CMPE-343: SYSTEMS PROGRAMMING

Experiments on Laboratory Works

Understanding threads in a UNIX system

INTRODUCTION

The purpose of this laboratory work is to gain the first experience in threads and threads programming. Thread programming tools are available in modern UNIX systems and in Windows operating systems. This style of programming is becoming more and more popular, it can be used in a number of programming languages such as C, C++ and Java to mention only a few. The general purpose of threads is to divide a program into subtasks whose execution can be run in parallel. The parallelism can be achieved by using processes as well. However, creating a new process and providing interprocess communication are usually expensive in terms of time and memory. In this respect, threads have a definite advantage over processes, because threads can be created, without replicating an entire process, almost completely in user space rather than in kernel space. In comparison with interprocess communication, communication and synchronization of threads takes place in the same address space and requires much less time.

Starting with a very simple C program, a student will study its operation in the following modes:

(a) a traditional program, consisting of a main function and two additional functions, without multitasking or multithreading (this corresponds to a single-threaded process);

(b) a program for running three threads - a main, or primary thread and two child threads (one multithreaded process);
(c) a program with three single-threaded processes – a parent process and two child processes, created by the parent process.

In each of these modes, exactly the same computation is carried out. There are ready initial source texts for the first two modes (see Appendix).
Threads studied in this laboratory work correspond to the Pthread standard. "P" comes from POSIX (Portable Operating System Interface) which is a family of IEEE operating system interface standards that includes Pthreads. Pthreads is implemented as a UNIX library with a set of function calls (for example, the library libpthread.a in Linux) and a header file pthread.h. A student should take into account that other operating systems may have a different interface and implementation of threads. In particular, thread interfaces in UNIX and Windows OS are completely different.

EXPERIMENTS

1. Login into a UNIX system (be sure it supports threads), create a directory THREADS in your home directory, and input (or copy from CMPE343 labs Web page) into this directory all source program texts corresponding to the lab work THREADS.LAB (see Appendix).

2. Compile and link a conventional single-threaded program using the source text files singlethread.c, func1.c and func2.c. For this purpose use the UNIX command

 cc -o singlethread singlethread.c func1.c func2.c
As a result, an executable program file singlethread will be created in the directory THREADS.
3. Run this program (use ./singlethread) and carefully fix, in your notebook, all information printed by the singlethreaded process. Analyze the source texts and explain the total running time of the process.

4. Now compile and link a multithreaded program using the source text files multihread.c, func1.c and func2.c. For this purpose, use the UNIX command

 cc -o multithread multithread.c func1.c func2.c /usr/lib/libpthread.a

As a result, an executable program file multithread will be created in the directory THREADS. Note that, instead of the library libpthread.a some other library can be necessary (for example, libpthread.so or libpthread.so.1).

5. Run the resulting program and carefully fix, in your notebook, all information printed by the multithreaded process. Analyze the source texts and explain the total running time of the process.

6. Draw, on the same page of your notebook, two timing diagrams: one diagram for the singlethreaded process (from step 3) and another diagram for the multithreaded process. Explain the difference in the running times for the two processes (remember that they perform the same computation!).

7. In the program multithread.c, remove (by comments) the both statements pthread_join, compile, link and run the resulting program. Fix the printed results, analyze them and explain why the total running time of the program is now much less than at step 5.

8. In the program multithread.c, restore the both statements pthread_join and make the following change in this program. In the loop for (j=1;…), before sleep() system call, assign the value 100+j to the global variable r1. Then, in each of the texts func1.c and func2.c, in printf() statement of the loop for (i=1;…), print the value of the global variable r1. Compile, link (as at step 4) and run the resulting program and watch what is printed by each of the secondary threads (that is, by functions func1 and func2). What conclusion can you draw from this experiment?

9. Now, using the source text multithread.c from the previous step as a base, develop a multiprocess program with the source text name multiprocess.c. In this program, the following actions must be implemented:

[a] Creation of two child processes (with checking the success of the creation).

[b] Making one child process to call function fun1 and the second process to call function fun2.

[c] Making the parent process, after doing its work, waiting for the both child process and terminating.

10. Compile and link the developed program to get the executable file multiprocess. To do this step, the UNIX command similar to one at step 2 can be used.
11. Run the resulting program and carefully fix all information printed by this multiprocess program. Fix, in your notebook all outputs of the program, compare the results with the results of the singlethreaded and multithreaded processes and explain these results. Draw, on the same page, also the timing diagrams of the multithreaded and multiprocess programs.
12. In the developed program multiprocess.c, remove waiting of child processes by the parent process, compile, link and run the resulting program. Fix the total running time of three processes and explain the difference in the results printed at this step and at step 7. What conclusions can you draw on the base of this experiment? In particular, do the child processes continue running after their parent process terminated?

REQUIREMENTS

1. During the laboratory work, a student must be ready to answer the questions listed below. The necessary preparation should be done as a home work.

2. Results of the experiments must be fixed in a notebook, with the appropriate diagrams and explanations.

3. A student must be ready to reproduce any of the experiments on the requirement of the assistant.

The sources of information:

1. Lecture notes.

2. Nichols, B. et al., Pthreads Programming, O’Reiily & Assoc., 1996, pp. 1 - 27.

QUESTIONS

1. What is a program thread?

2. What is the purpose of using threads in programs?

3. Is there any difference between processes and threads (explain)?

4. When is the real parallelism of thread execution possible?

5. What thread standard is implemented in UNIX systems?

6. Are threads available in Windows operating systems?

7. How many threads are there in a program when it just starts (that is, at the very beginning)?
8. Is it possible to change the number of threads in a program during its execution (explain)?

9. How can a new thread be created in a program?

10. Assume that the main (primary) thread in a program have created two new (secondary) threads and wants to continue its work only after these two new threads finish their work. Which function call should be used by the main thread for this purpose?

11. How will a thread, after having been created by the main function, learn what routine (function) it should use to perform its work? Is this routine a part of the main function or it should be specified outside the main function?

12. Is it possible for two or more threads to use the same routine (function)?

13. Suppose that the main thread, after the creation of a number of new threads, terminates. What will be with the created secondary running threads in this case (see experiment 7)?

14. Is it possible to run a multithreaded program on a multiprocessor or a few computers connected to a network?

15. Suppose that two or more threads use (read and/or write) the same global data defined in the program. What can happen if you do not undertake some precautions? What should these precautions be?

16. Is programming with threads easier than programming without threads (explain)?

APPENDIX

(Source texts of functions)

/**

 *

 *

 * A singlethreaded process (with only the main thread)

 *

 * Files: singlethread.c, func1.c, func2.c

 *

 **/

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/time.h>

#include <pthread.h>

/* Function declarations */

 void func1(void);

 void func2(void);

int r1 = 0, r2 = 0; /* Global variables, accessible to functions if necessary */

int

main(void)

{

 pthread_t td1, td2; /* Descriptors for two child threads, not used here */

 int p; /* Not used here */

 int j;

 float delta;

 struct timeval time1, time2;

 printf("Singlethreaded process starts here...\n");

 gettimeofday(&time1, 0); /* Starting time */

/* Creation of two child threads

 p = pthread_create(&td1,

 NULL,

 (void *)func1,

 NULL);

 if (p != 0) {perror("Thread 1 creation problem"); exit(1);}

 p = pthread_create(&td2,

 NULL,

 (void *)func2,

 NULL);

 if (p != 0) {perror("Thread 2 creation problem"); exit(1);}

*/

/* Now the process does something by its main thread */

 for (j=1; j<=4; ++j)

 {

 printf("Main function of the process works: %d\n", j);

 sleep(3); /* Sleep 3 seconds */

 }

/* Then the process calls sequentially two functions */

 func1();

 func2();

/* Determining the total time of running the process */

 gettimeofday (&time2, 0);

 delta = (float)((1000000*time2.tv_sec + time2.tv_usec) -

 (1000000*time1.tv_sec + time1.tv_usec))/1000000;

 printf("Total elapsed time = %f seconds\n", delta);

 printf("Main thread terminated...\n");

 return 0;

}

/**

 *

 *

 * A simple example of using threads in Linux

 *

 * Files: multithread.c, func1.c, func2.c

 *

 **/

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/time.h>

#include <pthread.h>

/* Function declarations */

 void func1(void);

 void func2(void);

int r1 = 0, r2 = 0; /* Global variables, accessible to functions if necessary */

int

main(void)

{

 pthread_t td1, td2; /* Descriptors for two child threads */

 int p;

 int j;

 float delta;

 struct timeval time1, time2;

 printf("Multithreaded rocess starts as the main thread here...\n");

 gettimeofday(&time1, 0); /* Starting time */

/* Creation of two child threads */

 p = pthread_create(&td1,

 NULL,

 (void *)func1,

 NULL);

 if (p != 0) {perror("Thread 1 creation problem"); exit(1);}

 p = pthread_create(&td2,

 NULL,

 (void *)func2,

 NULL);

 if (p != 0) {perror("Thread 2 creation problem"); exit(1);}

/* Now the main thread does something */

 for (j=1; j<=4; ++j)

 {

 printf("Main thread works: %d\n", j);

 sleep(3); /* Sleep 3 seconds */

 }

 pthread_join(td1, NULL); /* Wait child thread 1 to terminate */

 pthread_join(td2, NULL); /* Wait child thread 2 to terminate */

/* Determining the total time of running the multithreaded process */

 gettimeofday (&time2, 0);

 delta = (float)((1000000*time2.tv_sec + time2.tv_usec) -

 (1000000*time1.tv_sec + time1.tv_usec))/1000000;

 printf("Total elapsed time = %f seconds\n", delta);

 printf("Main thread terminated...\n");

 return 0;

}

/**

 *

 *

 * A simple function that periodically prints

 * and sleeps

 *

 *

 **/

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

void func1(void)

{

 int i;

 for (i = 1; i <10; ++i)

 {

 printf("Function func1 prints and then sleeps 4 s: %d\n", i);

 sleep(4);

 }

 return;

}

/**

 *

 *

 * A simple function that periodically prints

 * and then sleeps

 *

 *

 **/

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

void func2(void)

{

 int i;

 for (i = 1; i < 8; ++i)

 {

 printf("Function func2 prints and then sleeps 3 s: %d\n", i);

 sleep(3);

 }

 return;

}

