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Wind turbine “farms” are being constructed all over the world to
extract kinetic energy from the wind and convert it to electrical
energy. The mass, energy, momentum, and angular momentum
balances are utilized in the design of a wind turbine. The

Bernoulli equation is also useful in the preliminary design stage.



Objectives

Apply the conservation of mass equation to
balance the incoming and outgoing flow rates in
a flow system.

Recognize various forms of mechanical energy,
and work with energy conversion efficiencies.

Understand the use and limitations of the
Bernoulli equation, and apply it to solve a
variety of fluid flow problems.

Work with the energy equation expressed in
terms of heads, and use it to determine turbine
power output and pumping power requirements.



5>—1 m INTRODUCTION

You are already familiar with
numerous conservation laws
such as the laws of
conservation of mass,
conservation of energy, and
conservation of momentum.

Historically, the conservation
laws are first applied to a fixed
guantity of matter called a
closed system or just a system,
and then extended to regions in
space called control volumes.

The conservation relations are
also called balance equations
since any conserved quantity
must balance during a process.
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Many fluid flow devices such as this Pelton
wheel hydraulic turbine are analyzed by
applying the conservation of mass and
energy principles, along with the linear
momentum equation.



Conservation of Mass

The conservation of mass relation for a closed system undergoing a
change is expressed as m. . = constant or dm/dt = 0, which is the
statement that the mass of the system remains constant during a

pProcess.

Mass balance for a control volume (CV) in rate form:
dmey

dt

Conservation of mass: My, — Moy =

the total rates of mass flow into

m.. and m
- 1n out - and out of the control volume

the rate of change of mass within the

dmev/dt _
' control volume boundaries.

Continuity equation: In fluid mechanics, the conservation of
mass relation written for a differential control volume is usually
called the continuity equation.



The Linear Momentum Equation

Linear momentum: The product of the mass and the velocity of a
body is called the linear momentum or just the momentum of the
body.

The momentum of a rigid body of mass m moving with a velocity
V. is mV.

Newton’s second law: The acceleration of a body is proportional
to the net force acting on it and is inversely proportional to its
mass, and that the rate of change of the momentum of a body is
equal to the net force acting on the body.

Conservation of momentum principle: The momentum of a
system remains constant only when the net force acting on it is
zero, and thus the momentum of such systems is conserved.

Linear momentum equation: In fluid mechanics, Newton’s
second law is usually referred to as the linear momentum
equation.



Conservation of Energy

The conservation of energy principle (the energy balance): The
net energy transfer to or from a system during a process be equal to
the change in the energy content of the system.

Energy can be transferred to or from a closed system by heat or work.
Control volumes also involve energy transfer via mass flow.

. * ffECV
Conservation of energy: E,—Eu=
' ' dt

E d E the total rates of energy transfer into
in N9 Loue — and out of the control volume

AE. .. Idt the rate of change of energy
~CV within the control volume boundaries

In fluid mechanics, we usually limit our consideration to
mechanical forms of energy only.



5—2 m CONSERVATION OF MASS

Conservation of mass: Mass, like energy, is a conserved property,
and it cannot be created or destroyed during a process.

Closed systems: The mass of the system remain constant during
a process.

Control volumes: Mass can cross the boundaries, and so we must
keep track of the amount of mass entering and leaving the control

volume.
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Mass is conserved even during chemical reactions.

Mass m and energy E can be converted to each other:
E = mc?

c is the speed of light in a vacuum, ¢ = 2.9979x108 m/s
The mass change due to energy change is negligible.



Mass and Volume Flow Rates
Mass flow rate: The amount of mass flowing

through a cross section per unit time.

The differential mass flow rate

om = pV, dA,

Point functions have exact differentials
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Path functions have inexact differentials 1 '
Control surface \
,2‘ i
J 0Nl = My~ NOt 1, — 1, The normal velocity V,, for a
| surface Is the component of

velocity perpendicular to the
surface.



om = pV, dA,

m = J om = J pV, dA.
A, A,

Mass flow rate

m = pV,.A,

. .V
mZpVZU

The average velocity V4 is defined
as the average speed through a

Cross section.

Average velocity

avg

|
V. =[ V., dA,
A

¢ JA,

Volume flow rate

V= J V, dA. = VoA, = VA

A,

The volume flow rate is the

(m/s)

Cross section

volume of fluid flowing through
a cross section per unittime. 4



Conservation of Mass Principle

The conservation of mass principle for a control volume: The net mass transfer
‘to or from a control volume during a time interval At is equal to the net change
(increase or decrease) in the total mass within the control volume during At.

Total mass entering Total mass leaving Net change of mass
the CV during At the CV during At within the CV during At

My, — Moy = Amicy (kg)l |my, — Mgy = dmey/dt (kg/s)

m., and 1, the total rates of mass
: flow into and out of the
control volume

the rate of change of mass
within the control volume

dmey/dt
i boundaﬂes.

Mass balance is applicable to
any control volume undergoing
~any kind of process.

Conservation of mass principle
for an ordinary bathtub.

11



dm = p dV. Total mass within the CV: Mey = J pdV
CV

™

: : - dmey  d
Rate of change of mass within the CV: = — pdV
' ' dt dr ).
Cv
. . A
Normal component of velocity: V,=Vcost =V-n

Differential mass flow rate: om = pV, dA = p(V cos #) dA = p( V- n) dA

Net mass flow rate: ﬁmm::h] om = J Fﬂﬂf#%::J p(V - 1) dA
CS CS

CS
(’(” N\

/£

I =17

I| dm

. - l
The differential control volume

. A ‘ 3

dV and the differential control IC-O"“(%IV)
. 4
surface dA used in the S 2" 4
derivation of the conservation of e ol o E

mass relation. Control surface (CS)



General conservation of mass:

The time rate of change of mass within the control A
volume plus the net mass flow rate through the control
surface is equal to zero.
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dmsys 4 1 i | i aa y mass m, an avoid complications, even
dt t | , by 1 (m per unit though the result is the same.
Cv Cs mass = m/m = 1).



Moving or Deforming Control Volumes

Equatmm 5-17 and 5-19 are also valid for moving control volumes pro-
vided that the absolute velocity Vis replaced by the relative velocity 1”:,,
which is the fluid velocity relative to the control surface (Chap. 4). In the
case of a moving but nondeforming control volume, relative velocity is the
fluid velocity observed by a person moving with the control volume and 1s
expressed as ‘F{ V- 1{:,.5, where Vis the fluid velocity and V cs 1s the
velocity of the control surface, both relative to a fixed point outside. Note
that this 1s a vector subtraction.

Some practical problems (such as the injection of medication through the
needle of a syringe by the forced motion of the plunger) involve deforming
control volumes. The conservation of mass relations developed can still be
used for such deforming control volumes provided that the velocity of the
fluid crossing a deforming part of the control surface is expressed relative to
the control surface (that is, the fluid velocity should be expressed relative to
a reference frame attached to the deforming part of the control surface). The
relative velocity in this case at any point on the control surface is expressed
again as V V- 1{:5. where V. is the local velocity of the control surface
at that point relative to a fixed point outside the control volume.



Mass Balance for Steady-Flow Processes

During a steady-flow process, the total amount of mass contained within a
control volume does not change with time (m¢,, = constant).

Then the conservation of mass principle requires that the total amount of mass
entering a control volume equal the total amount of mass leaving it.

I |
| |
| |
| CV |
l |
| |
| |

My =my + m, =135 kgls

For steady-flow processes, we are
interested in the amount of mass flowing per
unit time, that is, the mass flow rate

M= > m (ke/s). Multiple inlets
in out and exits

Single
A b

my =i, —  p VA = p, VA, TS

Many engineering devices such as nozzles,
diffusers, turbines, compressors, and
pumps involve a single stream (only one
inlet and one outlet).

Conservation of mass principle for a two-
inlet—one-outlet steady-flow system. 15



Speclal Case: Incompressible Flow

The conservation of mass relations can be simplified even further when
the fluid is incompressible, which is usually the case for liquids.

Sv=>V (m’/s)

" _ ‘} - . -
my = 2 kg/s in oul

ffg = 0.8 m°/s

Air There is no such thing as a “conservation of
volume” principle.

However, for steady flow of liquids, the volume flow
rates, as well as the mass flow rates, remain
constant since liquids are essentially incompressible
substances.

During a steady-flow process, volume
flow rates are not hecessarily conserved
although mass flow rates are.

my =2 kgls

ffl = 1.4 m%s

16
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EXAMPLE 5-1 Water Flow through a Garden Hose Nozzle m

A garden hose attached with a nozzle is used to fill a 10-gal bucket. The:
inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle m
exit (Fig. 5-12). If it takes 50 s to fill the bucket with water, determine
(a) the volume and mass flow rates of water through the hose, and (b) the
average velocity of water at the nozzle exit.

SOLUTION A garden hose is used to fill a water bucket. The volume and
mass flow rates of water and the exit velocity are to be determined.
Assumptions 1 Water is a nearly incompressible substance. 2 Flow through
the hose is steady. 3 There is no waste of water by splashing.

Properties We take the density of water to be 1000 kg/m3 = 1 kg/L.
Analysis (a) Noting that 10 gal of water are discharged in 50 s, the volume
and mass flow rates of water are

P i B 10 gal (3.7’854 L
At 50s

) = (.757 L/s
I gal

= pV = (1 kg/L)(0.757 L/s) = 0.757 kg/s
(b) The cross-sectional area of the nozzle exit is
A, = mr? = (0.4 cm)? = 05027 cm? = 0.5027 X 10~* m?

The volume flow rate through the hose and the nozzle is constant. Th f-
average velocity of water at the nozzle exit becomes '

) 3 S
v — v _ 07571 ( I m ) 1w =
A, 05027 X 107*m? \ 1000 L
Discussion |t can be shown that the average velocity in the hose is 2.4 m/s. i , | 57 | : V1.7> |

Therefore, the nozzle increases the water velocity by over six times.



|
m EXAMPLE 5-2 Discharge of Water from a Tank

:A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open to the

m atmosphere is initially filled with water. Now the discharge plug near the
bottom of the tank is pulled out, and a water jet whose diameter is 0.5 in
streams out (Fig. 5-13). The average velocity of the jet is approximated as
V = V2gh, where h is the height of water in the tank measured from the
center of the hole (a variable) and g is the gravitational acceleration. Deter-
mine how long it takes for the water level in the tank to drop to 2 ft from
the bottom.

Analysis We take the volume occupied by water as the control volume. The
size of the control volume decreases in this case as the water level drops,
and thus this is a variable control volume. (We could also treat this as a
fixed control volume that consists of the interior volume of the tank by dis-
regarding the air that replaces the space vacated by the water.) This is obvi-
ously an unsteady-flow problem since the properties (such as the amount of
mass) within the control volume change with time.

The conservation of mass relation for a control volume undergoing any prac
cess is given in rate form as

. . dmcy (
m.. — M — |
n out dr

f.f.n

During this process no mass enters the control volume (m,, = 0), and th

mass flow rate of discharged water is "
muut - (pv‘q]uut = PWU:IEAJM ¢ Lr
0

Air

Water

<

D tank



where A, = wD3,/4 is the cross-sectional area of the jet, which is constant.

Noting that the density of water is constant, the mass of water in the tank
at any time is

me, = pV = pA ] (3)
where A, = wD3%,,/4 is the base area of the cylindrical tank. Substituting
Egs. 2 and 3 into the mass balance relation (Eqg. 1) gives

d(pA ., /1) p(wDZ /4)dh
dr dr

Canceling the densities and other common terms and separating the vari-
ables give

—pV2ghA,, = — —p\V2gh(wD /4) =

_ thank dh
Die V2gh
Integrating from f = O at which h = hy to t = t at which h = h, gives

Jqdr _ D;lank J‘fr! dh = \;h_n — \"rthz (JD[zm]i)2
0 D2 V2gh, Vh Vgl2 D,
Substituting, the time of discharge is determined to be
¢ = Vaf— Vot (3 X 12in
V3222 fyst N 0.5

Therefore, it takes 12.6 min after the discharge hole is unplugged for half of
the tank to be emptied.

Discussion Using the same relation with h, = 0 gives t = 43.1 min for
the discharge of the entire amount of water in the tank. Therefore, emptying
the bottom half of the tank takes much longer than emptying the top half.

This is due to the decrease in the average discharge velocity of water with
decreasing h.

dt =

) = 757s = 12.6 min

19



>—3 m MECHANICAL ENERGY AND EFFICIENCY

Mechanical energy: The form of energy that can be converted to
mechanical work completely and directly by an ideal mechanical
device such as an ideal turbine.

Mechanical energy of a flowing fluid per unit mass:

P V?
rech = ; + 7 + gz Flow energy + kinetic energy + potential energy

Mechanical energy change:

Aemcch — p + 9 + g(Zz R Zl) (kJ/kg)

- The mechanical energy of a fluid does not change during flow if
Its pressure, density, velocity, and elevation remain constant.

« In the absence of any irreversible losses, the mechanical energy
change represents the mechanical work supplied to the fluid (if
Ae ..., > 0) or extracted from the fluid (if Ae <0).

mech 20



Mechanical energy s a useful co»ncept for flows that do not

iInvolve significant heat transfer or energy conversion, such

-as the flow of gasoline from an underground tank into a car.

21



Turbine

I|<

— -
Generator )
E <
W =008, 5= ’”T = m'_p""

Generator

since V, = Vi and z, = 73
(b)

Wmax - mﬂ"emcuh - Hi'gle o ‘E-'l} - H?gh

since P =P =P, _and V=V, =0

(a)

Mechanical energy is illustrated by an ideal hydraulic turbine coupled with an
ideal generator. In the absence of irreversible losses, the maximum produced
power is proportional to (a) the change in water surface elevation from the
upstream to the downstream reservoir or (b) (close-up view) the drop in water
pressure from just upstream to just downstream of the turbine.

22



W = =mgh

max

0
P

The available mechanical energy of water at the
bottom of a container is equal to the avaiable

mechanical energy at any depth including the free
surface of the container.

23



Shaft work: The transfer of mechanical energy is usually accomplished by a
rotating shaft, and thus mechanical work is often referred to as shaft work.

A pump or a fan receives shaft work (usually from an electric motor) and transfers
it to the fluid as mechanical energy (less frictional losses).

A turbine converts the mechanical energy of a fluid to shaft work.

Mechanical energy output £ pech, ou Eaeanos  Mechanical efficiency

N mech — ) ) - .
meeh  Mechanical energy input  E__ o E.....n Of adevice or process

The effectiveness of the conversion process between the mechanical work
supplied or extracted and the mechanical energy of the fluid is expressed by the
pump efficiency and turbine efficiency,

Mechanical power increase of the [IU]Li jlli' mech. ||lI|| ]'1".:|'-le|'-.l.|.
""II"“ mp _ p— . .
Mechanical power input W i i W g
‘S‘Emeuh. fluid = Emcch. out Em::c:h. in
['\l.ll.' chanic -:J] [.'“ PWET *.'FU‘I.]\"H]. ]'Fxh 1ft, ot IL-I:II,Irl'-in-_'
M turbine —

r"-]xl.t‘]d]?llmll power decrease of the [lLlul |jJ_ och. fuid W

turbine, ¢

|‘:"‘E mech, ﬂu'u.l| = E mech, in E mech, out

24



m = 0.506 kg/

—_—b

{1

Py

me

—
_ ch fluid _ MV 72
ﬂmcch, fan 2 -

Wihatt, in Wihatt, in
0.506 kg/s)(12.1 mfs)2f2
50.0 W

0.741




Mechanical power output thul‘l.mll Motor

Mmoo = o ric power input W  efficiency
Electric power output W«_;t-.-u_mu Generator
Mgenerator ™ N 1o chanical power input W, .. efficiency
M/l-)ump.n aEmcch.l‘luid Pump_Motor
T]]‘)lll]]]‘)—Il](_)l(_)l' - T}]‘Jlllnl')nnmlnr - T - . iy
W‘.I(.‘Cl.il] 1/V(.-Im;l.in Overa” eﬂ:lC|enCy
Turbine-Generator overall‘ efficiency: ‘ Tons = 0.75 Mencaor = 0.97
1/V(.-Iccl.nul M/clccl.c_nll
nlurhinc—gcn - T]lurhin(rngcncrulm' = - . i
‘/Vlurhinc.(-’ ‘ AEmcch.l'Iuid| 4WEIE"CL out

\
-

Turbine

The overall efficiency of a turbine—
generator is the product of the \J
efficiency of the turbine and the

il Generator

L L
i {
. :
L L,

efficiency of the generator, and
represents the fraCtIOH Of the Thurbine—gen = Thurbine zenerator
mechanical energy of the fluid = 0.75 X 0.97

converted to electric energy. =0.73



The efficiencies defined range between 0 and 100%.

0% corresponds to the conversion of the entire
mechanical or electric energy input to thermal energy, and
the device in this case functions like a resistance heater.

100% corresponds to the case of perfect conversion with
no friction or other irreversibilities, and thus no conversion
of mechanical or electric energy to thermal energy (no
losses).

For systems that involve only mechanical
forms of energy and its transfer as shatft
work, the conservation of energy is

W

pump

@

E — E

mech, out — ‘ﬁE + E - -

mech, in mech. system mech, loss
Emech 10ss - The conversion of mechanical
energy to thermal energy due to

irreversibilities such as friction.

Many fluid flow problems involve

mechanical forms of energy only, and

such problems are conveniently solved ‘pump
by using a mechanical energy balance.

E

+ mg* =mgz, + E

pump

Steady flow
Vi=VW,=0
Tp = ]+ﬁ

P =Py=P

atm

mech, in = Emcch out T Emcch. loss

mech, loss

= mgh + E

mech, loss



|
m EXAMPLE 5-3 Performance of a Hydraulic Turbine-Generator

: The water in a large lake is to be used to generate electricity by the instal-

m lation of a hydraulic turbine—generator. The elevation difference between the
free surfaces upstream and downstream of the dam is 50 m (Fig. 5-19).
Water is to be supplied at a rate of 5000 kg/s. If the electric power gener-
ated is measured to be 1862 kW and the generator efficiency is 95 percent,
determine (&) the overall efficiency of the turbine—generator, (b) the mechan-
ical efficiency of the turbine, and (¢) the shaft power supplied by the turbine
to the generator.

SOLUTION A hydraulic turbine—generator is to generate electricity from the
water of a lake. The overall efficiency, the turbine efficiency, and the shaft
power are to be determined.

Assumptions 1 The elevation of the lake and that of the discharge site
remain constant. 2 lrreversible losses in the pipes are negligible.

Properties The density of water is taken to be p = 1000 kg/m?.

Analysis (a) We perform our analysis from inlet (1) at the free surface of
the lake to outlet (2) at the free surface of the downstream discharge site. At
both free surfaces the pressure is atmospheric and the velocity is negligibly
small. The change in the water's mechanical energy per unit mass is then

R —/P/ Vi V4
— n out + :ﬂ/q ot + g(z
P i

'Ernech. in grm:«:'h, out in Zuul}
i 0
i 1 ki/kg kJ
= (9.81 m/s?)(50 m) | ————— | = 0.491—
1000 m~/s" kg

- 28



Then the rate at which mechanical energy is supplied to the turbine by the
fluid and the overall efficiency become

|AE, . qugl = rit(e — e o) = (5000 kg/s)(0.491 kl/kg) = 2455 kW

mech, in

T"{'}lc:l@c:l, out 1862 kW _
Noverall — nturhine—gen - : - ~ , = 0.760
| JLEmlf:n:h. I'Jui-:l| 2455 kW

(b) Knowing the overall and generator efficiencies, the mechanical efficiency
of the turbine is determined from

1'?lurhinc—}_zcvc:n . 0.76

= = 0.800
ngcn::ramr 0.95

nlurhinc—gcn — Thurbine T]gcncramr 7 Nurbine

(c) The shaft power output is determined from the definition of mechanical
efficiency,
W

shaft, out

— nlurbinc|—\‘Emc-ch, ﬂuid| - {08001{2455 I{WJ = 1964 kW = 1960 kW

Discussion Note that the lake supplies 2455 kW of mechanical power to
the turbine, which converts 1964 kW of it to shaft power that drives the
generator, which generates 1862 kW of electric power. There are irreversible
losses through each component. Irreversible losses in the pipes are ignored
here; you will learn how to account for these in Chap. 8.

29



EXAMPLE 54 Conservation of Energy for
an Oscillating Steel Ball

The motion of a steel ball in a hemispherical bowl of radius h shown in
Fig. 5-20 is to be analyzed. The ball is initially held at the highest location
at point A, and then it is released. Obtain relations for the conservation of
energy of the ball for the cases of frictionless and actual motions.

SOLUTION A steel ball is released in a bowl. Relations for the energy balance
are to be obtained.

Assumptions For the frictionless case, friction between the ball, the bowl,
and the air is negligible.

Analysis When the ball is released, it accelerates under the influence of
gravity, reaches a maximum velocity (and minimum elevation) at point B at
the bottom of the bowl, and moves up toward point C on the opposite side.
In the ideal case of frictionless motion, the ball will oscillate between points
A and C. The actual motion involves the conversion of the kinetic and poten-
tial energies of the ball to each other, together with overcoming resistance to
motion due to friction (doing frictional work). The general energy balance for
any system undergoing any process is z

_Ein o Eoul - Qk‘,Erxzys;bf:m
— — — ———
Net energy transfer Change in internal, kinetic, h+

by heat, work, and mass potential, etc., energies




Then the energy balance (per unit mass) for the ball for a process from point
1 to point 2 becomes

_wfrictiun - “"ez + peﬂ«} o l‘k'ﬁ:l + ]JE]J
or

Vi V3
) + gz, = B3 T 8% + Wriction
since there is no energy transfer by heat or mass and no change in the inter-
nal energy of the ball (the heat generated by frictional heating is dissipated to
the surrounding air). The frictional work term wi,.i;,n, 1S Often expressed as e
to represent the loss (conversion) of mechanical energy into thermal energy.
For the idealized case of frictionless motion, the last relation reduces to

Vi N V3 V2
2 TEITS

+ gz = C = constant

where the value of the constant is C = gh. That is, when the frictional
effects are negligible, the sum of the kinetic and potential energies of the
ball remains constant.

Discussion This is certainly a more intuitive and convenient form of the
conservation of energy equation for this and other similar processes such as
the swinging motion of a pendulum. The relation obtained is analogous to
the Bernoulli equation derived in Section 5-4.

34



>—4 m THE BERNOULLI EQUATION

Bernoulli equation: An approximate relation between pressure,
velocity, and elevation, and is valid in regions of steady,
incompressible flow where net frictional forces are negligible.

Despite its simplicity, it has proven to be a very powerful tool in fluid
mechanics.

The Bernoulli approximation is typically useful in flow regions outside
of boundary layers and wakes, where the fluid motion is governed by
the combined effects of pressure and gravity forces.

Bernoulli equation valid The Bernoulli equation is an
approximate equation that is valid
only in inviscid regions of flow
where net viscous forces are
negligibly small compared to
Inertial, gravitational, or pressure
forces. Such regions occur

outside of boundary layers and
wakes. 32

Bernoulli equation nof valid



Acceleration of a Fluid Particle

In two-dimensional flow, the acceleration can be decomposed into two
components:

streamwise acceleration a. along the streamline and

normal acceleration a, in the direction normal to the streamline, which is
given as a, = V?/R.

Streamwise acceleration is due to a change in speed along a streamline,
and normal acceleration is due to a change in direction.

For particles that move along a straight path, a, = O since the radius of
curvature is infinity and thus there is no change in direction. The Bernoulli
equation results from a force balance along a streamline.

aVv aVv dV o aVds aV
dV =—ds + —dt = —— + —
ds at dt ds dt dt
oVior = 0 V = Vi(s) f

dV 0 V ds B aVv , dV
dt ds dt as ds

a, =

syuns During steady flow, a fluid may not
V = ds/dt Acceleration in steady accelerate in time at a fixed point,

flow is due to the change ~ put it may accelerate in space.
of velocity with position.



Derivation of the Bernoulli Equation

7 = Vv
¥ 2 F=mas p s — (P + dPydA — Wsin 6 = mV =
Steady flow along a streamline : ds
m=pV=pdAds W=mg = pgdAds
1 3 = i . | d: | Jr'l.-"
(P 3 dP)da Sin b = dzlds. _up s — pedA ds S = pdads v -
ds ds
—dP — pgdz =pVdV Vqv = % d(V?)
. dP , |
s/ lavy +gdz=0 A
p P - Steady flow:
dx C dP 12 | |
j + - + gz = constant (along a streamline)
J P -
- X ' ' Bernoulli
s Bt : Steady, incompressible flow: :
The forces acting on a fluid _ » 3/ P equation
particle along a streamline. — + — + gz = constant (along a streamline)
p 2
The sum of the kinetic, potential, and The Bernoulli equation between any
constant along a streamline during p V2 p V2
steady flow when compressibility and Tty =22 2 4+ o7,
-~y P - Sy !

frictional effects are negligible. P - P 2 34



(Steady flow along a streamline)

General:

— + —— + gZ = constant

JdP V2
p 7

Incompressible flow (p = constant):

2
_Ii T ‘_/_ + g7 = constant
p 2 C

-

The incompressible Bernoulli equation is
derived assuming incompressible flow,
and thus it should not be used for flows
with significant compressibility effects.
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Flow
energy Potential

\ energy

P v, I_
F+ T\+gz-¢0nstant

Kinetic
energy

The Bernoulli equation
states that the sum of the
kinetic, potential, and flow
energies of a fluid particle is
constant along a streamline
during steady flow.

The Bernoulli equation can be viewed as the

This is equivalent to the general conservation
of energy principle for systems that do not
involve any conversion of mechanical energy
and thermal energy to each other, and thus
the mechanical energy and thermal energy are
conserved separately.

The Bernoulli equation states that during
steady, incompressible flow with negligible
friction, the various forms of mechanical
energy are converted to each other, but their
sum remains constant.

There is no dissipation of mechanical energy
during such flows since there is no friction that
converts mechanical energy to sensible
thermal (internal) energy.

The Bernoulli equation is commonly used in
practice since a variety of practical fluid flow
problems can be analyzed to reasonable

accuracy with it.
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Force Balance across Streamlines

Force balance in the direction n normal to the streamline yields the following
relation applicable across the streamlines for steady, incompressible flow:

P [V
S -
P

Effﬁ + gz = constant

For flow along a straight line, R — « and
this equation reduces to P/p + gz = constant
or P = — pgz + constant, which is an
expression for the variation of hydrostatic
pressure with vertical distance for a

stationary fluid body.

Pressure decreases towards the

center of curvature when
streamlines are curved (a), but
the variation of pressure with
elevation in steady,
Incompressible flow along a
straight line (b) is the same as
that in stationary fluid.

(across streamlines)

B D
Stationary fluid Flowing fluid

Pp—-Py= Pp—P¢

s

(b)



Unsteady, Compressible Flow

The Bernoulli equation for unsteady, compressible flow:

P [av  ~ V
— + | —ds +— + gz = constant
p _

Unsteady, compressible flow: l' ”
. C
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Static, Dynamic, and Stagnation Pressures

The kinetic and potential energies of the fluid can be converted to flow
energy (and vice versa) during flow, causing the pressure to change.
Multiplying the Bernoulli equation by the density gives

/2 |

F+ p — + pgz = constant (along a streamline)

P is the static pressure: It does not incorporate any dynamic effects; it
represents the actual thermodynamic pressure of the fluid. This is the same
as the pressure used in thermodynamics and property tables.

pV?/2 is the dynamic pressure: It represents the pressure rise when the
fluid in motion is brought to a stop isentropically.

pgzis the hydrostatic pressure: It is not pressure in a real sense since its
value depends on the reference level selected; it accounts for the elevation
effects, i.e., fluid weight on pressure. (Be careful of the sign—unlike
hydrostatic pressure pgh which increases with fluid depth h, the hydrostatic
pressure term pgz decreases with fluid depth.)

Total pressure: The sum of the static, dynamic, and
hydrostatic pressures. Therefore, the Bernoulli equation
states that the total pressure along a streamline is constant.
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Stagnation pressure: The sum of the static and dynamic pressures. It represents
the pressure at a point where the fluid is brought to a complete stop isentropically.

bﬂ
) — p —
Fﬁmg'_ F +_f].?

(kPa)

D
54{FﬁMg

\ p

—_ ‘.D}

Stagnation pressure hole

Static pressure holes

Close-up of a Pitot-static probe,
showing the stagnation pressure hole
and two of the five static circumferential
pressure holes.

Proportional to dynamic
pressure

Piezometer Proportional to

— stagnation
Proportional V2 pressure, P,
to static 2 : i
‘ g ___Pitot
pressure, P a
tube
-/
4 %
e ] — -

Stagnation
point

o \jnpm_m
p

The static, dynamic, and
stagnation pressures measured
using piezometer tubes.
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High Correct Low

Stagnation streamline

Careless drilling of
the static pressure
tap may result in an
erroneous reading
of the static
pressure head.

Streaklines produced by
colored fluid introduced
upstream of an airfoil; since
the flow is steady, the
streaklines are the same as
streamlines and pathlines.
The stagnation streamline

IS marked.
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Limitations on the Use of the Bernoulli Equation

1. Steady flow The Bernoulli equation is applicable to steady flow.

2. Frictionless flow Every flow involves some friction, no matter how small,
and frictional effects may or may not be negligible.

3. No shaft work The Bernoulli equation is not applicable in a flow section that
Involves a pump, turbine, fan, or any other machine or impeller since such
devices destroy the streamlines and carry out energy interactions with the
fluid particles. When these devices exist, the energy equation should be
used instead.

4. Incompressible flow Density is taken constant in the derivation of the
Bernoulli equation. The flow is incompressible for liguids and also by gases
at Mach numbers less than about 0.3.

5. No heat transfer The density of a gas is inversely proportional to
temperature, and thus the Bernoulli equation should not be used for flow
sections that involve significant temperature change such as heating or
cooling sections.

6. Flow along a streamline Strictly speaking, the Bernoulli equation is
applicable along a streamline. However, when a region of the flow is
irrotational and there is negligibly small vorticity in the flow field, the
Bernoulli equation becomes applicable across streamlines as well. 42



A sudden A long narrow
expansion tube

—/‘

Flow through
a valve

£® ®r\7\}\r|@ m

—

| ke
I __ A heating section _ ———_s
—_ ——
I —
= ;’;/ = Frictional effects, heat transfer, and components
A\ J/ that disturb the streamlined structure of flow make
Streamlines the Bernoulli equation invalid. It should not be used
p, V3 P, V3 in any of the flows shown here.
F+E+“ F+E+f

When the flow is irrotational, the Bernoulli equation becomes applicable
between any two points along the flow (not just on the same streamline).
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Hydraulic Grade Line (HGL) and Energy Grade Line (EGL)

It is often convenient to represent the level of mechanical energy graphically using
heights to facilitate visualization of the various terms of the Bernoulli equation.
Dividing each term of the Bernoulli equation by g gives

P V-
_|_

pg 28

e |

+ 7 = H = constant (along a streamline)

Plpg is the pressure head; it represents the height of a fluid column
that produces the static pressure P.

V?/2g is the velocity head; it represents the elevation needed for a
fluid to reach the velocity V during frictionless free fall.

z is the elevation head; it represents the potential energy of the fluid.

An alternative form of the

Bernoulli equation is expressed

in terms of heads as: The sum

of the pressure, velocity, and

elevation heads is constant

along a streamline. 44




Hydraulic grade line (HGL), P/pg + z The line that represents the sum of
the static pressure and the elevation heads.

Energy grade line (EGL), P/pg +V?/2g + z The line that represents the

total head of the fluid.

Dynamic head, VV?/2g The difference between the heights of EGL and HGL.

| W
4 ‘?

0

/1

\"'—&_“_
\
™
N \
‘-"‘-‘ — / F 3 —
~ T
T~ 72 h“'“-—-______
o HY28 TEL
EGL T ~
F'_._____._--""'"_ || || L =
= |» = - S
—
Diffuser 2 3
+ Arbitrary reference plane (z =0)

The hydraulic
grade line (HGL)
and the energy
grade line (EGL)
for free discharge
from a reservoir
through a
horizontal pipe
with a diffuser.



Notes on HGL and EGL

For stationary bodies such as reservoirs or lakes, the EGL and HGL coincide with
the free surface of the liquid.

The EGL is always a distance V?/2g above the HGL. These two curves approach
each other as the velocity decreases, and they diverge as the velocity increases.

In an idealized Bernoulli-type flow, EGL is horizontal and its height remains
constant.

For open-channel flow, the HGL coincides with the free surface of the liquid, and
the EGL is a distance V2/2g above the free surface.

At a pipe exit, the pressure head is zero (atmospheric pressure) and thus the
HGL coincides with the pipe outlet.

The mechanical energy loss due to frictional effects (conversion to thermal
energy) causes the EGL and HGL to slope downward in the direction of flow. The
slope is a measure of the head loss in the pipe. A component, such as a valve,
that generates significant frictional effects causes a sudden drop in both EGL and
HGL at that location.

A steep jump/drop occurs in EGL and HGL whenever mechanical energy Is
added or removed to or from the fluid (pump, turbine).

The (gage) pressure of a fluid is zero at locations where the HGL intersects the
fluid. The pressure in a flow section that lies above the HGL is negative, and the
pressure in a section that lies below the HGL is positive. 46



(Horizontal) e s
Ii’j-"rjg / HGL ;I.-"' /HGL
Pg I A\
L — I' T e—
) 1 — Turbine i
~ Pump
. P
i Referencelevel _____ ) —
! \5\ |
In an idealized Bernoulli-type flow, Woump Wiurbine
EGL is horizontal and its height A steep jump occurs in EGL and HGL
remains constant. But this is not whenever mechanical energy is added to
the case for HGL when the flow the fluid by a pump, and a steep drop
velocity varies along the flow. occurs whenever mechanical energy is
, removed from the fluid by a turbine.
f,f-Ncgau ve P

|1

The gage pressure of a fluid is zero at
locations where the HGL intersects the
fluid, and the pressure is negative
(vacuum) in a flow section that lies
above the HGL.

Positive P
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Example: Water Discharge =~ Example: ¢

. from aLarge Tank T ‘Spraying Water i~
' ‘ | into the Air ~Jll.'f
[if]
L .(D
: S5m N coter Z
_ ‘ 2
T . N0
o ~0 o, 0
+—" 4+ 7= + — =4z Iy =—
bk 2g 1 % 20 YT 1T
=0 0
p v/ 7 p v/ P, P,
— + — 2 = — - + z, — = + z,
Pg 28 Pg 28 ] pg P




~0
e P/ YV V2 :
{+_l/’+zlz —}-—2—}—32/;}, zl:_ﬂ :
E‘é =8 g 28 Qg o
. , \ .
Example: Siphoning Out fﬁﬂj{i
Gasoline from a Fuel Tank e
l 2m
ofl &
G.as _j‘_“z’]
= 0.75 m
\B )
Gas can
PE V’g 0 P3 Vﬁ'{ Pﬂlm P’J.
ty+a3 =tttz =—+z,
Pg 78 ps 78 pg P8 4



Example: Velocity Measurement
by a Pitot Tube

|

hy;=12cm

|
|

hy,="7cm
hy=3cm]
Water e 1 _—"Tj/ —V,
O OX
A\
Stagnation
point
p, VvV P W’O .
L = — + 7,
. 71 . #:2
pg 28 ' p8 28 |

P, = pg(hy + h,)
Py, = pg(hy + hy + hj)

V%_PE_PI
2g P8

%
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Example: The Rise of the
Ocean Due to a Hurricane

The eye of hurricane Linda (1997 in
the Pacific Ocean near Baja
California) is clearly visible in this
satellite photo.

20
P, V2 P, V
A+.A+5A:_B é +;B
pg 28 pg 22 *

Hurricane
e}
A B
@

1 ®
iy
ces 3
®level _I_L

Ocean
P B P A i
— — =
Pg 28
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|
m EXAMPLE 5-10 Bernoulli Equation for Compressible Flow

|

m Derive the Bernoulli equation when the compressibility effects are not negli-

m gible for an ideal gas undergoing (&) an isothermal process and (b) an isen-
tropic process.

SOLUTION The Bernoulli equation for compressible flow is to be obtained
for an ideal gas for isothermal and isentropic processes.

Assumptions 1 The flow is steady and frictional effects are negligible. 2 The
fluid is an ideal gas, so the relation P = pRT is applicable. 3 The specific
heats are constant so that P/p* = constant during an isentropic process.
Analysis (a) When the compressibility effects are significant and the flow
cannot be assumed to be incompressible, the Bernoulli equation is given by
Eq. 540 as

J' dPp  V*?

— +

P - + gz = constant  (along a streamline) (1)

The compressibility effects can be properly accounted for by performing the
integration [dF/p in Eq. 1. But this requires a relation between P and p for
the process. For the isothermal expansion or compression of an ideal gas,
the integral in Eq. 1 is performed easily by noting that T = constant and
substituting p = P/RT,

" dP " dP
J b JP!RT = RTInP

Substituting into Eq. 1 gives the desired relation,

l__...
Isothermal process: RTInP + 5 + gz = constant (2) 52



(b) A more practical case of compressible flow is the isentropic flow of ideal
gases through equipment that involves high-speed fluid flow such as nozzles,
diffusers, and the passages between turbine blades (Fig. 5-45). Isentropic
(i.e., reversible and adiabatic) flow is closely approximated by these devices,
and it is characterized by the relation Plp* = C = constant, where k is the
specific heat ratio of the gas. Solving for p from Plp¥ = C gives p =
C~VkpUk Performing the integration,

1d_P_ [ e — Uk o plk+1 _P”“ pUk+1 3 k £
Jp_JCP = —k+1 p —Wk+1 \k—1/p

(3)

Substituting, the Bernoulli equation for steady, isentropic, compressible flow
of an ideal gas becomes

_ k \P y2
Isentropic flow: (— — + —— + gz = constant (4a)
k-1/p 2
or
k \P1 Vi k \P. , V3
— ) —+ =+ g =|—]—+ =+ gz
(k— l)m 2 T8 (k— I)Pz DR -

A common practical situation involves the acceleration of a gas from rest
(stagnation conditions at state 1) with negligible change in elevation. In
that case we have z; = z, and V;, = 0. Noting that p = P/RT for ideal
gases, Plp* = constant for isentropic flow, and the Mach number is defined
as Ma = V/ic where ¢ = VKRT is the local speed of sound for ideal gases,

Eq. 4b simplifies to
P . kfik—1)
- =1+ ("‘TI)MJ (4c)

P,

where state 1 is the stagnation state and state 2 is any state along the flow.

FIGURE 545

Compressible flow of a gas through
turbine blades is often modeled as
isentropic, and the compressible form
of the Bernoulli equation is a
reasonable approximation.



'5—5 n GENERAL ENERGY EQUATION

" opg -0k B — Emu = fﬁE
KE] = 0 ~-‘--;:1 l (TIFE
i Qnetin + anetin

.Qnetin_i_ﬂfnetin:EJ Pfjdu :

sYs

| - Qnetin = Qi“._ Qou' Woe in ~ Wi~ Wou -—:
il e | V2 |
‘ H o e=utketpe=u+—_+gz
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‘ KE,=3kJ
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Qc_m— 3KJ
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Energy Transfer by Heat, Q

Thermal energy: The sensible

and latent forms of internal
energy.

Heat Transfer: The transfer of
energy from one system to
another as a result of a
temperature difference.

The direction of heat transfer is

always from the higher-
temperature body to the lower-
temperature one.

Adiabatic process: A process
during which there is no heat
transfer.

Heat transfer rate: The time
rate of heat transfer.

Room air
25°C

No heat 8 J/s
transfer

Temperature difference is the driving
force for heat transfer. The larger the
temperature difference, the higher is

the rate of heat transfer. i



Energy Transfer by Work, W

«  Work: The energy transfer associated with a force acting through a
distance.

« Arising piston, a rotating shaft, and an electric wire crossing the
system boundaries are all associated with work interactions.

- Power: The time rate of doing work.

« Car engines and hydraulic, steam, and gas turbines produce work;
compressors, pumps, fans, and mixers consume work.

7 — 7 I 7 7
Hmm] o shaft + H]J['E!SRI]]'E + viscous + other

W, .« The work transmitted by a rotating shaft

W essure The work done by the pressure forces on the control surface
W, iccous The work done by the normal and shear components of
viscous forces on the control surface

W, her The work done by other forces such as electric, magnetic, and

surface tension
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Shaft Aforce F acting through a moment B I
‘Work r

armr generatesatorque T 1 = Fr — F =
This ‘force acts thrdu-gh a distanc‘e-s s = (2#r)n.

Shaft

T
work Wen = Fs = | — | (2mm) = 2mnT (kJ)

r
The power transmitted through the shatft is the shaft work done per unit time:

W&;huft — mTs-;tmft = 2ﬂ'*"r;"Tshaf‘[ Wsh — 27‘_”T (kW)

Boat Wy =2nnT
- Torque = Fr
Engine

s 2 sy _ Shaft work is 'proportional to the
Energy transmission through rotating shafts -~ t5rque applied and the number.

IS commonly encountered in practice. of revolutions of the shaft.



Work Done by Pressure Forces

5Wooundary = PA ds.

0 wfpfﬂssure = 0 H'fbnundar‘,r = PA E'eri.E-[CIﬂ Vpismjl = ds/dt

SW essure = —P dA V, = —P dA(V - 1)

' [ g [ P —*
H';pressure. metin — P(V-n)dA = — J —p(V - n)dA
YA YA jr;l

"

W

net in

i/
(
A ' A
d_'i | ‘f‘ ________ : dm 9
| l, dA :
V. ! y -
piston (': System » Vv
System ‘\zg ’/
(gas in cylinder) gy oy < l
System boundary, A
(a) (b)

# # ] —
N K — T _ F. o
=W shaft, net in + W pressure, net in — W shaft, net in J P(V-n)dA
JA

The pressure force

acting on (a) the moving
boundary of a system in

a piston-cylinder device,
and (b) the differential
surface area of a

system of arbitrary
shape. 58



r

The conservation of energy equationis 4B, d .
: - : = bpdV + | bp(V.-7)dA
obtained by replacing B in the Reynolds dr dt o
Jey I
transport theorem by energy E and b by e. c ‘ e ‘
, . , dE,,,
Qnet in + I“'1';5]1:11‘1_ net in + II"1:"fl:|1'v.3:'~.-s1.11'v.3, netin — (.Iiff B=E b=e b=e¢
e=u+ke+pe=u+VI2+ gz l J« J
dE " i Pops _ 2 [ dv i i) dA
v_d J ep dV + J ep(V, - M)A i di ﬁ_""p * T:P“’*’ }
dt dt Jov Jes - -

ep dV + J ep(V, - 1) dA

. - . _a
Qnatin + W shaft, netin + W pressure, net in -~ dt

‘cv ‘cs
The net rate of energy The time rate of The net flow rate of
transfer into a CV by | = | change of the energy | + | energy out of the control
heat and work transfer content of the CV surface by mass flow

1 1 d [ - p L
QDnetin T IL'Tffshzlft, netin — ep dv + (_ + E?)ji{ V,+n)dA
dt Jov Jog \P

) d | (PN s o
+ H':xh-..ﬂ netin 4, ep dv + ‘ (_ te )J”{ V- n)dA
’ [I-? _I'i_ v Y05 .|rII d

Fixed CV: ':_}n-:[ in
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In a typical engineering problem, the \Qm .
control volume may contain many Out

—

inlets and outlets; energy flows inat ;| In , b= Moyt
each inlet, and energy flows out at energ}&( S energyou
Fixed N
each outlet. Energy also enters the y o \
control volume through net heat " volume |
transfer and net shaft work. ;-( ol
Mins 7~ /
CNergy
i = Out?? - R‘\ W‘shlﬁ net in
_ o m Out
m = _L_-'{V f’” dAE out » "
"4 energy e out
s ENergy  ut
. . d P
QI.'I.E."[ in -+ H shaft, net in = E -E:'I"il {;‘rll.-"ll + 2 f” o — 4+ e E H‘? e = u _|_ szrg _|_ E’:
SO out in &
.l'-e'I i . P Tl B
'Umtm + ”“ shaft, netin — | ‘TJ”“F + z-"'”( + u +_+ ) o
dr |, out A\ P 2
. P TL_.-'J
Em(— +u+—+ g:)
1n
' d | . i 12 / 12
Qetin T H«.I'ni't-nctin — g ff"“”**’f_i_ z”"(h + — + gz EH.‘(J" +—+ o7
dt |, pv— 2 m 2
60
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5—0 m ENERGY ANALYSIS OF STEADY FLOWS
C Outin + Watatt netin = Erh‘(h - % + g:,) — zrh(h 1 % + g:.)

ot in

The net rate of energy transfer to a control - (. V
: m\hy+—+ gz,
volume by heat transfer and work during steady 2 Y =y
. : 3 : : n
flow is equal to the difference between the rates \\‘f t
of outgoing and Incoming energy flows by mass S
e @ _ Fixed A
I
¥ , V-V { EEI‘JL?E )
Qretin T Winaft, netin = f”(hz —h + 2 T 82 — 31})
single-stream devices | ‘
1;% _ Fll:' Onetin+ haﬁ net in
 Ynetin + Wshaft, net in — h? — IF"'l + + JE."'[:; — ;:]"}
: m hd"'_‘*'g«m
h=u+Pv=u+Plp A control volume with
AN Vi B V‘" o | only one inlet and one
W i - i1 = — ) s — W] — i ‘ ‘
shaft. met in o 2 B Py 2 .g 2 l {net in Outlet and energy

Interactions.
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|deal flow (no mechanlcal energy loss): 0.7 ko/s

Qnetin = Uy — U The lost mechanical Ve —-/

energy in a fluid flow
Real flow (with mechanical = system results in an [5.9°C
_energy loss): - increase in the internal | Au=0.84 W/ke
Oty — ) — g energy_of th(_e fluid an_d AT =02°C
- - thus in a rise of fluid
€mech,in — €mech, out T €mech, loss sEE e,

1;-"2 P2 V?
Wohaft, net in + — +_+H:.] =_+_+r"?’~‘ +€mech lass - 2 kW
1 2 P2 2
7 pump = 0.70
H’amtt netin wpump o ."1"11111'I::-jne T
) 15.0°C
P Vi P, V3
JrT + T T tw pump — JrT + 5 + 222 + Wirbine T €mech, loss Water
, f‘PI 1‘I:I ) fP__'n lr::: .
H.'(— " B + 841 + W pump ”'I(_ + 3 + 842 + W turbine + Emcuh. loss
rrs fh 2
= E + E + E

Em-xh. loss mech loss, pump mech loss, turbine mech loss, piping
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A typical power plant
has numerous pipes,
elbows, valves, pumps,
and turbines, all of
which have irreversible
losses.
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Energy equation in terms of heads

P, % P, Vs
: + “ + <1 + hpump. u + ~ + {2 + hmrhmc.{' + hL
P1E =8 P25 =8
where
H’!pumn u H/pump. u npump Wpump . .
Msump. u = = — - : is the useful head delivered
g mg mg
to the fluid by the pump. Because of irreversible losses in the pump,
Noump, o 18 less than Wi, /mg by the factor n,, .
Wiurbine., e I/Vlurhinc. e H/lurhinc .
* Nyrbine. e = — : — — 1s the extracted head removed
8 mg Nturbine! 8

from the fluid by the turbine. Because of irreversible losses in the
turbine, /i is greater than W, .. /mg by the factor 1, pise-
e

‘mech loss, piping Emcch loss, piping . .
e Iy = = : 1s the irreversible head loss between
g mg
I and 2 due to all components of the piping system other than the pump
or turbine.

turbine, e urbine
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Ei-“r Control volume H'I[

pump /

E Emech loss,
‘'mech loss, pump turbine

urbine

- A :
. P, V% 4 P V2 E mech fluid, out
E C g . —t— 47 2 2 '
mech fluid, in 3 <] — - — - |
pi.{f KQ’ P ¥ 22. "2 :
Y!

_V Emech loss, piping

Mechanical energy flow chart for a fluid flow system that involves a
pump and a turbine. Vertical dimensions show each energy term
expressed as an equivalent column height of fluid, i.e., head. 65
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Special Case: Incompressible Flow with No
Mechanical Work Devices and Negligible Friction

When piping losses are negligible, there is negligible dissipation of
mechanical energy into thermal energy, and thus h, = €.,.ch (0ss. piping /9
= 0. Also, Nyyme u = Niurvine, e = 0 When there are no mechanical work
devices such as fans, pumps, or turbines. Then Eq. 5—74 reduces to

P, Vi P, V3 P VvV

+ — 47, =—+ + 7, or + — + Z = constant
pg 28 pg 28 P8 28

L

This is the Bernoulli equation derived earlier using Newton’s
second law of motion.

Thus, the Bernoulli equation can be thought of as a degenerate
form of the energy equation.
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Kinetic Energy Correction Factor, «

The kinetic energy of a fluid stream obtained
from V?/2 is not the same as the actual kinetic
energy of the fluid stream since the square of
a sum is not equal to the sum of the squares
of its components.

This error can be corrected by replacing the
kinetic energy terms V?/2 in the energy
equation by oV, ,°/2, where « is the kinetic
energy correction factor.

The correction factor is 2.0 for
fully developed laminar pipe

A Vi(r)
I -
m=pV, A, p = constant

KE,., :chﬁf}r = JA ,]j— [‘r”{rJI2 [pV(r) dA]
[ V(r)1’ dA

2 _ 1 73
mVige= 5 PAV 4o

o= K‘Eem _ L[ ]“f{” dA
KE A Va

avg

flow, and it ranges between 1.04  The determination of the kinetic energy correction
and 1.11 for fully developed factor using the actual velocity distribution V(r) and
turbulent flow in a round pipe. the average velocity V,,, at a cross section.

P V2 . (P, V2
m(— T _— + 272, | + Wi = m( - S
p 2 o p "2

T 85 ) T U'[ll[lmn + £

mech, loss

P, V2 PR V3
P:Q aF l‘:.-l;'] EIE: + .:| + ”p[]m} u pﬁ;’ jg

+ 2z, + I

2 turbine,




EXAMPLE 5-11 Effect of Friction on Fluid Temperature
and Head Loss

H
o
o
u
Show that during steady and incompressible flow of a fluid in an adiabatic ®
flow section (a) the temperature remains constant and there is no head loss
when friction is ignored and (b) the temperature increases and some head
loss occurs when frictional effects are considered. Discuss if it is possible for
the fluid temperature to decrease during such flow (Fig. 5-57).

SOLUTION Steady and incompressible flow through an adiabatic section is
considered. The effects of friction on the temperature and the heat loss are
to be determined.

Assumptions 1 The flow is steady and incompressible. 2 The flow section is
adiabatic and thus there is no heat transfer, g, = O.

Analysis The density of a fluid remains constant during incompressible flow
and the entropy change is

T, D . 19D
As = ¢, In— ! _ . _ p=constant | T,
1 uy )

(adiabatic)

This relation represents the entropy change of the fluid per unit mass as
it flows through the flow section from state 1 at the inlet to state 2 at
the outlet. Entropy change is caused by two effects: (1) heat transfer and
(2) irreversibilities. Therefore, in the absence of heat transfer, entropy change

is due to irreversibilities only, whose effect is always to increase entropy. L



(a) The entropy change of the fluid in an adiabatic flow section (g, = O)
is zero when the process does not involve any irreversibilities such as friction
and swirling, and thus for reversible flow we have

I,

Temperature change: As = ¢, In ? =0 - T1T,=T
1

Mechanical energy loss:

€ mech loss, piping = Uy 7 Wy 7 Ypetin T C‘LJ{TE - Tl} = Yhetin 0

Head loss: h, = e /g =0

mech loss, piping

Thus we conclude that when heat transfer and frictional effects are negligible,
(1) the temperature of the fluid remains constant, (2) no mechanical energy
is converted to thermal energy, and (3) there is no irreversible head loss.

(b) When irreversibilities such as friction are taken into account, the entropy
change is positive and thus we have:

2 . -
Temperature change: As=c,In—=>0 —- T, = T,
1

Mechanical energy losS:  €pyech 1oss, pipine = U2 — U1 — Gperin = G(ITo — 1) = 0

Head loss: hL ~ ©mech loss, piping"}g =0

Thus we conclude that when the flow is adiabatic and irreversible, (1) the
temperature of the fluid increases, (2) some mechanical energy is converted
to thermal energy, and (3) some irreversible head loss occurs.
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- . . .
m EXAMPLE 5-12 Pumping Power and Frictional Heating

u in a Pump
||

B The pump of a water distribution system is powered by a 15-kW electric motor
whose efficiency is 90 percent (Fig. 5-58). The water flow rate through the
pump is 50 L/s. The diameters of the inlet and outlet pipes are the same,
and the elevation difference across the pump is negligible. If the absolute
pressures at the inlet and outlet of the pump are measured to be 100 kPa
and 300 kPa, respectively, determine (a) the mechanical efficiency of the
pump and (b) the temperature rise of water as it flows through the pump
due to mechanical inefficiencies.

specific heat to be 4.18 klJ/kg-°C.
Analysis (a) The mass flow rate of water through the pump is Water

m = pV = (1 kg/L)(50 L/s) = 50 kg/s

The motor draws 15 kW of power and is 90 percent efficient. Thus the 300«kPa
mechanical (shaft) power it delivers to the pump is

Wpump, shaft ﬂmmorw

-Pfaperﬁes We také t.he density of watér fo be 1 kg/L = IOOO kg/m3 and its I

= 90%

TfIITI{}[OT

= (0.90)(15 kW) = 135 kW

electric

To determine the mechanical efficiency of the pump, we need to know the
increase in the mechanical energy of the fluid as it flows through the pump, ;4 pa
which is @D
: : . (P V3 (P, Vi
—\Emech. fluid = Emcch. out Emcch,in = m F + ai T +352 —m F +Cf1_ +§Zl T
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Simplifying it for this case and substituting the given values,

- (B — P (300 — 100) kPa 1kJ
_\'Emcch fluid — m — {50 kg‘fs} 3 — 10.0 kW
’ p 1000 kg/m’ 1 kPa - m?
Then the mechanical efficiency of the pump becomes
W ump, o lEmcc ui 10.0 kW
npump - — = e = = 0.741 or 74.1%
144 pump, shaft H"rpun‘llp, shaft 13.5 kW

(b) Of the 13.5-kW mechanical power supplied by the pump, only 10.0 kW
is imparted to the fluid as mechanical energy. The remaining 3.5 kW is con-
verted to thermal energy due to frictional effects, and this “lost” mechanical
energy manifests itself as a heating effect in the fluid,

Emcch, loss 1E';["rprun‘ll:r.shzlft - —\‘Emech. fluid — 13.5 — 10.0 = 3.5kW

The temperature rise of water due to this mechanical inefficiency is deter-
mined from the thermal energy balance, E . j0ss = MU, — u;) = mcAT.
Solving for AT,

Emcch, loss . 35 kKW
ric (50 kg/s)(4.18 k1/ kg-°C)

Therefore, the water experiences a temperature rise of 0.017°C which is very
small, due to mechanical inefficiency, as it flows through the pump.
Discussion In an actual application, the temperature rise of water would
probably be less since part of the heat generated would be transferred to
the casing of the pump and from the casing to the surrounding air. If the entire
pump and motor were submerged in water, then the 1.5 kW dissipated due to
motor inefficiency would also be transferred to the surrounding water as heat.

AT = = 0.017°C

11



Example: Hydroelectric Power Generation from a Dam

Generator
ﬂmrl}ine—gen =80%

/ 7)

P Fa
JA T Hal
p8 28

Wturbine, e — mghturhine, e

S hmﬁ;[fu

h

turbine, ¢

1%

Pz’

El_hL

VE

0

+ hturbme e + JI"/"'L

electric nturh]ne—genwturhine, e



Example: Fan Selection for Air Cooling of a Computer

| \\\:’ N Streamline Energy equation between 3 and 4
' lect itk Sk ik
== » P : P .
| » m FB + H{rfan = m ;4 + Emech loss, fan
®: V2§ '- Py — Py
: Hr’ fan, . m
| ' p
| e S i 0
Casing

Energy eqUation between 1 and 2

o VE/' ﬂ /ﬁ
m _'?d-f;_ + I11"1 +/gf1 + Wf'm = m T oy~ + 32/ + Hril:uﬂ:niu»;-, + Emech loss, fan
f
Wfan - Emech loss, fan - l"""{1‘-5"1, TE:
- Vi o . Wi
- wfﬂ.ﬂ 1 — fﬂtﬁfg 2 WFEIECI: = &

ﬂf an—motor




e Example Pumpmg Water from a Lake to a Reservow

| ‘."Wpumpu — npumpwshﬂft = (0. ?2)(5 kW) = 3 6 kW
~ Energy (P Vi B Pz V3 -
~equation ™ (p+“12 + 820 ) + Woump,u = it p+ﬂﬁ32 T8
between 1 ‘ ‘
and2 + Wturb]ne,e + E mech loss, piping
L @ v : :; - TPlfr[;lﬂlfﬂlhM - Fﬁgzi T Eme-ch loss, piping :'- -
& Pool FEe s SR
| E mech loss, piping: mghl. e
Forthe - B Wpump,u |
pump AP = P-:rut P]n — V |

s




Summary

 Introduction
v Conservation of Mass
v The Linear Momentum Equation
v Conservation of Energy

» Conservation of Mass
v Mass and Volume Flow Rates
v' Conservation of Mass Principle
v Moving or Deforming Control Volumes
v’ Mass Balance for Steady-Flow Processes
v Special Case: Incompressible Flow

« Mechanical Energy and Efficiency
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The Bernoulli Equation

v

R N R e e N

v

Acceleration of a Fluid Particle

Derivation of the Bernoulli Equation

Force Balance across Streamlines

Unsteady, compressible flow

Static, Dynamic, and Stagnation Pressures

Limitations on the Use of the Bernoulli Equation

Hydraulic Grade Line (HGL) and Energy Grade Line (EGL)
Applications of the Bernouli Equation

General Energy Equation

v
v
v
v

Energy Transfer by Heat, Q
Energy Transfer by Work, W
Shaft Work

Work Done by Pressure Forces

Energy Analysis of Steady Flows

v’ Special Case: Incompressible Flow with No Mechanical Work

v

Devices and Negligible Friction
Kinetic Energy Correction Factor, «
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