HOMEWORK \# 6 (Due to $7^{\text {th }}$ Of June at 16:00)

Q1) Implement the following Boolean function with a 8×1 multiplexer, a 2-to-4-line decoder and two 2input OR gates. Note that the complement inputs are not available.
$F(A, B, C, D, E)=\Sigma(0,7,10,13,16,17,18,19,21,22,28,30)$

Q2) Mod-4 counter is a sequential circuit that has two flip-flops A and B and one input x. It consists of a combinatorial logic connected to the D flip-flops, as shown in Figure below. Analyze the circuit:
a) Derive the next state and output equations.
b) Derive the state table of the sequential circuit.
c) Draw the corresponding state diagram.

Q3) For a given Boolean function $F(w, x, y, z)=\Sigma(1,4,5,6,12,14,15)$ which has the don't care conditions $d(w, x, y, z)=(3,7,11)$
a) Determine the sum of products (SOP).
b) Implement F with only NAND gates.
c) Determine the product of sums (POS).
d) Implement F with only NOR gates.

Q4) Design a combinational circuit that converts a 4-bit gray code to a 4-bit binary number. Implement the circuit using exclusive-OR gates.

Q5) Draw the state table and the state diagram of the sequential circuit shown below:

