CMPE 108-Experiment 3
 Selective Structures

OBJECTIVES:

- Understand how to edit, compile and execute C computer codes.
- Understand C programming: sequential and selective structures

NOTES:

- You should prepare the preliminary work before coming to the laboratory session and bring soft or hard copies of the preliminary work with you.
- Before writing a computer code, you should do the following steps:

1) understand and analyze the problem,
2) develop an algorithm and/or flowchart,
3) convert the algorithm and/or the flowchart into a C code.

PRELIMINARY WORK:

1. What is the output of the following C code fragments?
a) int $a=9, b=4$;
float $c, d ;$
$\mathrm{c}=\mathrm{a} / \mathrm{b}$;
$d=$ (float)a / (float)b;
printf("c=\%.2f, $\left.d=\frac{\circ}{\circ} .2 f ", c, d\right)$;
b) int $\quad i=5$;
float $j=314.15$;
char cr = '\$';
printf("\%5i", i);
printf("\%6.1f", j);
printf("\%f", j);
printf("\%.1e", j);
printf("\%10.2e", j);
printf("\%c", cr);

c) int $x, a=5, b=10$;
$x=a+++b++$;
printf("x=\%d\na=\%d\nb=\%d\n",x,a,b);
d) int $x, a=5, b=10$;
$\mathrm{x}=++\mathrm{a}+++\mathrm{b}$;
printf("x=\%d, \n $a=\% d \backslash n b=\% d \backslash n ", x, a, b)$;

e) int $x, a=5, b=10$;
$\mathrm{x}=\mathrm{a}++\quad+$--b;
printf("x=\%d, \n $a=\% d \backslash n b=\% d \backslash n ", x, a, b)$;

f) int $a=3, b=5$;
a $+=\mathrm{b}$;
printf("a=\%d\n $b=\% d \backslash n ", a, b) ;$
g) int $a=3, b=5$;
a $+=\mathrm{b}++$;
printf("a=\%d\n $b=\% d \backslash n ", a, b)$;

h) int $a=3, b=5$; $\mathrm{a} *=\mathrm{b}-(\mathrm{b} / 2)$; printf("a=\%d\n $b=\% d \backslash n ", a, b)$;

i) int $a=3, b=5, c=4$;
$\mathrm{a}+=\mathrm{b}-=--\mathrm{c}$ * 2;
printf("a=\%d, \n $b=\% d \backslash n c=\% d \backslash n ", a, b, c) ;$

j) float $x=4 ;$
$x+=2 / 3 ;$
printf("x=\%lf\n", x);

k) float $x=4$;
$x+=2.0 / 3$;
printf("x=\%f\n", x);
1) float $x=4$;
x += (float)2 / 3;
printf("x=\%f\n",x);
m) int $a=5, b=8$;
$\mathrm{a}=\mathrm{b}$;
$\mathrm{b}=\mathrm{a}$;
printf("a=\%d\n $b=\% d \backslash n ", a, b)$;

n) int $a=5, b=8$, temp;
temp $=a$;
$\mathrm{a}=\mathrm{b}$;
$\mathrm{b}=$ temp;

printf("a=\%d\n $b=\% d \backslash n ", a, b)$;
2. What is the out of the following C code fragments for the following declarations?

float x;

int i,j,k;
a) $i=5 ; j=2$;
if (i=50||j==2)
printf("\%d",i-j);

b) $i=5 ; ~ j=2$; if (i==50||j==2) printf("\%d",i-j);

c) $i=1 ; j=1 ; k=1$;
$\mathrm{k}+=-i++\quad+\quad++j$;
printf("\%d \%d \%d\n", i,j,k);

d) $i=1 ; j=2 ; x=3.0$;
$x /=j=++i * 2.5$;
printf("\%f \%d \%d\n",x,i,j);

e) $i=1 ; j=2 ; x=3.0$;
$x /=j=i++\star 2.5$;
printf("\%f \%d \%d\n",x,i,j);

f) $i=-1 ; j=3$;
$k=++i \& \&--j ;$
printf("i $=\% d j=\% d k=\% d \backslash n "$, i, j, k) ;

g) $i=-1 ; j=3$;
$k=i++\& \&--j ;$
printf("i $=\% d j=\% d k=\% d \backslash n "$, i, j, k) ;

h) $i=-1 ; j=0$;
$k=i++| |--j ;$
printf("i $=\% d j=\% d k=\% d \backslash n "$,
i, j, k) ;
i) $i=6 ; j=1 ; k=3$;
$k=i<j<k$;
printf("i $=\% d j=\% d k=\% d \backslash n "$, i, j, k) ;

j) $j=9 ; k=2$;
$i=j \% k ?++j:++k$;
printf("j $=\% d k=\% d \backslash n ", j, k) ;$

k) $i=1, j=3 ; k=7$;
$i=(i<j) \% j$
printf("i $=\% d j=\% d k=\% d \backslash n "$, i, j, k) ;

1) $i=1, j=5 ; k=7$;
$i=--i \quad \& \&--j| |--k$
printf("i $=\% d \underset{ }{\circ}=\% d k=\% d \backslash n "$, i, j, k);
m) $i=1, j=5 ; k=7$;
$k=(++i+4) /(--k-j--)$
printf("i $=\% d j=\% d k=\% d \backslash n "$,

3. Write separate C programs to evaluate the given program fragments and write the produced outputs in the corresponding boxes. Use the following declarations:

$$
\begin{aligned}
& \text { int } a, b, c, \text { sum; } \\
& a=3, b=5, c=4, \text { sum }=0 ;
\end{aligned}
$$

a)

```
if (b%a)
    if (a>b)
                printf("a is greater");
        else
            printf("b is greater");
    }
```


b)
if (b\%a) ? printf ("greater a") : printf("greater b");
c)

```
(a>b)?sum=a+b: (a<c)?sum=a+c:sum=a+b+c;
printf("sum is %d\n", sum);
```

d)
if (a>b)
if (a>b)
sum= a+b;
sum= a+b;
printf("sum is %d\n", sum);
printf("sum is %d\n", sum);
}
}
else if (a<c)
else if (a<c)
sum= a+c;
sum= a+c;
printf("sum is %d\n", sum);
printf("sum is %d\n", sum);
}
}
else
else
sum= a+b+c;
sum= a+b+c;
printf("sum is %d\n", sum);
printf("sum is %d\n", sum);
}
}

4. Rewrite the following using if-else-if structure.

```
switch(i){
case 0: k+=i;break;
case 1: k*=i;break;
case 2: case 3: k/=i;break;
default: k%=i;
}
```


TASKS during the LAB hours:

1. Write an if statement that computes and prints the circumference or the area of a square using the formulas:
```
circumference = 4* side
area = side * side
```

Enter the value of integer variable side from the keyboard. Assume that if user_request is 1 , the program finds the circumference and prints and if it is 2 , the program finds the area and prints.
2. Write a program for the following problem. An instructor needs a program that accepts student identification number std_id and three exam grades, exam1, exam2 and final_exam for a course, as input and then determines and outputs for the student, the semester average and the final letter grade of the course according to the following table:

Semester Average	Letter Grade
$90-100$	A
$80-89$	B
$70-79$	C
$60-69$	D
$0-59$	F

The semester average for the student is computed using the following formula:

```
semester_average = 0.20 * exam1 + 0.30 * exam2 + 0.50 * fina1_exam
```

Student identification numbers are integers but not 0 or negative numbers. The program should print an appropriate message when 0 or negative number is entered for the student identification.

A session of the program should have the following appearance:

```
Enter student id_no: 1100
Enter exam grade 1: 70
Enter exam grade 2: 80
Enter final exam grade: 100
Semester average for student 1100: 88
Letter grade for student 1100 : B
```

Enter student id_no: 0
Student id_no is wrong.
3. Consider the following quadratic equation:

$$
A * X^{2}+B * X+C
$$

Then, the roots of this equation can be obtained as

```
X1 = (-B + SQRT (Disc))/(2*A)
```

$\mathrm{X} 2=(-\mathrm{B}-\mathrm{SQRT}($ Disc) $) /(2 * \mathrm{~A})$
where the discriminator (Disc) is given by
Disc $=B^{2}-4 * A * C$
a) Write a C program that will read the value of the inputs A, B, and C , and then check for the following conditions and do the corresponding tasks:
$>$ If Disc > 0, then find the roots X1 and X2 and then display the result as,
The roots are different: $\mathrm{X} 1=$........ $\mathrm{X} 2=$
$>$ If Disc $=0$, then find the roots $\mathbf{X 1}$ and $\mathbf{X 2}$ and ten display the results as The roots are equal: $\mathrm{x} 1=\mathrm{X} 2=$
$>$ If Disc <0, then display the following message:
The roots are imaginary.
b) Re-write the same code by using switch statement rather than if/else.

