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Satellite image of a hurricane near the Florida coast; water droplets 

move with the air, enabling us to visualize the counterclockwise 

swirling motion. However, the major portion of the hurricane is actually 

irrotational, while only the core (the eye of the storm) is rotational. 
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Objectives 

• Understand the role of the material derivative in 

transforming between Lagrangian and Eulerian 

descriptions 

• Distinguish between various types of flow 

visualizations and methods of plotting the 

characteristics of a fluid flow  

• Appreciate the many ways that fluids move and 

deform 

• Distinguish between rotational and irrotational 

regions of flow based on the flow property vorticity 

• Understand the usefulness of the Reynolds 

transport theorem 
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4–1 ■ LAGRANGIAN AND EULERIAN DESCRIPTIONS 

Kinematics: The study of motion.  

Fluid kinematics: The study of how fluids flow and how to describe fluid motion. 

With a small number of objects, such 

as billiard balls on a pool table, 

individual objects can be tracked. 

In the Lagrangian description, one 

must keep track of the position and 

velocity of individual particles. 

There are two distinct ways to describe motion: Lagrangian and Eulerian 

Lagrangian description: To follow the path of individual objects.  

This method requires us to track the position and velocity of each individual 

fluid parcel (fluid particle) and take to be a parcel of fixed identity. 
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• A more common method is Eulerian description of fluid motion.  

• In the Eulerian description of fluid flow, a finite volume called a flow domain 

or control volume is defined, through which fluid flows in and out.  

• Instead of tracking individual fluid particles, we define field variables, 

functions of space and time, within the control volume. 

• The field variable at a particular location at a particular time is the value of 

the variable for whichever fluid particle happens to occupy that location at 

that time.  

• For example, the pressure field is a scalar field variable. We define the 

velocity field as a vector field variable. 

Collectively, these (and other) field variables define the flow field. The 

velocity field can be expanded in Cartesian coordinates as 
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In the Eulerian description, one 

defines field variables, such as 

the pressure field and the 

velocity field, at any location 

and instant in time. 

• In the Eulerian description we 

don’t really care what happens to 

individual fluid particles; rather we 

are concerned with the pressure, 

velocity, acceleration, etc., of 

whichever fluid particle happens 

to be at the location of interest at 

the time of interest. 

• While there are many occasions in 

which the Lagrangian description 

is useful, the Eulerian description 

is often more convenient for fluid 

mechanics applications. 

• Experimental measurements are 

generally more suited to the 

Eulerian description. 
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A Steady Two-Dimensional Velocity Field 

Velocity vectors for the velocity field of Example 4–1. The scale is shown by 

the top arrow, and the solid black curves represent the approximate shapes 

of some streamlines, based on the calculated velocity vectors. The 

stagnation point is indicated by the circle. The shaded region represents a 

portion of the flow field that can approximate flow into an inlet. 

Flow field near 

the bell mouth 

inlet of a 

hydroelectric 

dam; a portion of 

the velocity field 

of Example 4-1 

may be used as 

a first-order 

approximation of 

this physical flow 

field.  
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Acceleration Field 

Newton’s second law applied to a fluid 

particle; the acceleration vector (gray arrow) 

is in the same direction as the force vector 

(black arrow), but the velocity vector (red 

arrow) may act in a different direction. 

The equations of motion for fluid flow 

(such as Newton’s second law) are 

written for a fluid particle, which we 

also call a material particle.  

If we were to follow a particular fluid 

particle as it moves around in the 

flow, we would be employing the 

Lagrangian description, and the 

equations of motion would be directly 

applicable.  

For example, we would define the 

particle’s location in space in terms 

of a material position vector 

(xparticle(t), yparticle(t), zparticle(t)). 
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Local 

acceleration 

Advective (convective) 

acceleration 
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When following a fluid particle, the x-

component of velocity, u, is defined as 

dxparticle/dt. Similarly, v=dyparticle/dt  and 

w=dzparticle/dt. Movement is shown here only 

in two dimensions for simplicity. 

The components of the 

acceleration vector in cartesian 

coordinates: 

Flow of water through the nozzle of a 

garden hose illustrates that fluid 

particles may accelerate, even in a 

steady flow. In this example, the exit 

speed of the water is much higher than 

the water speed in the hose, implying 

that fluid particles have accelerated 

even though the flow is steady. 
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Material Derivative 

The total derivative operator d/dt in this equation is given a special name, the 

material derivative; it is assigned a special notation, D/Dt, in order to 

emphasize that it is formed by following a fluid particle as it moves through 

the flow field.  

Other names for the material derivative include total, particle, Lagrangian, 

Eulerian, and substantial derivative. 

The material derivative D/Dt is defined by following 

a fluid particle as it moves throughout the flow field. 

In this illustration, the fluid particle is accelerating to 

the right as it moves up and to the right. 
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The material derivative D/Dt is 

composed of a local or unsteady part 

and a convective or advective part. 
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Material Acceleration of a Steady Velocity Field 

Acceleration vectors for the 

velocity field of Examples 4–

1 and 4–3. The scale is 

shown by the top arrow, and 

the solid black curves 

represent the approximate 

shapes of some streamlines, 

based on the calculated 

velocity vectors. The 

stagnation point is indicated 

by the color circle. 
x 
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4–2 ■ FLOW PATTERNS AND FLOW VISUALIZATION 

Spinning baseball. The late F. N. M. 

Brown devoted many years to developing 

and using smoke visualization in wind 

tunnels at the University of Notre Dame. 

Here the flow speed is about 23 m/s and 

the ball is rotated at 630 rpm. 

• Flow visualization: The 

visual examination of flow 

field features. 

• While quantitative study of 

fluid dynamics requires 

advanced mathematics, much 

can be learned from flow 

visualization. 

• Flow visualization is useful 

not only in physical 

experiments but in numerical 

solutions as well 

[computational fluid 

dynamics (CFD)]. 

• In fact, the very first thing an 

engineer using CFD does 

after obtaining a numerical 

solution is simulate some 

form of flow visualization. 
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Streamlines and Streamtubes 

Streamline: A curve that is 

everywhere tangent to the 

instantaneous local velocity 

vector. 

Streamlines are useful as 

indicators of the 

instantaneous direction of 

fluid motion throughout the 

flow field.  

For example, regions of 

recirculating flow and 

separation of a fluid off of a 

solid wall are easily identified 

by the streamline pattern.  

Streamlines cannot be directly 

observed experimentally 

except in steady flow fields. 
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Streamlines for a steady, incompressible, two-dimensional velocity field 

Streamlines (solid black 

curves) for the velocity field 

of Example 4–4; velocity 

vectors (color arrows) are 

superimposed for 

comparison. 

The agreement is excellent in 

the sense that the velocity 

vectors point everywhere 

tangent to the streamlines. 

Note that speed cannot be 

determined directly from the 

streamlines alone. 
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A streamtube consists of a bundle 

of individual streamlines. 

In an incompressible flow field, a streamtube 

(a) decreases in diameter as the flow 

accelerates or converges and (b) increases in 

diameter as the flow decelerates or diverges. 

A streamtube consists of a bundle of 

streamlines much like a 

communications cable consists of a 

bundle of fiber-optic cables.  

Since streamlines are everywhere 

parallel to the local velocity, fluid 

cannot cross a streamline by 

definition.  

Fluid within a streamtube must 

remain there and cannot cross the 

boundary of the streamtube.  

Both streamlines and 

streamtubes are 

instantaneous 

quantities, defined at 

a particular instant in 

time according to the 

velocity field at that 

instant.  
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Pathlines 

• Pathline: The actual path 

traveled by an individual fluid 

particle over some time period. 

• A pathline is a Lagrangian 

concept in that we simply follow 

the path of an individual fluid 

particle as it moves around in 

the flow field.  

• Thus, a pathline is the same as 

the fluid particle’s material 

position vector (xparticle(t), 

yparticle(t), zparticle(t)) traced out 

over some finite time interval. 

A pathline is formed by following the actual 

path of a fluid particle. 

Pathlines produced by white tracer particles suspended 

in water and captured by time-exposure photography; 

as waves pass horizontally, each particle moves in an 

elliptical path during one wave period. 
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PIV applied to a 

model car in a 

wind tunnel. 

Particle image velocimetry (PIV): A modern experimental technique that 

utilizes short segments of particle pathlines to measure the velocity field over 

an entire plane in a flow.  

Recent advances also extend the technique to three dimensions.  

In PIV, tiny tracer particles are suspended in the fluid. However, the flow is 

illuminated by two flashes of light (usually a light sheet from a laser) to 

produce two bright spots (recorded by a camera) for each moving particle.  

Then, both the magnitude and direction of the velocity vector at each particle 

location can be inferred, assuming that the tracer particles are small enough 

that they move with the fluid.  

Modern digital photography and 

fast computers have enabled PIV 

to be performed rapidly enough 

so that unsteady features of a 

flow field can also be measured.  
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Streaklines 

Streakline: The locus of fluid 

particles that have passed 

sequentially through a 

prescribed point in the flow. 

Streaklines are the most 

common flow pattern 

generated in a physical 

experiment. 

If you insert a small tube into 

a flow and introduce a 

continuous stream of tracer 

fluid (dye in a water flow or 

smoke in an air flow), the 

observed pattern is a 

streakline. A streakline is formed by continuous 

introduction of dye or smoke from a point in 

the flow. Labeled tracer particles (1 through 

8) were introduced sequentially. 
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Streaklines produced by 

colored fluid introduced 

upstream; since the flow is 

steady, these streaklines 

are the same as 

streamlines and pathlines. 

• Streaklines, streamlines, and pathlines are identical in steady flow but 

they can be quite different in unsteady flow. 

• The main difference is that a streamline represents an instantaneous 

flow pattern at a given instant in time, while a streakline and a 

pathline are flow patterns that have some age and thus a time history 

associated with them.  

• A streakline is an instantaneous snapshot of a time-integrated flow 

pattern.  

• A pathline, on the other hand, is the time-exposed flow path of an 

individual particle over some time period. 
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Smoke streaklines introduced by a smoke wire at two different locations in the 

wake of a circular cylinder: (a) smoke wire just downstream of the cylinder and 

(b) smoke wire located at x/D = 150. The time-integrative nature of streaklines 

is clearly seen by comparing the two photographs. 

In the figure, streaklines are introduced from a smoke wire located just 

downstream of a circular cylinder of diameter D aligned normal to the plane of 

view.  

When multiple streaklines are introduced along a line, as in the figure, we 

refer to this as a rake of streaklines. 

The Reynolds number of the flow is Re = 93. 
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Kármán vortices visible in 

the clouds in the wake of 

Alexander Selkirk Island in 

the southern Pacific Ocean. 

Because of unsteady vortices shed in an 

alternating pattern from the cylinder, the 

smoke collects into a clearly defined 

periodic pattern called a Kármán vortex 

street.  

A similar pattern can be seen at much 

larger scale in the air flow in the wake of 

an island. 
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Comparison of Flow Patterns in an Unsteady Flow 

Streamlines, pathlines, and 

streaklines for the oscillating 

velocity field of Example 4–5. 

The streaklines and pathlines 

are wavy because of their 

integrated time history, but the 

streamlines are not wavy since 

they represent an 

instantaneous snapshot of the 

velocity field. 

An unsteady, incompressible, 

two-dimensional velocity field 
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Timelines 

Timeline: A set of adjacent fluid 

particles that were marked at the same 

(earlier) instant in time. 

Timelines are particularly useful in 

situations where the uniformity of a flow 

(or lack thereof) is to be examined. 

Timelines are formed by 

marking a line of fluid 

particles, and then 

watching that line move 

(and deform) through 

the flow field; timelines 

are shown at t = 0, t1, t2, 

and t3. 

Timelines produced by a hydrogen bubble wire are used to visualize the 

boundary layer velocity profile shape. Flow is from left to right, and the 

hydrogen bubble wire is located to the left of the field of view. Bubbles 

near the wall reveal a flow instability that leads to turbulence. 
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Refractive Flow Visualization Techniques 

It is based on the refractive property of light waves.  

The speed of light through one material may differ somewhat from 

that in another material, or even in the same material if its density 

changes. As light travels through one fluid into a fluid with a 

different index of refraction, the light rays bend (they are refracted). 

Two primary flow visualization techniques that utilize the fact that 

the index of refraction in air (or other gases) varies with density: the 

shadowgraph technique and the schlieren technique.  

Interferometry is a visualization technique that utilizes the related 

phase change of light as it passes through air of varying densities 

as the basis for flow visualization. 

These techniques are useful for flow visualization in flow fields 

where density changes from one location in the flow to another, 

such as such as natural convection flows (temperature differences 

cause the density variations), mixing flows (fluid species cause the 

density variations), and supersonic flows (shock waves and 

expansion waves cause the density variations). 
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Unlike flow visualizations involving streaklines, 

pathlines, and timelines, the shadowgraph and 

schlieren methods do not require injection of a 

visible tracer (smoke or dye).  

Rather, density differences and the refractive 

property of light provide the necessary means 

for visualizing regions of activity in the flow 

field, allowing us to “see the invisible.”  

The image (a shadowgram) produced by the 

shadowgraph method is formed when the 

refracted rays of light rearrange the shadow 

cast onto a viewing screen or camera focal 

plane, causing bright or dark patterns to appear 

in the shadow.  

The dark patterns indicate the location where 

the refracted rays originate, while the bright 

patterns mark where these rays end up, and 

can be misleading.  

As a result, the dark regions are less distorted 

than the bright regions and are more useful in 

the interpretation of the shadowgram.  

Shadowgram of a 14.3 mm sphere 

in free flight through air at Ma  3.0. 

A shock wave is clearly visible in 

the shadow as a dark band that 

curves around the sphere and is 

called a bow wave (see Chap. 12). 
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A shadowgram is not a true optical image; it 

is, after all, merely a shadow. 

A schlieren image, involves lenses (or 

mirrors) and a knife edge or other cutoff 

device to block the refracted light and is a 

true focused optical image.  

Schlieren imaging is more complicated to 

set up than is shadowgraphy but has a 

number of advantages.  

A schlieren image does not suffer from 

optical distortion by the refracted light rays.  

Schlieren imaging is also more sensitive to 

weak density gradients such as those 

caused by natural convection or by gradual 

phenomena like expansion fans in 

supersonic flow. Color schlieren imaging 

techniques have also been developed.  

One can adjust more components in a 

schlieren setup. 
Schlieren image of natural 

convection due to a barbeque grill. 
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Surface Flow Visualization Techniques 

• The direction of fluid flow immediately above a solid surface 

can be visualized with tufts—short, flexible strings glued to the 

surface at one end that point in the flow direction.  

• Tufts are especially useful for locating regions of flow 

separation, where the flow direction suddenly reverses. 

• A technique called surface oil visualization can be used for 

the same purpose—oil placed on the surface forms streaks 

called friction lines that indicate the direction of flow.  

• If it rains lightly when your car is dirty (especially in the winter 

when salt is on the roads), you may have noticed streaks along 

the hood and sides of the car, or even on the windshield.  

• This is similar to what is observed with surface oil visualization. 

• Lastly, there are pressure-sensitive and temperature-sensitive 

paints that enable researchers to observe the pressure or 

temperature distribution along solid surfaces. 
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4–3 ■ PLOTS OF FLUID FLOW DATA 

Regardless of how the results are obtained (analytically, 

experimentally, or computationally), it is usually necessary to plot flow 

data in ways that enable the reader to get a feel for how the flow 

properties vary in time and/or space.  

You are already familiar with time plots, which are especially useful in 

turbulent flows (e.g., a velocity component plotted as a function of 

time), and xy-plots (e.g., pressure as a function of radius).  

In this section, we discuss three additional types of plots that are 

useful in fluid mechanics— 

 profile plots, vector plots, and contour plots. 
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Profile Plots 

A profile plot indicates how the value of a scalar property 

varies along some desired direction in the flow field. 

Profile plots of the horizontal 

component of velocity as a 

function of vertical distance; flow 

in the boundary layer growing 

along a horizontal flat plate: (a) 

standard profile plot and (b) 

profile plot with arrows. 

In fluid mechanics, profile plots of any 

scalar variable (pressure, temperature, 

density, etc.) can be created, but the most 

common one used in this book is the 

velocity profile plot.  

Since velocity is a vector quantity, we 

usually plot either the magnitude of velocity 

or one of the components of the velocity 

vector as a function of distance in some 

desired direction. 
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Vector Plots 

A vector plot is an array of arrows indicating 

the magnitude and direction of a vector 

property at an instant in time. 

Fig. 4-4: Velocity vector plot  

Fig. 4-14: Acceleration vector plot.  

Both generated analytically. 

Streamlines indicate the direction of the 

instantaneous velocity field, they do not directly 

indicate the magnitude of the velocity (i.e., the 

speed). 

A useful flow pattern for both experimental and 

computational fluid flows is thus the vector plot, which 

consists of an array of arrows that indicate both 

magnitude and direction of an instantaneous vector 

property.  

Vector plots can also be generated from 

experimentally obtained data (e.g., from PIV 

measurements) or numerically from CFD calculations. 
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Results of CFD calculations of a two-

dimensional flow field consisting of 

free-stream flow impinging on a block 

of rectangular cross section. 

(a) streamlines, 

(b) velocity vector plot of the upper 

half of the flow, and  

(c) velocity vector plot, close-up view 

revealing more details in the separated 

flow region. 
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Contour Plots A contour plot shows curves of constant 

values of a scalar property (or magnitude of 

a vector property) at an instant in time. 

Contour plots of the pressure field due to flow 

impinging on a block, as produced by CFD 

calculations; only the upper half is shown due 

to symmetry; (a) filled gray scale contour plot and 

(b) contour line plot where pressure values are 

displayed in units of Pa gage pressure. 

Contour plots (also called isocontour plots) are 

generated of pressure, temperature, velocity 

magnitude, species concentration, properties of 

turbulence, etc.  

A contour plot can quickly reveal regions of high 

(or low) values of the flow property being studied. 

A contour plot may consist simply of curves 

indicating various levels of the property; this is 

called a contour line plot.  

Alternatively, the contours can be filled in with 

either colors or shades of gray; this is called a 

filled contour plot. 
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4–4 ■ OTHER KINEMATIC DESCRIPTIONS 

Fundamental types of fluid 

element motion or 

deformation: (a) translation, 

(b) rotation, (c) linear strain, 

and (d) shear strain. 

Types of Motion or Deformation 

of Fluid Elements 

In fluid mechanics, an element may undergo four 

fundamental types of motion or deformation: 

(a) translation, (b) rotation,  

(c) linear strain (also called extensional strain), and 

(d) shear strain.  

All four types of motion or deformation usually occur 

simultaneously.  

It is preferable in fluid dynamics to describe the motion 

and deformation of fluid elements in terms of rates 

such as  

     velocity (rate of translation),  

     angular velocity (rate of rotation),  

     linear strain rate (rate of linear strain), and  

     shear strain rate (rate of shear strain).  

In order for these deformation rates to be useful in 

the calculation of fluid flows, we must express them in 

terms of velocity and derivatives of velocity. 
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A vector is required in order to fully describe the rate of translation in three 

dimensions. The rate of translation vector is described mathematically as 

the velocity vector.  

Rate of rotation (angular velocity) at a 

point: The average rotation rate of two 

initially perpendicular lines that intersect at 

that point. 

For a fluid element that translates and 

deforms as sketched, the rate of rotation at 

point P is defined as the average rotation 

rate of two initially perpendicular lines 

(lines a and b). 

Rate of rotation of fluid 

element about point P 
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The rate of rotation vector is equal to the angular velocity vector. 

Linear strain rate: The rate of increase in length per unit length.  

Mathematically, the linear strain rate of a fluid element depends on the 

initial orientation or direction of the line segment upon which we measure 

the linear strain. 
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Using the lengths marked in the figure, the linear strain rate in the xa-direction is 
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Volumetric strain rate or bulk strain rate: The rate of increase of 

volume of a fluid element per unit volume. 

This kinematic property is defined as positive when the volume increases.  

Another synonym of volumetric strain rate is also called rate of volumetric 

dilatation, (the iris of your eye dilates (enlarges) when exposed to dim light).  

The volumetric strain rate is the sum of the linear strain rates in three mutually 

orthogonal directions. 

Air being compressed by a piston in a 

cylinder; the volume of a fluid element in 

the cylinder decreases, corresponding to 

a negative rate of volumetric dilatation. 

The volumetric strain rate is 

zero in an incompressible flow. 
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Shear strain rate at a point: Half of the rate of decrease of the angle 

between two initially perpendicular lines that intersect at the point.  

For a fluid element that translates 

and deforms as sketched, the shear 

strain rate at point P is defined as 

half of the rate of decrease of the 

angle between two initially 

perpendicular lines (lines a and b). 

Shear strain rate, initially perpendicular 

lines in the x- and y-directions: 

Shear strain rate in Cartesian coordinates: 
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A fluid element illustrating 

translation, rotation, linear 

strain, shear strain, and 

volumetric strain. 

Figure shows a general (although 

two-dimensional) situation in a 

compressible fluid flow in which all 

possible motions and deformations 

are present simultaneously.  

In particular, there is translation, 

rotation, linear strain, and shear 

strain.  

Because of the compressible nature 

of the fluid flow, there is also 

volumetric strain (dilatation).  

You should now have a better 

appreciation of the inherent 

complexity of fluid dynamics, and the 

mathematical sophistication required 

to fully describe fluid motion. 
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4–5 ■ VORTICITY AND ROTATIONALITY 
Another kinematic property of great importance to the analysis of fluid flows is 

the vorticity vector, defined mathematically as the curl of the velocity vector 

The direction 

of a vector 

cross product 

is determined 

by the right-

hand rule. 

The vorticity vector is equal to 

twice the angular velocity vector 

of a rotating fluid particle. 

Vorticity is equal to twice the 

angular velocity of a fluid particle 
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• If the vorticity at a point in a flow field is nonzero, the 

fluid particle that happens to occupy that point in 

space is rotating; the flow in that region is called 

rotational.  

• Likewise, if the vorticity in a region of the flow is zero 

(or negligibly small), fluid particles there are not 

rotating; the flow in that region is called irrotational.  

• Physically, fluid particles in a rotational region of flow 

rotate end over end as they move along in the flow. 

The difference between 

rotational and irrotational 

flow: fluid elements in a 

rotational region of the 

flow rotate, but those in 

an irrotational region of 

the flow do not. 
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For a two-dimensional flow in the xy-plane, the vorticity 

vector always points in the z- or z-direction. In this 

illustration, the flag-shaped fluid particle rotates in the 

counterclockwise direction as it moves in the xy-plane; 

its vorticity points in the positive z-direction as shown. 
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Determination of Rotationality in a Two-Dimensional Flow 

Deformation of an initially 

square fluid parcel subjected 

to the velocity field of Example 

4–8 for a time period of 0.25 s 

and 0.50 s. Several 

streamlines are also plotted in 

the first quadrant. It is clear 

that this flow is rotational. 

steady, incompressible, two-

dimensional velocity field: Vorticity: 
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For a two-dimensional flow in the r-

plane, the vorticity vector always 

points in the z (or z) direction. In this 

illustration, the flag-shaped fluid 

particle rotates in the clockwise 

direction as it moves in the ru-plane; 

its vorticity points in the z-direction 

as shown. 
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Comparison of Two Circular Flows 

Streamlines and 

velocity profiles for 

(a) flow A, solid-body 

rotation and (b) flow 

B, a line vortex. Flow 

A is rotational, but 

flow B is irrotational 

everywhere except at 

the origin. 
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A simple analogy: (a) rotational 

circular flow is analogous to a 

roundabout, while (b) irrotational 

circular flow is analogous to a 

Ferris wheel. 

A simple analogy can be made 

between flow A and a merry-go-

round or roundabout, and flow B 

and a Ferris wheel.  

As children revolve around a 

roundabout, they also rotate at 

the same angular velocity as that 

of the ride itself. This is analogous 

to a rotational flow.  

In contrast, children on a Ferris 

wheel always remain oriented in 

an upright position as they trace 

out their circular path. This is 

analogous to an irrotational flow. 
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4–6 ■ THE REYNOLDS TRANSPORT THEOREM 
Two methods of analyzing the spraying of 

deodorant from a spray can:  

(a) We follow the fluid as it moves and 

deforms. This is the system approach—no 

mass crosses the boundary, and the total 

mass of the system remains fixed.  

(b) We consider a fixed interior volume of the 

can. This is the control volume approach—

mass crosses the boundary. 

The Reynolds transport theorem 

(RTT) provides a link between 

the system approach and the 

control volume approach. 

The relationship 

between the time rates 

of change of an 

extensive property for a 

system and for a control 

volume is expressed by 

the Reynolds transport 

theorem (RTT). 
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A moving system (hatched region) and 

a fixed control volume (shaded region) 

in a diverging portion of a flow field at 

times t and t+t. The upper and lower 

bounds are streamlines of the flow. 

The time rate of change of the 

property B of the system is equal to 

the time rate of change of B of the 

control volume plus the net flux of B 

out of the control volume by mass 

crossing the control surface. 

This equation applies at any instant 

in time, where it is assumed that 

the system and the control volume 

occupy the same space at that 

particular instant in time. 
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Relative velocity crossing a control 

surface is found by vector addition of 

the absolute velocity of the fluid and 

the negative of the local velocity of 

the control surface. 

Reynolds transport 

theorem applied to a 

control volume moving 

at constant velocity. 
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An example control volume in which 

there is one well-defined inlet (1) and 

two well-defined outlets (2 and 3). In 

such cases, the control surface integral 

in the RTT can be more conveniently 

written in terms of the average values of 

fluid properties crossing each inlet 

and outlet. 
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Alternate Derivation of the Reynolds Transport Theorem 

A more elegant mathematical derivation of 

the Reynolds transport theorem is possible 

through use of the Leibniz theorem 

The Leibniz theorem takes into account the 

change of limits a(t) and b(t) with respect to 

time, as well as the unsteady changes of 

integrand G(x, t) with time. 
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The three-dimensional Leibniz 

theorem is required when calculating 

the time derivative of a volume 

integral for which the volume itself 

moves and/or deforms with time. It 

turns out that the three-dimensional 

form of the Leibniz theorem can be 

used in an alternative derivation of 

the Reynolds transport theorem. 



70 

The material volume (system) 

and control volume occupy the 

same space at time t (the blue 

shaded area), but move and 

deform differently. At a later time 

they are not coincident. 
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Relationship between Material Derivative and RTT 

The Reynolds transport theorem for finite 

volumes (integral analysis) is analogous to the 

material derivative for infinitesimal volumes 

(differential analysis). In both cases, we 

transform from a Lagrangian or system 

viewpoint to an Eulerian or control volume 

viewpoint. 

While the Reynolds transport 

theorem deals with finite-size 

control volumes and the 

material derivative deals with 

infinitesimal fluid particles, the 

same fundamental physical 

interpretation applies to both. 

Just as the material derivative 

can be applied to any fluid 

property, scalar or vector, the 

Reynolds transport theorem 

can be applied to any scalar or 

vector property as well. 
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Summary 
• Lagrangian and Eulerian Descriptions 

 Acceleration Field 

 Material Derivative 

• Flow Patterns and Flow Visualization 

 Streamlines and Streamtubes, Pathlines,  

 Streaklines, Timelines 

 Refractive Flow Visualization Techniques 

 Surface Flow Visualization Techniques 

• Plots of Fluid Flow Data 

 Vector Plots, Contour Plots 

• Other Kinematic Descriptions 

 Types of Motion or Deformation of Fluid Elements 

• Vorticity and Rotationality 

 Comparison of Two Circular Flows 

• The Reynolds Transport Theorem 

 Alternate Derivation of the Reynolds Transport Theorem 

 Relationship between Material Derivative and RTT 


