SQL Practice Questions

Consider the following schema definitions:

Branch	(branchNo, street, city, postcode)		
Staff	(staffNo, fName, lName, position, sex, DOB, salary, branchNo)		
PropertyforRent (propertyNo, street, city, postcode, type, rooms, rent, ownerNo			
	staffNo, branchNo)		
Client	(clientNo, fName, lName, telNo, prefType, maxRent)		
PrivateOwner	(ownerNo, fName, lName, address, telNo)		
Viewing	(clientNo, propertyNo, viewDate, comment)		
Registration	(clientNo, branchNo, staffNo, dateJoined)		

An instance of the above schemas is given in the last page of the examination. (You may detach and use it if necessary)

For each case below, fill in the blanks such that the SQL queries correspond to the English language queries stated. *Each blank is worth 2 points*.

1. List the address of all branch offices in London or Bristol.

SELECT _____*___ FROM __branch____ WHERE city='London' _OR city='bristol'_____

2. List the staff with a salary between \$10000 and \$30000.

SELECT staff_No FROM Staff WHERE __salary between 10000 AND 30000_____ 3. List the staff in descending order of salary.

SELECT staff_No, salary FROM Staff ORDER BY __salary DESC_____

4. Find the number of different properties viewed in April 2004.

SELECT __count (distinct propert_no) FROM Viewing WHERE viewDate BETWEEN '1-Apr-04' AND '30-Apr-04'

5. Find the minimum, maximum and average staff salary.

SELECT _min(salary)___, _max(salary)_, _avg(salary)____ FROM Staff

6. For each branch office with more than one member of staff, find the number of staff working in each branch and the sum of their salaries.

SELECT branchNo, **_count(staffno)_**, **__sum(salary)___** FROM Staff GROUP BY branchNo HAVING **__count(staffNo) >1** 7. List the staff who work in the branch whose stree adress is '163 Main Street'

SELECT staffNo, fName, lName, FROM Staff WHERE _branchNo_____ = (SELECT branchNo FROM _branch_____ WHERE _street='163 Main str')

8. Find all staff whose salary is larger than the salary of every staff member at branch with branchNo B003.

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE _salary > ALL _____ (SELECT salary FROM __staff_____ WHERE brancNo='B003')

9. For each branch, list the numbers and names of staff who manage properties, including the city in which the branch is located and the properties that the staff manage.

SELECT b.branchNo, b.city, s.staffNo, fName, lName, properyNo FROM Branch AS b, Staff AS s, **_propertyforRent p** WHERE b.branchNo = s.branchNo AND **_s.staffNo=p.staffno**

10. List the clients who have viewed a property.

SELECT clientNo, fName, lName, propertyNo, viewDate FROM __client natural innerjoin viewing____ 11. Find the list of all cities where there is both a branch office and a property

(SELECT city FROM Branch) INTERSECT (SELECT city FROM _PropertyforRent_)

12. Give all managers 5% increase to their salary

UPDATE __staff_____ SET __salary=salary*1.05 WHERE position='Manager'

13. Delete all viewings that belong to property with property number PG4.

DELETE FROM __viewing_____ WHERE _propertyNo='P64'__ A- Consider the following relation schema for an airline database.

customer(<u>id</u>, name, age, gender) onFlight(<u>id</u>, <u>flightNo</u>, <u>flightDate</u>) flightInfo(<u>flightNo</u>, fromCity, toCity, startTime, duration)

Assume all flights take place every day. Fill in the missing slots in each ofd the queries

below. Each slot is worth 2 pts, except the first one, which is worth 1 pt.

1. Names of all customers above the age of 10

SELECT ______name

FROM customer

WHERE _____ age>10

2. Flights (flightNo, flightDate) on which there are at least two customers

SELECT f1.flightNo, f1.flightDate

FROM onFlight as f1, onFlight as f2

WHERE f1.flightNo = f2.flightNo AND f1.flightDate=f2.flightDate AND

______f1.id <> f2.id

3. Flights (flightNo, flightDate) on which there are at least two customers, as well as the number of passengers on the flights

SELECT flightNo, flightDate, count(id) as howMany

FROM onFlight

GROUP BY ______ flightNo, flightDate

HAVING ______ howMany>1

4. Names of passengers who flew on flight "TK102" at least once

	SELECT name			
	FROM customer, onFlight			
	WHERE	_ customer.id=onFlight.id	AND	
	onFlight.fligh	ntNo="TK102"		
5. Names of customers who never flew on any flight				
	SELECT name			
	FROM customer	left outer join flight		
	WHERE flightNo =	= NULL		
6. Names of customers who flew on the same flight as Mr. Joe				

CREATE VIEW joeFlight(flightNo) AS

SELECT flightNo

FROM ______customer natural inner join onFlight

WHERE name = "Joe"

SELECT name

FROM customer, onFlight, joeFlight

WHERE _____ customer.id = onFlight.id AND

_____ onFlight.flightNo = joeFlight.flightNo

7. The number of passengers on flight "TK101" on "1/2/1999"

SELECT _____ count(id)

FROM onFlight

WHERE flightNo= "TK101" AND flightDate="1/2/1999"

8. The most popular destination (i.e. the city which received the most number of travellers)

WITH city_tourists(toCity,HowMany) AS

SELECT toCity, count(*)

FROM onFlight natural inner join flightInfo

GROUP BY toCity

WITH mostTourist(HowMany) AS

SELECT _____ max(HowMany)

FROM ______ city_tourists

SELECT toCity

FROM ______ city_tourists, mostTourist

WHERE ______ city_tourists.HowMany =

mostTourist.HowMany

9. How many passengers ever flew to Istanbul? If somebody travelled to Istanbul more than one time, only one of those visits should be counted.

SELECT ______ count (distinct id)

FROM onFlight natural inner join flightInfo

WHERE to_city = "Istanbul"