Chapter 13
GAS MIXTURES
Objectives

• Develop rules for determining nonreacting gas mixture properties from knowledge of mixture composition and the properties of the individual components.
• Define the quantities used to describe the composition of a mixture, such as mass fraction, mole fraction, and volume fraction.
• Apply the rules for determining mixture properties to ideal-gas mixtures and real-gas mixtures.
• Predict the $P-v-T$ behavior of gas mixtures based on Dalton’s law of additive pressures and Amagat’s law of additive volumes.
• Perform energy and exergy analysis of mixing processes.
COMPOSITION OF A GAS MIXTURE: MASS AND MOLE FRACTIONS

To determine the properties of a mixture, we need to know the composition of the mixture as well as the properties of the individual components. There are two ways to describe the composition of a mixture:

Molar analysis: specifying the number of moles of each component

Gravimetric analysis: specifying the mass of each component

The mass of a mixture is equal to the sum of the masses of its components.

\[m_m = \sum_{i=1}^{k} m_i \]

\[N_m = \sum_{i=1}^{k} N_i \]

The number of moles of a nonreacting mixture is equal to the sum of the number of moles of its components.

\[mf_i = \frac{m_i}{m_m} \]

\[y_i = \frac{N_i}{N_m} \]
Apparent (or average) molar mass

\[M_m = \frac{m_m}{N_m} = \frac{\sum m_i}{N_m} = \frac{\sum N_i M_i}{N_m} = \sum_{i=1}^{k} y_i M_i \]

\[m = NM \]

Gas constant

\[R_m = \frac{R_u}{M_m} \]

The molar mass of a mixture

\[M_m = \frac{m_m}{N_m} = \frac{m_m}{\sum m_i / M_i} = \frac{1}{\sum m_i / (m_m M_i)} = \frac{1}{\sum_{i=1}^{k} \frac{m_f_i}{M_i}} \]

Mass and mole fractions of a mixture are related by

\[m_f_i = \frac{m_i}{m_m} = \frac{N_i M_i}{N_m M_m} = y_i \frac{M_i}{M_m} \]

The sum of the mass and mole fractions of a mixture is equal to 1.

\[\sum_{i=1}^{k} m_f_i = 1 \quad \text{and} \quad \sum_{i=1}^{k} y_i = 1 \]

\[
\begin{align*}
H_2 + O_2 \\
y_{H_2} &= 0.75 \\
y_{O_2} &= 0.25 \\
&= 1.00
\end{align*}
\]

The sum of the mole fractions of a mixture is equal to 1.
P-v-T BEHAVIOR OF GAS MIXTURES: IDEAL AND REAL GASES

The prediction of the P-v-T behavior of gas mixtures is usually based on two models:

Dalton’s law of additive pressures: The pressure of a gas mixture is equal to the sum of the pressures each gas would exert if it existed alone at the mixture temperature and volume.

Amagat’s law of additive volumes: The volume of a gas mixture is equal to the sum of the volumes each gas would occupy if it existed alone at the mixture temperature and pressure.
Dalton’s law:

\[P_m = \sum_{i=1}^{k} P_i(T_m, V_m) \]

exact for ideal gases, approximate for real gases

Amagat’s law:

\[V_m = \sum_{i=1}^{k} V_i(T_m, P_m) \]

\[P_i \] component pressure
\[V_i \] component volume
\[P_i / P_m \] pressure fraction
\[V_i / V_m \] volume fraction

For ideal gases, Dalton’s and Amagad’s laws are identical and give identical results.

\[\begin{align*}
O_2 + N_2 & \\
100 \text{ kPa} & \\
400 \text{ K} & \\
1 \text{ m}^3 & \\
\end{align*} \]

The volume a component would occupy if it existed alone at the mixture \(T \) and \(P \) is called the component volume (for ideal gases, it is equal to the partial volume \(y_i V_m \)).
Ideal-Gas Mixtures

This equation is only valid for ideal-gas mixtures as it is derived by assuming ideal-gas behavior for the gas mixture and each of its components.

The quantity $y_i P_m$ is called the **partial pressure** (identical to the *component pressure* for ideal gases), and the quantity $y_i V_m$ is called the **partial volume** (identical to the *component volume* for ideal gases).

Note that for an ideal-gas mixture, the mole fraction, the pressure fraction, and the volume fraction of a component are identical.

The composition of an ideal-gas mixture (such as the exhaust gases leaving a combustion chamber) is frequently determined by a volumetric analysis (Orsat Analysis)
Real-Gas Mixtures

One way of predicting the P-v-T behavior of a real-gas mixture is to use compressibility factor.

Compressibility factor

$P V = Z N R_u T$

$Z_m = \sum_{i=1}^{k} y_i Z_i$

Z_i is determined either at T_m and V_m (Dalton’s law) or at T_m and P_m (Amagat’s law) for each individual gas. Using Dalton’s law gives more accurate results.

Another way of predicting the P-v-T behavior of a real-gas mixture is to treat it as a pseudopure substance with critical properties.

Kay’s rule

Pseudopure substance

$P'_{cr,m} = \sum_{i=1}^{k} y_i P_{cr,i}$

$T'_{cr,m} = \sum_{i=1}^{k} y_i T_{cr,i}$

Z_m is determined by using these pseudocritical properties.

The result by Kay’s rule is accurate to within about 10% over a wide range of temperatures and pressures.
PROPERTIES OF GAS MIXTURES: IDEAL AND REAL GASES

Extensive properties of a gas mixture

$$U_m = \sum_{i=1}^{k} U_i = \sum_{i=1}^{k} m_i u_i = \sum_{i=1}^{k} N_i \bar{u}_i \quad (kJ)$$

$$H_m = \sum_{i=1}^{k} H_i = \sum_{i=1}^{k} m_i h_i = \sum_{i=1}^{k} N_i \bar{h}_i \quad (kJ)$$

$$S_m = \sum_{i=1}^{k} S_i = \sum_{i=1}^{k} m_i s_i = \sum_{i=1}^{k} N_i \bar{s}_i \quad (kJ/K)$$

Changes in properties of a gas mixture

$$\Delta U_m = \sum_{i=1}^{k} \Delta U_i = \sum_{i=1}^{k} m_i \Delta u_i = \sum_{i=1}^{k} N_i \Delta \bar{u}_i \quad (kJ)$$

$$\Delta H_m = \sum_{i=1}^{k} \Delta H_i = \sum_{i=1}^{k} m_i \Delta h_i = \sum_{i=1}^{k} N_i \Delta \bar{h}_i \quad (kJ)$$

$$\Delta S_m = \sum_{i=1}^{k} \Delta S_i = \sum_{i=1}^{k} m_i \Delta s_i = \sum_{i=1}^{k} N_i \Delta \bar{s}_i \quad (kJ/K)$$

The extensive properties of a mixture are determined by simply adding the properties of the components.
Extensive properties of a gas mixture

\[u_m = \sum_{i=1}^{k} m_{i} u_i \text{ (kJ/kg)} \quad \text{and} \quad \bar{u}_m = \sum_{i=1}^{k} y_i \bar{u}_i \text{ (kJ/kmol)} \]

\[h_m = \sum_{i=1}^{k} m_{i} h_i \text{ (kJ/kg)} \quad \text{and} \quad \bar{h}_m = \sum_{i=1}^{k} y_i \bar{h}_i \text{ (kJ/kmol)} \]

\[s_m = \sum_{i=1}^{k} m_{i} s_i \text{ (kJ/kg \cdot K)} \quad \text{and} \quad \bar{s}_m = \sum_{i=1}^{k} y_i \bar{s}_i \text{ (kJ/kmol \cdot K)} \]

Properties per unit mass involve mass fractions \((m_f)\) and properties per unit mole involve mole fractions \((y_i)\).

The relations are exact for ideal-gas mixtures, and approximate for real-gas mixtures.

<table>
<thead>
<tr>
<th>[2 \text{ kmol A}]</th>
<th>[3 \text{ kmol B}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\ddot{u}_A = 500 \text{ kJ/kmol}]</td>
<td>[\ddot{u}_B = 600 \text{ kJ/kmol}]</td>
</tr>
<tr>
<td>[\ddot{u}_m = 560 \text{ kJ/kmol}]</td>
<td></td>
</tr>
</tbody>
</table>
Ideal-Gas Mixtures

Gibbs–Dalton law: Under the ideal-gas approximation, the properties of a gas are not influenced by the presence of other gases, and each gas component in the mixture behaves as if it exists alone at the mixture temperature T_m and mixture volume V_m.

Also, the h, u, c_v, and c_p of an ideal gas depend on temperature only and are independent of the pressure or the volume of the ideal-gas mixture.

\[
\Delta s_i = s_{i,2}^\circ - s_{i,1}^\circ - R_i \ln \frac{P_{i,2}}{P_{i,1}} \equiv c_{p,i} \ln \frac{T_{i,2}}{T_{i,1}} - R_i \ln \frac{P_{i,2}}{P_{i,1}}
\]

\[
\Delta \bar{s}_i = \bar{s}_{i,2}^\circ - \bar{s}_{i,1}^\circ - R_u \ln \frac{P_{i,2}}{P_{i,1}} \equiv \bar{c}_{p,i} \ln \frac{T_{i,2}}{T_{i,1}} - R_u \ln \frac{P_{i,2}}{P_{i,1}}
\]

\[
P_{i,2} = y_{i,2}P_{m,2} \quad P_{i,1} = y_{i,1}P_{m,1}
\]

Partial pressures (not the mixture pressure) are used in the evaluation of entropy changes of ideal-gas mixtures.
Real-Gas Mixtures

\[dh_m = T_m ds_m + \nu_m dP_m \]

\[d\left(\sum mf_i h_i \right) = T_m d\left(\sum mf_i s_i \right) + \left(\sum mf_i \nu_i \right) dP_m \]

\[\sum mf_i (dh_i - T_m ds_i - \nu_i dP_m) = 0 \]

\[dh_i = T_m ds_i + \nu_i dP_m \]

This equation suggests that the generalized property relations and charts for real gases developed in Chap. 12 can also be used for the components of real-gas mixtures. But \(T_R \) and \(P_R \) for each component should be evaluated using \(T_m \) and \(P_m \).

If the \(V_m \) and \(T_m \) are specified instead of \(P_m \) and \(T_m \), evaluate \(P_m \) using Dalton’s law of additive pressures.

Another way is to treat the mixture as a pseudopure substance having pseudocritical properties, determined in terms of the critical properties of the component gases by using Kay’s rule.

It is difficult to predict the behavior of nonideal-gas mixtures because of the influence of dissimilar molecules on each other.
Summary

• Composition of a gas mixture: Mass and mole fractions
• $P-v-T$ behavior of gas mixtures
 ✓ Ideal-gas mixtures
 ✓ Real-gas mixtures
• Properties of gas mixtures
 ✓ Ideal-gas mixtures
 ✓ Real-gas mixtures