		MENG2	46 Therm	odynamic	es II			
Eastern Mediterranean University Faculty of Engineering								
Department:								
Mechanical Engineering			1					
Program Name:			_					
Mechanical Engineering			Program	Code: 23				
Course Code:	Cou	rse Title:		Cred	its:	Year/Semester:		
$\frac{\text{MENG246}}{\text{MENG246}}$	The	Thermodynamics II 3 C				2017-2018 Spring		
Engineering or Area C	fore	1						
Engineering Course C	lective	y other pro	grams					
Mothematics and Resi	a Science	00						
General Education	c Scienc	es						
Prerequisite(s). MENG	045 & M	ENG203						
Catalog Description	245 & 10	LINO205						
Catalog Description.	, and an	whined not		Dofrigon	otion avala	. Thermodynamic monatty		
relations Gas mixtures	Gas var	nomed pov	wel cycles	conditioni	ation cycle	cal reactions. Chemical and		
phase equilibrium Thern	Uas-vaj 10dvnam	ics of high	uspeed flu	id flow	ing. Chenn	car reactions. Chemicar and		
Instructor Normal	llouynan	Office n		Office T				
Asst. Prof. Dr. Devrim A	ydın	ME120	0:	6301045	6301045			
Course Web Page: http	s://staff.	emu.edu.tr	/devrimayo	lin/en/mer	ng246			
Textbook(s): Cengel, Y	. A. and	Boles, M.	A., Therm	odynamics	s: an Engin	eering Approach, 8 th ed.,		
The McGraw-Hill Comp	anies, No	ew York, 2	015.	5	U			
Indicative Basic Reading	ng List	: Adrian E	Bejan, Adv	anced Eng	gineering T	Thermodynamics, Wiley, 3 rd		
edition, 2006.	0		5	·	0			
Topics Covered and Cla	ass Sche	dule:						
(3 hours of lectures and 1	hour of	tutorial we	ork per we	ek)				
Week 1 and Week 2	Gas Pow	er Cycles: 7	The Carnot c	ycle and its	value in engi	neering, air standard		
	assumption	ons, Otto cy	cle, Diesel	cycle, Stirli	ing and Eric	sson cycles, Bryton		
Week 3 and week 4	Cycle, ideal jet-propulsion cycles, second law analysis of gas power cycles							
WEEK J and WEEK 4	regenerative and reheat Rankine cycles, second-law analysis of valor power							
	cycles, cogeneration, combined gas-vapor cycles							
Week 5 and week 6	Refrigeration Cycles: The reversed Carnot cycle, ideal vapor-compression							
	refrigerat	ion cycle, s	second-law	analysis of	vapor-comp	ression refrigeration		
	cycle, he	at pump sy	stems, gas	refrigeration	cycles, abs	orption refrigeration		
Week 7 and week 8	Coc mix	turos • Ma	and mole	fractions	Dy T bohovi	ior of gas mixtures		
week / and week 8	properties of gas mixtures							
Week 9 and week 10	Midterm Examination Week							
Week 11 and week 12	Gas-vapor mixtures and air-conditioning: Dry and atmospheric air. specific							
	and relative humidity of air, dew point temperature, adiabatic saturation and wet-bulb temperatures. Psychrometric chart, human comfort, air-conditioning							
Weeks 13 and week 14	Chemica	l reactions:	Fuels and co	ombustion, t	heoretical and	d actual combustion,		
	enthalpy of combustion, first law analysis of reacting systems, adiabatic flame							
	temperati	are, entropy	change of	reacting s	ystems, seco	ond-law analysis of		
Week 15	Chemice	and nho	se eanilibr	ium. Crite	rion for ch	emical equilibrium		
,, ook 10	equilibriu	im constant	for ideal	gas mixtu	ires, chemic	cal equilibrium for		

	simultaneous reactions, variation of Kp with temperature, phase equilibrium
Week 15	Compressible flow: Stagnation properties, speed of sound and Mach-number,
	1D isentropic flow, isentropic flow through nozzles, shock waves and expansion
	waves, duct flow with heat transfer, steam nozzles
Week 16	Final Examination Week Starts

Lecture and Tutorial Learning Outcome		Student Outcomes	Performed Assessments and Percentage
•	apply principles of math, science and engineering in solving Thermodynamics II problems;		
•	design a thermodynamic cycle or process;		
•	demonstrate ability to function in design teams;		
•	an ability to identify, formulate, and solve engineering problems.		
•	identify ethical issues associated with engineering solutions to the selection of a particular power cycle for a given application;		Midterm (1) 30% Final Exam (1) 40% Quizzes (2) 10%
•	demonstrate effective solution procedures to communicate solutions to engineering problems;	a, e, h, k	
•	Identify ways in which knowledge of thermodynamics aids in the design of energy systems for improved efficiency and reduced pollution;		
•	demonstrate effective use of the internet to find examples of devices related to energy production;		
•	write an essay on the selection of a power cycle and its contribution to global warming; solve typical Thermodynamics II problems using EES software;		

Lab. Experiment Title and Lab. Equipment Used	Lab Learning Outcome	Student Outcomes	Performed Assessments and Percentage
1. Cooling tower experiment	ability to design and conduct experiments, as well as analyze and interpret data	b	Laboratory 10%
2. A/C unit experiment	ability to design and conduct experiments, as well as analyze and interpret data	b	Laboratory 10%

Contribution of Course to Criterion 5

Credit Hours for: Mathematics & Basic Science : 0 Engineering Sciences and Design : 3 General Education : 0

Important Notes:

Quiz Dates:

Quiz 1: During tutorial hour of week $4 \rightarrow 9^{\text{th}}$ March 2018, Friday at 11:30 Quiz 2: During tutorial hour of week $13 \rightarrow 11^{\text{th}}$ May 2018, Friday at 11:30

Lab Dates:

Lab 1: Week 11→ 24th - 27th April 2018, Lab 2: Week 12→ 2nd - 4th May 2018,

NG Policy:

Students,

- who do not attend both mid-term and final exams or
- who do not attend lab1 and lab2 or
- who have less than 60 % lecture attendance and fail

will be given NG.

Appeals:

Any appeal against the marks of any assessment component must be made to the course instructor within one week following the announcement of the marks.

Any appeal concerning a semester grade must be made to the course instructor no later than the end of the registration period of the following semester.

Makeups:

There will be no make up for quizzes or labs.

A student who fails to sit for an examination for a valid reason is given a make-up exam. Within three working days after the examination, students who wish to take a make-up must submit a written statement to the course instructor explaining the reason(s) for his/her request.