Math 104 – Mathematics for Business and Economics II QUIZ III Duration 50 minutes Student No Surname Group

For the following questions show all your work clearly to find the answer.

Question 1. (60 pts.) Given the total cost function $C = q^2 + 2q + 500$ and the demand function q = 100 - 0.5 p.

a) Find the total revenue function in quantity q; R(q).

Solution:

$$q = 100 - 0.5 p$$
, $p = -2q + 200$

$$R(q) = (-2q + 200)q = -2q^2 + 200q$$

b) Find the output level q for minimum average cost. *Solution:*

The average cost is
$$C = \frac{\overline{C}}{q} = \frac{q^2 + 2q + 500}{q} = q + 2 + \frac{500}{q}$$

For minimum average cost ,
$$\bar{C}'(q) = 1 - \frac{500}{q^2} = 0$$
 , $q^2 - 500 = 0$, $q = \sqrt{500}$ units

From the second derivative test, $\bar{C}''(q) = \frac{1000}{q^3}$

$$\overline{C}''\Big(\sqrt{500}\Big) = \frac{1000}{\Big(\sqrt{500}\Big)^3} = \frac{1000}{500\sqrt{500}} = \frac{2}{\sqrt{500}} > 0$$
, Relative minimum

c) Is the 21st unit going to be profitable for the company?

Solution:

$$MR = R'(q) = -4q + 200$$
, $MR = R'(20) = -4(20) + 200 = 120$

$$MC = C'(q) = 2q + 2$$
, $MC = C'(20) = 2(20) + 2 = 42$

So, MR(20) > MC(20) means profitable.

d) Find the profit maximizing capacity of output q. Solution:

For profit maximizing, MR = MC, -4q + 200 = 2q + 2, 6q = 198, $\boxed{q = 33}$ units

e) What will be the selling price at maximum profit?

Solution:

$$p = 200 - 2(33) = 200 - 66 = 134$$
\$

Question 2. (40 pts.) Given the demand function $q = -5p^2 - 2p + 1000$,

a) Find and explain the elasticity of demand if p = \$10

Solution:

The elasticity is
$$\eta = \frac{p}{q} \frac{dq}{dp}$$

$$q = -5(10)^2 - 2(10) + 1000 = -500 - 20 + 1000 = 480$$
, $p = 10$

$$\frac{dq}{dp} = -10p - 2$$
, $\frac{dq}{dp}(10) = -10(10) - 2 = -100 - 2 = -102$

$$\eta = \frac{p}{q} \frac{dq}{dp} = \frac{10}{480} (-102) = -2.125$$

$$|\eta| = |-2.125| = 2.125 > 1$$
, Demand is **elastic**.

%1 increase in price will result %2.125 decrease in demand.

b) Show that when demand has unit elasticity total revenue is at its maximum.

Solution:

$$R(p) = (-5p^2 - 2p + 1000)p = -5p^3 - 2p^2 + 1000p$$

$$R'(p) = -15p^2 - 4p + 1000 = 0$$
 for maximizing revenue.

$$\frac{dq}{dp} = -10p - 2$$

$$\eta = \frac{p}{q} \frac{dq}{dp} = \frac{p}{-5p^2 - 2p + 1000} \left(-10p - 2\right) = -1$$

$$\frac{-10p^2 - 2p}{-5p^2 - 2p + 1000} = -1, \quad -10p^2 - 2p = 5p^2 + 2p - 1000$$

$$15p^2 + 4p - 1000 = 0$$
 or $-15p^2 - 4p + 1000 = 0$

Math 104 – Mathematics for Business and Economics II				
QUIZ III			${\mathcal B}$	
Duration 50 minutes				
Name		Student No		
Surname		Group		

For the following questions show all your work clearly to find the answer.

Question 1. (60 pts.) Given the average cost $\overline{C} = q + 2 + \frac{500}{q}$, demand function $q = \frac{200 - p}{2}$

a) Find the total revenue function in quantity q; R(q). Solution:

$$q = \frac{200 - p}{2}$$
, $p = -2q + 200$

$$R(q) = (-2q + 200)q = -2q^2 + 200q$$

b) Find the output level q for minimum average cost.

Solution:

$$q = \frac{200 - p}{2}$$
, $p = -2q + 200$

$$\overline{C}'(q) = 1 - \frac{500}{q^2} = 0$$
, $q = \sqrt{500}$ units

From the second derivative test, $\overline{C}''(q) = \frac{1000}{q^3}$

$$\overline{C}''\Big(\sqrt{500}\Big) = \frac{1000}{\Big(\sqrt{500}\Big)^3} = \frac{1000}{500\sqrt{500}} = \frac{2}{\sqrt{500}} > 0 \text{ , Relative minimum}$$

c) Find the approximated additional cost of producing the 21st unit.

Solution:

$$C = \overline{C}q = q^2 + 2q + 500$$

$$MC = C'(q) = 2q + 2$$

The approximated additional cost is MC = C'(20) = 2(20) + 2 = 42

d) Is the 21^{st} unit going to be profitable for the company?

Solution:

$$MR = R'(q) = -4q + 200$$
, $MR = R'(20) = -4(20) + 200 = 120$

$$MC = C'(q) = 2q + 2$$
, $MC = C'(20) = 2(20) + 2 = 42$

So, MR(20) > MC(20) means profitable.

e) What will be the selling price at maximum profit?

Solution:

For profit maximizing,
$$MR = MC$$
, $-4q + 200 = 2q + 2$, $6q = 198$, $\boxed{q = 33}$ units

$$p = 200 - 2(33) = 200 - 66 = 134$$
\$

Question 2. (40 pts.) Given the demand function $q = \frac{130}{p} - 0.2p + 5$,

a) Find and explain the elasticity of demand if p = \$10

Solution:

The elasticity is
$$\eta = \frac{p}{q} \frac{dq}{dp}$$

$$q = \frac{130}{10} - 0.2(10) + 5 = 13 - 2 + 5 = 16, p = 10$$

$$\frac{dq}{dp} = -\frac{130}{p^2} - 0.2$$
, $\frac{dq}{dp}(10) = -\frac{130}{100} - 0.2 = -1.5$

$$\eta = \frac{p}{q} \frac{dq}{dp} = \frac{10}{16} (-1.5) = -0.937$$

$$\left|\eta\right| = \left|-0.937\right| = 0.937 < 1$$
 , Demand is **inelastic**.

%1 increase in price will result % 0.937 decrease in demand.

b) Find p at which demand is unit elastic.

Solution:

$$|\eta| = \left| \frac{p}{q} \frac{dq}{dp} \right| = \left| \frac{p}{\frac{130}{p} - 0.2p + 5} \left(-\frac{130}{p^2} - 0.2 \right) \right| = 1$$

$$\frac{p}{\frac{130}{p} - 0.2p + 5} \left(-\frac{130}{p^2} - 0.2 \right) = 1 \quad \text{or} \quad \frac{p}{\frac{130}{p} - 0.2p + 5} \left(-\frac{130}{p^2} - 0.2 \right) = -1$$

$$\frac{-130 - 0.2p^2}{130 - 0.2p^2 + 5p} = 1, \quad p = -52 \text{ which is not possible.}$$

$$\frac{p}{\frac{130}{p} - 0.2p + 5} \left(-\frac{130}{p^2} - 0.2 \right) = -1, \quad \frac{-130 - 0.2p^2}{130 - 0.2p^2 + 5p} = -1, \quad 0.4p^2 - 5p = 0,$$

 $p=0,\,p=12.5$, but p=0 is not possible because when p=0 , $q=\frac{130}{p}-0.2\,p+5$ is not defined.

So,
$$p = 12.5$$
\$