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COMPRESION PLUS BENDING OF 
COLUMNS

• Columns are rarely subjected to concentric loads. 
Columns receive bending moments at the rigid joints 
since they are the members of the frame. 

• In addition, there may be eccentricity (eg. Inevitable 
imperfection in the construction may cause unexpected 
bending of a column). 

• Therefore, TS 500 defines the minimum eccentricity as 
follows: 

   emin=15 mm +0.03h  
 where h is dimension of the column in bending direction. 

If bending moment is zero or eccentricity is less than emin 
design moment should be adjusted by using emin. 



• A column subjected to axial compression plus 
bending moment is shown in Fig.3.3a. In Fig.3.3b 
equivalent eccentric loading for the same column 
is shown in which e=M/N. 
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STRENGTH ANALYSES OF RECTANGULAR COLUMNS 
SUBJECTED TO COMBINED FLEXURE AND AXIAL LOAD

•  The results of numerous tests reveal that 
columns fail by crushing of concrete when 
eccentrically compressed. At this moment 
reinforcement either in the compression side or in 
the tension side may be yielding or not. Section 
of the column may be completely under 
compression or partly in compression partly in 
tension depending on the value of eccentricity. 



•  In design the strain corresponding to the crushing of 
concrete is assumed as 0.003 like in pure bending. It is 
also assumed that the real stress distribution in concrete 
can be replaced by an equivalent rectangular stress 
block. The equivalent stress is 0.85fcd and the height is 
‘’a’’ in this block. As in the case of pure bending a = k1c, 
where k1 varies with the strength of concrete.  These 
assumptions are in good agreement with the test results. 
In Fig.3.4 a rectangular column section, assumed strain 
distribution at the moment of failure and internal forces 
balancing external force are shown. 
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• Between the external and internal forces 
the following equilibrium equations can be 
written:

           N = 0.85fcd ab + A's fs' − Asfs                  (3.12)

  M = Ne =  0.85fcd ab (
2
h − 

2
a ) + A's fs' ( 2

h − d't ) + Asfs  (d − 
2
h

 )      (3.13)



• In the equations above it is assumed that fs is 
tension as shown in Fig.3.4. Otherwise opposite 
signs should be used in the last terms of the 
equations. Strains in tension and compression 
bars can be calculated from the similar triangles 
in the strain diagram as follows:

           εs = 0.003
c
c-d

                                    
(3.14)

           ε's = 0.003
c
d - '

tc       (3.15)

Steel stresses are determined by Hook’s Law:
           fs = εsEs  = 0.003

c
d c-

Es ≤ fyd                       (3.16)

           f’s = ε’sEs  = 0.003
c
dc t́- Es ≤ fyd                   (3.17)



• Replacing “c” by (a / k1) and substituting Eqs. 
(3.16) and (3.17), Eqs. (3.12) and (3.13) can be 
written in terms of “a”. Thus N and “a” will be two 
unknowns in the equations if eccentricity is known. 
It is possible to assume that these two unknowns 
can be calculated by the simultaneous solution of 
Eqs. (3.12) and (3.13). However this process is 
very complicated, because “a” is not a free 
variable. It can not be greater than “h” and it can 
not take the values corresponding to the steel 
stresses higher than fyd.



• For this reason in practice strength interaction 
diagrams (briefly interaction diagrams) are used for 
hand calculations. For the construction of this 
diagram first position of neutral axis “c” is 
assumed. Then “ a (≤ h) ”, εs, ε's, fs and fs' are 
computed. Finally N and M are determined from 
Eqs. (3.12) and (3.13). A series of such 
calculations makes it possible to plot a diagram 
which shows the strength couples Nr and Mr for a 
particular column. In Fig.3.5 an interaction diagram 
is shown. 
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Radial lines in this diagram 
r e p r e s e n t t h e c o n s t a n t 
eccentricity e = M / N, that is, if 
external load is increased by 
keeping the eccentricity constant, 
points corresponding to the pairs 
M and N will be on this line. The 
point where the line  reaches the 
curve represents the load pair N 
and M =Ne causing the failure of 
the column with the eccentricity 
“e”. Vertival axis corresponds to 
zero eccentricity, that is, No is the 
strength of the column if axially 
l o a d e d . H o r i z o n t a l a x i s 
c o r r e s p o n d s t o i n f i n i t e 
eccentricity, that is, Mo is the pure 
bending strength of the column. It 
is clear that the diagram covers 
all possible eccentricities between 
zero and infinity.   



BALANCED FAILURE 
• Two distinct type of failures can be observed in short columns. If 

compression area is too small, that is, “c” is very small, εs' and as a 
result fs' will be small whereas εs will be large (see Fig.3.4). 
Therefore, tension steel may yield and initiate the failure. This is the 
same type of failure observed in under-reinforced beams and known 
as tension failure. 
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However, there is a very special case in which tension steel and 
concrete reach the ultimate strength values simultaneously. That is 
concrete strain reaches to εu and steel strain to εy at the same time. 
Such a failure is known as “Balanced Failure”. Strain diagram 
corresponding to balanced failure is shown in Fig.3.6.

Tension failures correspond to large eccentricities. Infinite eccentricity 
(pure bending) is the limit case for them as shown in Fig.3.5. On the 
other hand as “c” increases compression strains also increase but 
tension strains decrease. If strain in tension steel is less than the yielding 
strain, this steel will not yield. In such cases failure will be initiated by 
crushing of the concrete as observed in over-reinforced beams. Failures 
of this type are known as compression failures and correspond to small 
eccentricities. In fact for the values of “c” equal or greater than “h” cross-
section of the column becomes completely under compression and fs 
also becomes compression. Zero eccentricity is the limit case for 
compression failures.



It is clear that if “c” is less than cb  it will be tension failure, if greater than 
cb it will be compression failure. Balanced failure is the border between 
these two failure types. By the substitution of ab = k1cb into Eqs.(3.12) 
and (3.13) Nb and Mb which is the pair corresponding to balanced failure 
can be calculated (See Fig.3.5). Although there is a similarity between 
the failure modes, a definite type of failure can not be prescribed for the 
columns as it can be done for the beams. Failure type in the columns 
depends on the degree of eccentricity which in turn depends on the 
properties of the structure. Once established, structural system is not 
changed too much by the designer. Nevertheless the point B on the 
interaction diagram is significant since the points over B correspond to 
brittle failure whereas the points below B correspond to ductile failures.
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INTERACTION DIAGRAMS USED IN 
DESIGN (DESIGN CHARTS)

 An interaction diagram shown in Fig. 3.5 can be used only 
for a particular column. But in design there must be 
diagrams which can be used as many times as possible. 
Such diagrams can be obtained by converting equilibrium 
equations into non-dimensional forms. In the following, 
construction of design charts for symmetrically reinforced 
rectangular columns which do not have middle bars will be 
explained. Nearly all columns in practice are symmetrically 
reinforced. Such a column is shown in Fig. 3.9. If total steel 
area in the column is Ast, there will be half of this steel (Ast/
2) at each side. For the rectangular columns without middle 
bars Eqs. (3.12) and (3.13) were obtained as two 
equilibrium equations. If two sides of Eq. (3.12) is divided by 
bhfcd and two sides of Eq. (3.13) by bh2fcd  these 
equations become non-dimensional as follows:
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From the geometry of the section 
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• For a certain steel grade and for a particular d'' / h 
value a family of interaction diagrams corresponding 
to various ρtm values can be plotted. Fig.3.10 
illustrates such a design chart. The horizontal line 
corresponding to N / bhfcd = 0.9 is TS500 limit that 
should not be exceeded. It is obvious that radial lines 
in design chart correspond to e/h ratios. Similar 
design charts may be produced for the sections with 
the reinforcement distributed around the perimeter of 
the section and for the circular sections. Some design 
charts are given in the Appendix.





These charts may be used essentially in two ways for a given design (factored) 
load pair N and M. 
 
1- (a) Select the dimensions b and h. 
    (b) Establish d' , calculate d''/h and select the corresponding design chart. 
    (c) Calculate N/bhfcd  and M/bh2fcd. 
    (d) Find the corresponding point on the graph and read the value of ρtm. 
    (e) Calculate m = fyd / fcd and then ρt.  Steel ratio should be less than maxρt.           

Otherwise change the dimensions and repeat the calculations. If ρt < minρt 
min ρt should be used in the column. However if calculated steel ratio is too 
small dimensions may be reduced and calculations may be repeated. 

    (d) Calculate Ast = ρtbh and select the bars. 
 
2- (a) Choose the desired steel ratio and calculate ρtm. 
    (b) Select h, establish d' and calculate d''/h. Select the corresponding graph. 
    (c) Calculate e = M / N and then e/h. 
    (d) Find the intersection point of the e/h line and the ρtm curve. Read the value 

of  N/bhfcd on the vertical axis 
    (e) Calculate b. Repeat the calculations if a better proportioned section is 

desired. 
    (f) Calculate Ast = ρtbh and select the bars 
 

Some other problems can also be solved by using these graphs. For 
example, if N is known for a given column M can easily be determined. 
Similarly if M is known N can be determined. If eccentricity is known for a 
given column both N and M can be determined. 



 
Example 3.1 
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Figure 3.11 

The column shown in Fig.3.11 is subjected to a design 
load pair of N = 1200 kN and M = 200 kN-m. 
Determine the dimensions and the reinforcement of the 
column if the reinforcement is placed at the sides as 
shown in the figure. 
 
Materials: C25  and S420 
 



Solution: 
 
Minimum section area allowed by TS500: 
 

           Min Ac = 2

ck
mm80000=

25*6.0
1200000

=
f6.0

N
  

 
Selected dimensions: b = 30 cm, h = 40 cm(300*400=120000 mm2>80000 mm2). 
 
           d'' = 40 − 2*4 = 32 cm.    d'' / h = 32 / 40 = 0.8    λ = 0 (no middle bars) 
 
Chart A-3 corresponds to this column. 
 

           59.0=
17*400*300

10*1200
=

bhf
N 3

cd
           25.0=

17*400*300
10*200

=
fbh

M
2

6

cd
2  

 
              ρtm = 0.46 (read from the chart)         m = 365 / 17 = 21.5 
 

              ρt = 021.0=
5.21

46.0
        minρt = 0.01< ρt =0.021 < maxρt =0.04     OK. 

 
               Ast = 0.021*30*40 = 25.7 cm2      Select: 6Ø24 (27.14 cm2) 
 
               Ties: selected Ø8              Check: 8 = 24 /3 = 8 mm      OK. 
 
               Spacing of ties: smax = 12*24 = 288 mm = 28.8 cm > 20 cm.   s = 20 cm. 



Details are shown in Fig.3.12.    
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Because the distance 
between the corner bars in 
the long direction is more 
than 30 cm, 2Ø14 bars are 
placed between them and 
they are tied with Ø8/20 
cross-ties.  Ø8/20 

Figure 3.12 


