check: 
 
Design shear force will be calculated at the face of the second column since 
maximum shear force is 627.35 kN in this column. If d = 100 − 7 = 93 cm  
 
         Vd = 627.25 − 0.20*276.5 = 572.2 kN 
 
         Vcr = ( 0.65*1*950*930 ) / 1000 = 574.28 kN > Vd 

 
Shear reinforcement is not necessary but stirrups will be provided for assembling 
purposes. 



Bending design: 
 
           - M = 12.44 kN-m is too small to be considered. 
 

           - M = 502.92 kN-m = 5029200 kg-cm       R = 12.6=
93*95

5029200
2 kg/cm2 

 

            ρ < ρmin = 0.0022       As = 0.0022*95*93 = 19.44 cm2  
 
                  Selected: 6Ø22 (22.81 cm2)   (At the top) 
 
            - M = 209.10 kN-m < 502.92 kN-m     Select : 6Ø22  (At the bottom) 
 
Four of these six bottom bars (more than one third of the tension reinforcement) 
will continue across the compression zone and be cut at the other end of the 
footing. The height of the beam is more than 60 cm; therefore longitudinal web 
reinforcement should be provided. According to TS500 minimum area of these 
bars is 0.001bwd.  
 
           0.001*95*93 = 8.84 cm2   Selected: 4Ø18 (10.18 cm2 ) 
 
 For assembling the reinforcement stirrups with 30 cm spacing will be provided. 
Two stirrups per set will be used since the footing is rather wide. Details are 
shown in Fig. 5.27. Development lengths should be checked especially for the 
bars provided for the positive moments. 



     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           If column dimensions are large and support moments are high adjustments 
may be made on support moments. Shear diagrams between the faces of columns 
may be drawn more accurately taking the column loads as uniformly distributed 
loads as shown in Fig.5.28. Then maximum moment is calculated at the section 
where shear force is zero. In the figure shear forces and the moments at the 
bottom of the right column are shown just as an example.  
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Distribured column load: 
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N
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Uniformly distributed load across  the  
column width: 
2397.5 − 276.5 = 2121 kN/m 
 
Distance of the section where shear force 
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Figure 5.28 



            Footing designed in this example was a narrow one. Therefore in the 
short direction no calculation was necessary. There may be cases where the 
width of the footing is much larger than the column width. In such cases in 
column areas reinforcement parallel to the short sides should also be provided.  
In Fig. 5.29 these areas are shown. They are transverse strips and designed as 
cantilevers. The widths of these cantilevers are equal to the widths of columns 
plus d/2 at two sides. The pressure acting below the cantilever is found dividing 
the column load by b. Shear force and bending moment are computed at section 
I-I. Calculated reinforcement is placed over the main reinforcement.  
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5.7 CONTINUOUS STRIP FOOTINGS 
 
           Continuous strip footings are the combined footings that support some or 
all columns of a frame. As mentioned earlier if soil is not suitable for making 
single column footings, continuous footings may be the solution for the 
foundation problem. Besides, instead of making single column footings and 
tying them with tie-beams, making strip footings in one direction and tying them 
in the other direction may be more suitable in earthquake zones. Soil pressure 
distribution under a strip footing depends on the rigidity of the footing and on the 
compressibility of the soil. For compressible soils it is possible to assume that 
the soil pressure and the settlement of the footing at any point are proportional to 
each other. By this assumption and by using the theory of the beams on elastic 
foundations, a very reasonable solution can be obtained. However this method is 
not very practical and the results will not be realistic if true soil properties are not 
defined very well. For this reason in practice generally some approximate and 
easier methods are used.  
           If number of columns are small and spans are not too large footings 
behave rigidly. Deformations of the rigid footings are linear. Therefore soil stress 
distribution may also be assumed as linearly varying. As a special case uniformly 
distributed pressures may be assumed if the resultant of the column loads is 
passing across the centroid of the footing. Rigid continuous strip footings may be 
designed exactly in the same way as the two-column combined footings. 



           On the other hand if spans are large, footing may not behave as a rigid 
one. It behaves as a flexible footing. Under the flexible footings soil pressures 
vary as shown in Fig.5.30b. This distribution may be approximated by triangular 
or uniform distributions as shown in Figs.5.30c and 5.30d.     
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Figure 5.30 



           The following approximate design method assumes uniform soil 
distributions under the columns as shown in Fig. 5.30d. 
 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
       
 
 
At first, it is assumed that each column has an effective length on the footing. 
This length is equal to the distance between the middle points of the spans. If 
there are cantilevering parts at the ends, they are included in the effective lengths 
of the external columns as shown in the Fig. 5.31. For each column uniformly 
distributed linear soil load is determined dividing the column load by the 
effective length. Thus q1, q2, q3 etc. are calculated. The width of the footing is 
computed dividing maximum of them by qef. For design qu1, qu2, qu3 etc. are 
calculated like q1, q2, q3 etc. are calculated but this time by using design column 
loads (factored loads). At last, average soil loads are found as shown in Fig.5.31 
and shear forces and bending moments are calculated by using these average 
loads. 
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5.8 GRID FOUNDATIONS 
 
            Grid foundations are essentially strip footings arranged in two directions. 
They are more effective than one-way strip footings for the prevention of 
differential settlement. The theory of beams on elastic foundations may also be 
applied to grid foundations. However in practice generally approximate, simple 
but sufficiently accurate methods are used. As an example, one of these widely 
used methods  is  given below. In Fig.5.34 a grid foundation example supporting 
9 columns is shown. Design method will be described on this example. 
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It is assumed in this method that while one part of the column load is spread in 
one direction the remaining part is spread in the other direction. After 
determining these portions of the column loads, each strip footing is analyzed 
and designed independently. To simplify the computations it is advised to select 
the footing widths equal in both directions. For each column effective lengths are 
defined in both directions as the lengths between the midspans. For example 
effective lengths for the column C1 shown in Fig.5.34 are:  
 

           Lex = ax + 2
L 1x        and         Ley = cy + 2

L 2y
 

 
Effective lengths for the column C2: 
 

           Lex = 
2

L+L 2x1x     and        Ley = cy + 2

L 2y
 

 
Effective lengths for the column C5: 

                   Lex = 
2

L+L 2x1x      and       Ley = 
2

L+L 2y1y
    



Effective lengths for all other columns are found similarly. The bearing area 
under the effective lengths of a column is defined as “effective area” of the 
column. If “b” is the widths of the strips the effective area “A” is: 
 
           A = Lexb + Leyb − b2                                                                              (5.9) 
 
If a uniform pressure distribution is assumed under the effective area, 
 

           A = 
efq

N
                                                                                              (5.10) 

 
By equating the right sides of two equations: 
 

           b)L+L(=
q
N

eyex
ef

− b2                                                                            (5 .11) 



By solving Eq.(5.11) the value of “b” for this particular column can be 
calculated. It is most likely that for each column a different “b” will be 
calculated. Maximum of them is selected for the widths of all the strips. The 
portion of the column loads considered in x and y direction strips are found as 
follows: 
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           Ny = N
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Using factored loads in Eqs.(5.12) and (5.13) column loads can be computed for 
each footing. Then they can be designed by the methods given in the previous 
section. That is either rigid beam or flexible beam approach is employed 
according to the rigidity of the footing. 



5.9 MAT FOUNDATIONS 
 
           Mat foundations are thick solid plates as 
mentioned earlier. The design of them also depends on 
the rigidities of the plates. Under the rigid foundations 
soil pressure distributions may be assumed as uniform or 
linearly varying. They may be designed like beamless 
slabs. Sometimes mat foundations may have beam parts 
as shown in Fig. 5.35. These foundations may be 
designed like slabs supported by the beams. If soil 
pressure is not uniform because of eccentricity, average 
soil pressure may be used in design. 
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Figure 5.35 



These foundations may be designed like slabs supported by the beams. If soil 
pressure is not uniform because of eccentricity, average soil pressure may be 
used in design. 
           If foundation is assumed flexible, analysis may be done as follows: 
Effective areas are defined for columns which are the areas within the middle 
lines of the slab parts as shown in Fig.5.35 (shaded area). The soil pressure for 
each effective area is calculated. Thus four different pressure values are 
computed for every corner quarter of a slab, but slabs are designed by using 
average of these four pressure values. The design of the beam parts is similar to 
those of the grid foundations. 
           Bearing area of mat foundation may be computed by using average soil 
pressure: 
 

           qav = 
yx LL

NΣ
 ≤ qef                                                                                 (5.14) 

 
where ΣN is the sum of the column loads. From this equation, 
 
            LxLy  ≥ ( ΣN /qef )                                                                                (5.15) 
During the calculation of qef usual reductions should be made in allowable soil 
pressure. However if there is basement floor over the foundation, live load of the 
basement floor should also be substracted from the allowable soil pressure. 


