Tutorial 6

A metal plating company is considering four different methods of recovering by-product heavy metals from manufacturing site's liquid waste. The investment costs and incomes associated with each method have been estimated. All methods have a 10-year life. The MARR is 12% per year.

If the methods are mutually exclusive, determine which one method can be selected using exact calculation of ROR.

Method	First cost	Annual income	SV
A	-15,000	4,000	1,000
В	-18,000	5,000	2,000
С	-25,000	6,000	-500
D	-35,000	8,000	-700

Alternative compared: A – DN:

 $0 = -PW_D + PW_R \longrightarrow 0 = -15,000 + 4,000(P/A,i^*,10) + 1,000(P/F,i^*,10)$

For initial i, since the value of salvage is small after 10 years, we can ignore it from the above equation;

 $0 = -15,000 + 4,000(P/A,i^*,10) \longrightarrow (P/A,i^*,10) = 3.75$, so we can start by selecting i = 24% (why?)

0 = -15,000 + 4,000(P/A,24%,10) + 1,000(24%,24%,10) = -156

Negative value indicates that i*<24%,

At 22%, the value is 829.7; we now interpolate to determine i*

 $i^*=24\%$ - [(0.02*156)/985.7]=23.68%>=MARR or>=12% , so eliminate DN, select A as defender and B as challenger.

The incremental cash flow tabulation:

Year	А	В	С	D	B-A	C-B	D-B
0	-15,000	-18,000	-25,000	-35,000	-3,000	-7,000	-17,000
1-10	4,000	5,000	6,000	8,000	1,000	1,000	3,000
10	1,000	2,000	-500	-700	1,000	-2,500	-2,700

 $\mathbf{B} - \mathbf{A}: 0 = -3000 + 1000(P/A, \Delta i^*, 10) + 1000(P/F, \Delta i^*, 10)$

In order to find the initial Δi , same as previous part, we ignore the value of salvage;

 $0 = -3000 + 1000(P/A,\Delta i,10) \longrightarrow (P/A,\Delta i,10) = 3$

Since at i = 30%, (P/A, Δ i,10) = 3.0915, we start by selecting Δ i = 30%,

0 = -3000 + 1000(P/A, 30%, 10) + 1000(P/F, 30%, 10) = 164

Positive value indicates that $\Delta i^* > 30\%$, so increase $\Delta i = 35\%$,

0 = -3000 + 1000(P/A,35%,10) + 1000(P/F,35%,10) = -235.3

we now interpolate to determine Δi^* , $\Delta i^* = 30\% + [(0.05*164)/399.3] = 32\%$

Since $\Delta i^* = 32\% > 12\%$, select B and eliminate A.

 $\mathbf{C} - \mathbf{B}: 0 = -7000 + 1000.(P/A, \Delta i^*, 10) - 2500.(P/F, \Delta i^*, 10)$

we start by selecting $\Delta i = 7\%$ (same as before ignore the salvage value to find the initial point of investigation)

0 = -7000 + 1000(P/A, 7%, 10) - 2500(P/F, 7%, 10) = -1,247.15

At 5%, the value is -813

At 3%, the value is -329.8

At 2%, the value is -67.4

At 1.5%, the value is 69.7

The value of Δi^{\ast} is between 2% and 1.5% per year.

 $\Delta i^* = 2\% \text{ - } [(0.005*67.4)/137.1] = 1.76\%$

Since $\Delta i^* = 1.76\% > 12\%$, select B again and eliminate C

D – **B**: $0 = -17000 + 3000(P/A, \Delta i^*, 10) - 2700(P/F, \Delta i^*, 10)$ Here, again by doing same calculation, we can find that $\Delta i^* < MARR$. Therefore, B is still the selection. **Select B**.