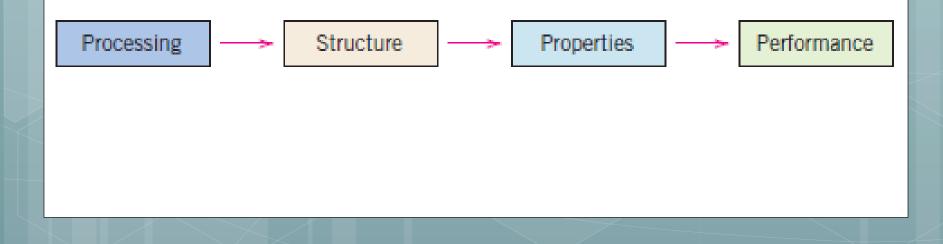
Week 1 INTRODUCTION

Materials Science

Material Science & Engineering

- Material -> something tangible that goes into the makeup of a physical object.
- Material Science -> involves investigating the relationships that exist between the structures and properties of materials.
- Material Engineering -> is, on the basis of these structure-property correlations, designing or engineering the structure of a material to produce a predetermined set of properties.

Material Science & Engineering


- Structure -> The structure of a material usually relates to the arrangement of its internal components
- Different levels of defining structure of a material
- Property -> A property is a material trait (distinguishing feature) in terms of the kind and magnitude of response to a specific imposed stimulus
- Six categories of properties -> mechanical, electrical, thermal, magnetic, optical, and deteriorative.

Material Science & Engineering

- In addition to structure and properties, two other important components are involved in the science and engineering of materials namely, "processing" and "performance."
- Processing -> preparing or putting through a prescribed procedure, e.g. the processing of ore to obtain material
- Performance -> the accomplishment relative to stated goals or objectives

Relationship Among the Four Components

- The structure of a material will depend on how it is processed.
- Furthermore, a material's performance will be a function of its properties.

processing-structure-properties-performance

- Material of all three disks -> Aluminum Oxide
- Left Disk -> a single crystal
- Center Disk ->composed of numerous and very small single crystals that are all connected
- Right Disk ->composed of many small, interconnected crystals, and large number of small pores or void spaces

WHY STUDY MATERIALS SCIENCE AND ENGINEERING?

- Being Engineers we are totally dependent upon materials, their properties and performance
- Many times, a materials problem is one of selecting the right material from the many thousands that are available
- On only rare occasions does a material possess the ideal combination of properties
- Second selection consideration ->deterioration of properties that may occur during service operation
- What will the finished product cost?

CLASSIFICATION OF MATERIALS

- Three basic classifications of solid materials: metals, ceramics, and polymers.
- In addition, there are the composites, combinations of two or more of the above three basic material classes

1. METALS

- Materials in this group are composed of one or more metallic elements and often also nonmetallic elements in relatively small amounts.
- Atoms in metals and their alloys are arranged in a very orderly manner and in comparison to the ceramics and polymers, are relatively dense.
- Distinguishing characteristics -> stiff, strong, ductile, resistant to fracture.
- Metallic materials have large numbers of nonlocalized electrons.
- Some of the metals (Fe, Co, and Ni) have desirable magnetic properties.

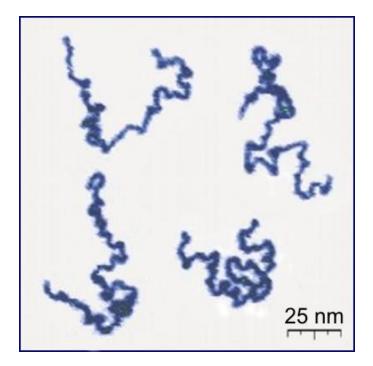
Metallic Objects

2. CERAMICS

- Ceramics are **compounds** between **metallic** and **nonmetallic** elements; they are most frequently oxides, nitrides, and carbides
- Traditional ceramics -> clay minerals (i.e. porcelain), as well as cement, and glass
- Common (nontraditional) ceramics -> alumina, silica, silicon carbide, silicon nitride
- Relatively stiff and strong—stiffnesses and strengths are comparable to those of the metals
- Very hard
- Thus, very brittle

2. CERAMICS (contd...)

- typically insulative to the passage of heat and electricity
- more resistant to high temperatures and harsh environments than metals and polymers.
- ceramics may be transparent, translucent, or opaque
- some of the oxide ceramics (e.g., Fe₃O₄) exhibit magnetic behavior


Ceramic Objects

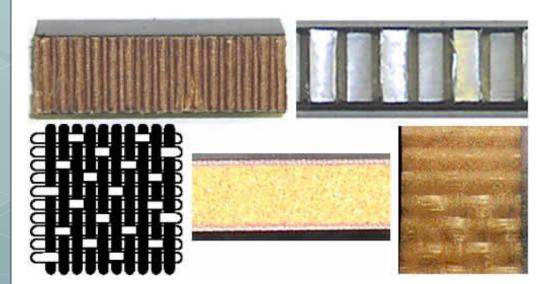
3. POLYMERS

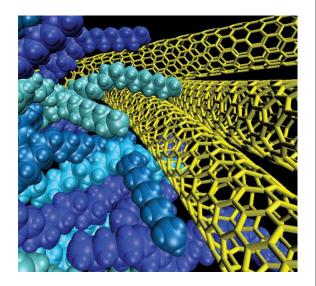
- A **polymer** is a large molecule (macromolecule) composed of repeating structural units typically connected by covalent chemical bonds.
- Many of them are organic compounds that are chemically based on carbon, hydrogen, and other nonmetallic elements (e.g. O, N and Si).
- They have very large molecular structures, often chain-like in nature that have a backbone of carbon atoms.
- Common polymers -> polyethylene (PE), nylon, poly vinyl chloride (PVC), polycarbonate (PC), polystyrene (PS), and silicon rubber.

A Polymer at Macroscopic Level

Appearance of real linear polymer chains as recorded using an atomic force microscope on surface under liquid medium. Chain contour length for this polymer is ~204 nm; thickness is ~0.4 nm

Polymers - Properties


- have low densities.
- mechanical characteristics are generally dissimilar to the metallic and ceramic materials – neither stiff nor strong.
- many of the polymers are extremely ductile and pliable (i.e., plastic).
- relatively inert chemically and nonreactive in a large number of environments.
- major drawback -> tendency to soften and/or decompose at modest temperatures.
- low electrical conductivities and nonmagnetic.

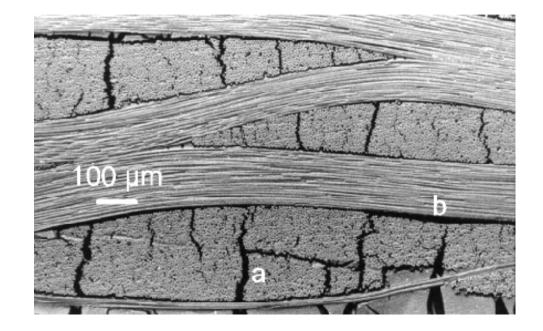

Polymer Objects

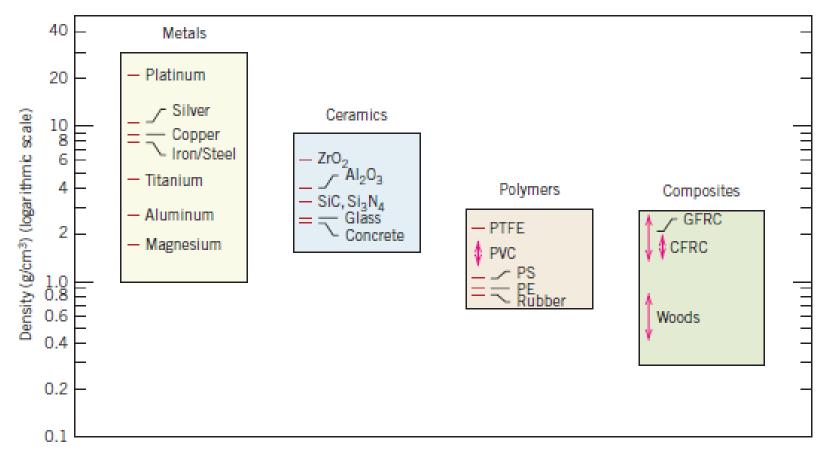
COMPOSITES

 Composites are engineered materials made from two or more constituent materials with significantly different physical or chemical properties, which remain separate and distinct on a macroscopic level within the finished structure

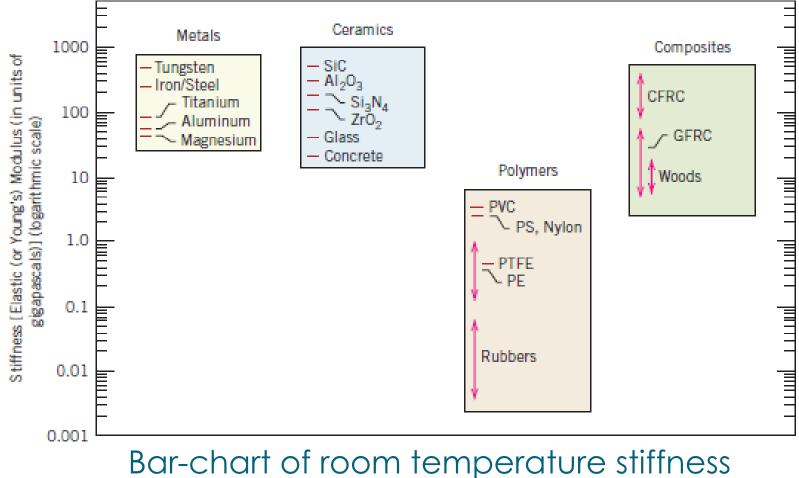
COMPOSITES (contd...)

- The design goal of a composite is to achieve a combination of properties that is not displayed by any single material
- Some naturally-occurring materials are also considered to be composites
- One of the common composites is **fiberglass**, in which small glass fibers are embedded within a polymeric material
- Glass Fiber -> Strong + Stiff + Brittle
- Polymer -> Ductile + Weak + Flexible

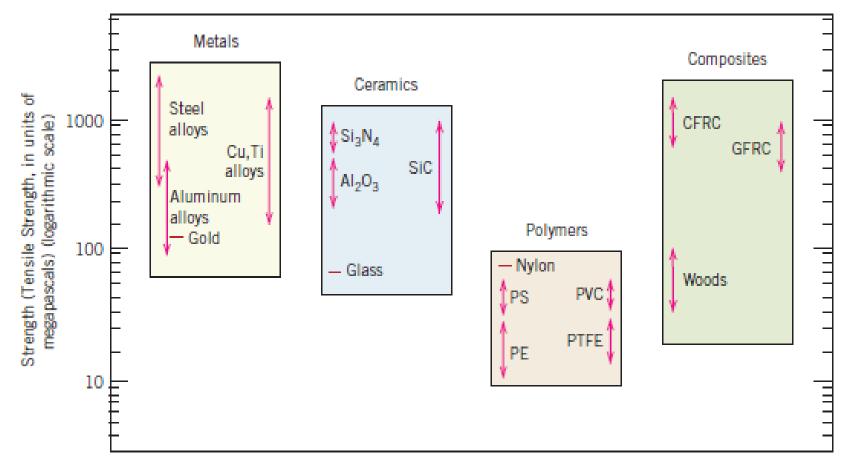

Glass-Fiber Reinforced Polymer

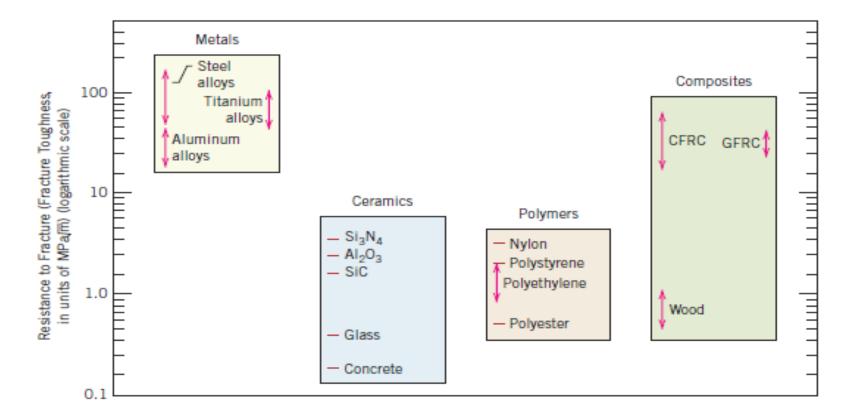


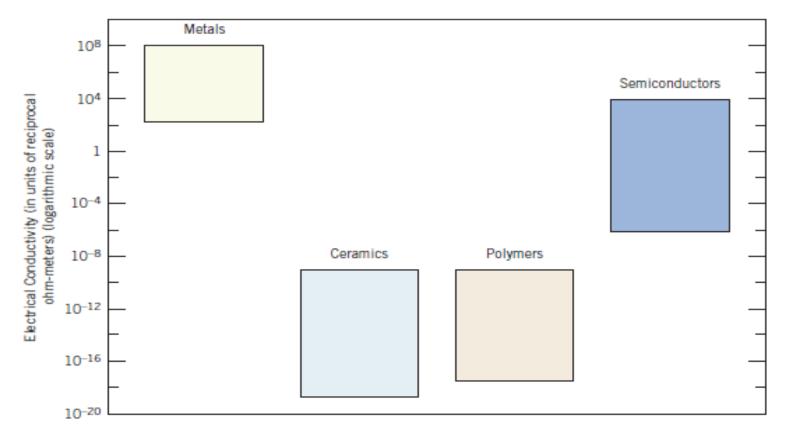
COMPOSITES (contd...)


- CFRP -> carbon fibers that are embedded within a polymer
- These materials are stiffer and stronger than the glass fiber-reinforced materials, thus they are more expensive
- CFRPs are used in some aircraft and aerospace applications, as well as high-tech sporting equipment

Carbon Fiber Reinforced Plastics (CFRP) Microstructure



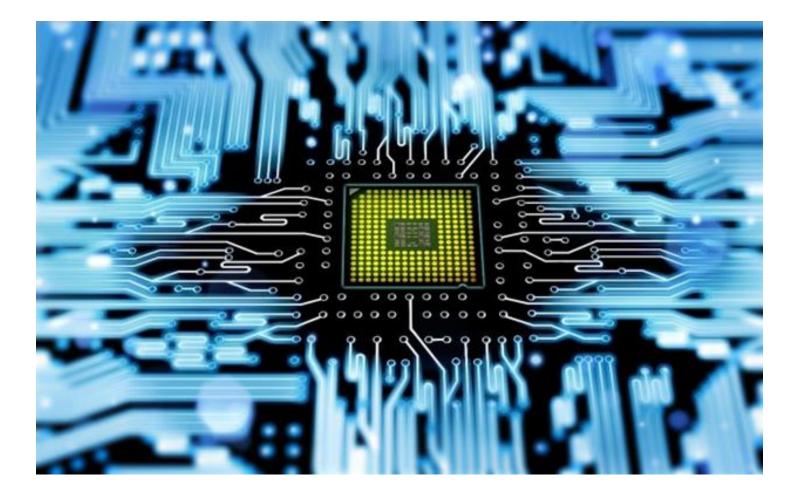

Bar-chart of room temperature density


(elastic modulus)

Bar-chart of room temperature strength (tensile strength)

Bar-chart of room temperature resistance to fracture (fracture toughness)

Bar-chart of room temperature electrical conductivity ranges

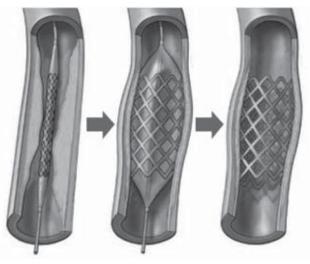

Advanced Materials

- Materials that are utilized in high-tech applications
- Hi-Tech -> device or product that operates or functions using relatively intricate and sophisticated principles
- These advanced materials are typically traditional materials whose properties have been enhanced, and also newly developed, high-performance materials.
- o include semiconductors, biomaterials, and materials of the future (i.e. smart materials and nano-engineered materials).

1. Semiconductors

- Semiconductors have electrical properties that are intermediate between the conductors (e.g. metals and metal alloys) and insulators (e.g. ceramics and polymers).
- Common semiconducting materials are crystalline solids but amorphous and liquid semiconductors are known. These include hydrogenated amorphous silicon and mixtures of arsenic, selenium and tellurium in a variety of proportions.
- Electrical characteristics are extremely sensitive to the presence of minute concentrations of impurity atoms.
- Semiconductors have caused the advent of integrated circuitry.

1. Semiconductors


2. Biomaterials

- A biomaterial is any material, natural or manmade, that comprises whole or part of a living structure or biomedical device which performs, augments or replaces a natural function.
- must not produce toxic substances and must be compatible with body tissues.
- All of the above materials—metals, ceramics, polymers, composites, and semiconductors—may be used as biomaterials.
- Examples -> Artificial hip, bone plates, heart valves, contact lenses, dental implants, etc.

2. Biomaterials

(B)

Materials of the Future – Smart Materials

- Smart materials are materials that have one or more properties that can be significantly changed in a controlled fashion by external stimuli, such as stress, temperature, moisture, pH, electric or magnetic fields.
- Smart material (or system) include some type of sensors, and an actuators.
- Four types -> shape memory alloys, piezoelectric ceramics, magnetostrictive materials and electrorheological/magnetorheological fluids.

Smart Materials (contd...)

- Shape Memory Alloys -> alloy that "remembers" its original shape and returns the pre-deformed shape by heating.
- Main types of shape memory alloys are the copper-zinc-aluminum-nickel, copper-aluminum-nickel, and nickel-titanium alloys.
- Piezoelectric ceramics -> produce a voltage when stress is applied. Since this effect also applies in the reverse manner, a voltage across the sample will produce stress within the sample

Smart Materials (contd...)

- Magnetostrictive materials -> analogous to piezoelectrics, except that they are responsive to magnetic fields.
- Electrorheological and Magnetorheological fluids -> liquids that experience dramatic changes in viscosity upon the application of electric and magnetic fields, respectively.
- Materials for sensors -> Optical fibers, Piezoelectrics, Microelectromechanical devices.

Materials of the Future – Nano-engineered Materials

- It has become possible to manipulate and move atoms and molecules to form new structures and design new materials that are built from simple atomic-level constituents.
- This ability to carefully arrange atoms provides opportunities to develop mechanical, electrical, magnetic, and other properties that are not otherwise possible
- One example of a material of this type is the carbon nanotube