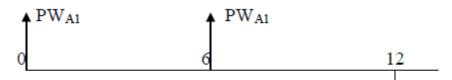

Tutorial 4

1- a) Which of the following alternatives shou	ıld be chosen if MARR is	%18 per year.
	A (\$)	B(\$)

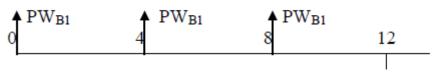
	A (\$)	B(\$)
First cost	-250,000	- 110,000
Annual operating cost	-130,000	- 65,000
Annual revenues	400,000	270,000
Salvage value	50,000	20,000
Life	6	4
he projects are independent wh	ot will be your desision	0

b) If the projects are independent, what will be your decision?

We have different lives for the alternatives. Comparison must be made over the same period, i.e. LCM of years since a study period is not stated. For these alternatives LCM = 12. Therefore, cash flows must be extended to 12 years by assuming that costs and revenues of Project A is repeated for another cycle (total of two cycles) and of Project B, another two cycles (total of three cycles). The resultant cash flows are as follows:



 $PW_{A} = -250,000 - 250,000(P/F,18\%,6) + (400,000 - 130,000)(P/A,18\%,12) + 50,000(P/F,18\%,6) + 50,000(P/F,18\%,12) = 976,944$


 $PW_{_{B}} = -110,000 - 110,000(P/F,18\%,4) - 110,000(P/F,18\%,8) + (270,000 - 65,000)(P/A,18\%,12) + 20,000(P/F,18\%,4) + 20,000(P/F,18\%,8) + 20,000(P/F,18\%,12) = 804,988$

We select A as its PW is larger.

The solution can also be reached by the following method: If we calculate the PW of each project for one cycle only, the cash flows reduce to:

Cash flow diagram for A where PW_{A1} is the PW of one cycle only given by, $PW_{A1} = -250,000 + (400,000 - 130,000)(P/A,18\%,6) + 50,000(P/F,18\%,6) = 712,873.5$

Cash flow diagram for B where $PW_{_{B1}}$ is the PW of one cycle only given by,

 $PW_{_{RI}} = -110,000 + (270,000 - 65,000)(P/A,18\%,4) + 50,000(P/F,18\%,4) = 451,786$ Then, $PW_{A} = PW_{A}[1 + (P/F, 18\%, 6)] = 712873.5(1 + 0.37043) = 976,943$ $PW_{_{B}} = PW_{_{B}}[1 + (P/F, 18\%, 4) + (P/F, 18\%, 8)] = 451786(1 + 0.5158 + 0.2660) = 804,992$

We have the same result.

(b) If projects are independent, we select both as their PW > 0.

2- Compare the alternatives below on the basis of their capitalized costs using an interest rate of %10 per year compounded semiannually.

	А	В	С
First Cost	-50,000	-300,000	-900,000
Maintenance cost per Semiannual period	-30,000	-10,000	-3,000
S.V	5,000	70,000	200,000
Life (years)	2	4	8

The payment period for the periodic amounts is six months. We, therefore, have to measure **n** in terms of six-months and also use the interest rate applicable to six-month period (= 5% per six-month in this case).

As the alternatives have finite lives, we determine their AW's for one cycle prior to calculating their CC. Alternative A with n = 4 (4 six-months in 2 years):

 $AW_{A} = -50,000(A/P,5\%,4) - 30,000 + 5000(A/F,5\%,4) = -50,000(0.282) - 30,000 + 5,000(0.232)$ = \$-42,940 Then, $CC_{4} = -42,940/0.05 = \$-858,800$

Alternative B with n = 8:

 $AW_{_B} = -300,000(A/P,5\%,8) - 10,000 + 70,000(A/F,5\%,8)$

=-300,000(0.1547) - 10,000 + 70,000(0.1047) = -49,081 and CC_B = -49,081/0.05 = -981,620

Alternative C:

The CC of the salvage value for C is zero, since n is infinity. $CC_{c} = -900,000 - 3,000/0.05 =$ \$-960,000

Select Alternative A.