CMPE-343: SYSTEMS Programming

Experiments on Laboratory Works

A simple client-server system based on UDP sockets

INTRODUCTION

The purpose of this lab work is to investigate a simple client-server system that uses UDP sockets for interprocess communication in UNIX. The client and the server can run both on the same UNIX host or on different hosts. In the lab work the client and the server are on the same UNIX host, but they work as if they are on different hosts.

Each student must work with two programs: one for the server and another for the client. In the initial version of the programs, it is assumed that port number of the server is 7000. However, different students should use different and unique port numbers in the range 1100 – 32000 since the system will not allow to start two or more server processes with same port number. The choice of the port number is the responsibility of the student.

This client-server demonstrates that a client may send its request to the server BEFORE the server performs the corresponding receiving system call recvfrom(). This means that, if the server is running, the request from the client will be stored in the socket buffer until the server extracts the request from the buffer by performing the system call recvfrom().

EXPERIMENTS

1. Create the directory UDPLAB and download source texts of two programs server.c and client.c into this directory.

2. Modify the source texts to use the desired port number. Compile and link the both programs to get executable files.

3. Login the second time to have the second virtual terminal. Start the server process and then the client process from a separate virtual terminal each. Watch the operation of the client-server system.

4. Start only the server process (without starting the client process) and watch its behavior. Why does the server process block?

5. Modify the client program in such a way, that IP address of the server is given as a command line parameter for the client program. Recompile and check the work of the system.

6. Modify the both programs in such a way that the server, after receiving and printing of the request from the client, sends a reply to the client. The client must receive and print this reply.

7. Optional experiment. Modify the server program in such a way that it will response (process) a few client requests in parallel (you can use more than one processes or threads).
8. Optional experiment. Modify the both programs in such a way that the client will ask content of a file, where file name is going to be sent as a request message. The server should send file to the client as a reply.
The sources of information:

1. Curry, D., UNIX Systems Programming for SVR4, O’Reilly & Assoc., 1995, pp. 47 -54, 173 -174.

2. Haviland, K. et al., UNIX System Programming, Addison-Wesley, 1999.

QUESTIONS

1. What is the purpose of this laboratory work?

2. What is the difference between UDP and TCP sockets?

3. What is the contents of data structure sockaddr_in?

4. What is the size of an IP address?

5. IP addresses are written usually in a dot-decimal notation. What does this mean?

6. How can a dot-decimal IP address transformed into long integer form, before its

assignment to a field in the sockaddr_in data structure?

7. What is the purpose of system call socket()? What are its parameters?

8. What is the purpose of system call bind()? What are its parameters?

9. What is the purpose of system call recvfrom()? What are its parameters?

10. What result is returned by system call socket if it is successful?

11. Suppose that the server has received a request from a client. How can the server learn the address of the client to reply ?

12. What is the purpose of system call sendto()? What are its parameters?

13. What result is returned by system call recvfrom() if it is successful?

14. What result is returned by system call sendto() if it is successful?

APPENDIX

/* Client program for Internet UDP sockets */

/* From the book of Haviland, pp. 270 - 271, modified */

/* Read more explanation in this book */

/* Client assumes that the server has */

/* IP addr = 194.27.78.05 and port = 7000 */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <ctype.h>

#define PORT 7000 /* Port of this server */

#define SIZE sizeof(struct sockaddr_in)

int

main(void)

{

 char buf[1024];

 int n, s, ns, len;

 struct sockaddr_in cli = {AF_INET, INADDR_ANY, INADDR_ANY};

 struct sockaddr_in srv = {AF_INET, PORT}; /* For server's address */

 printf("CLIENT: starting ...\n");

 /* Convert and store IP address of the server: 194.27.78.05 (mesarya) */

 srv.sin_addr.s_addr = inet_addr("194.27.78.05");

 /*

 * Create the Internet socket, of SOCK_DGRAM type.

 */

 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)

 {

 perror("socket problem");

 exit(1);

 }

 /*

 * For simplicity, use the IP address as the OS selects.

 * It is more preferable to set a specific IP address

 * which must be known to all clients...

 */

 /*

 * Bind the socket to the the IP address of this host.

 */

 if (bind(s, (struct sockaddr *) &cli, SIZE) < 0)

 {

 perror("bind problem");

 exit(1);

 }

 /*

 * Send a message to the socket s

 */

 n = sendto(s, "This is a request from client\n", 30, 0,

 (struct sockaddr*)&srv, SIZE);

 if (n < 0) {perror("sendto problem"); exit(1);}

 printf ("CLIENT: sent a request...\n");

 /*

 * Close the socket and terminate.

 */

 close(s);

 printf ("... and terminated\n");

 exit(0);

}

/* Server program for Internet UDP sockets */

/* From the book of Haviland, pp. 269 - 270, modified */

/* Read more explanation in this book */

/* Server starts, creates and binds a socket */

/* and, before reading from client, sleeps */

/* for 60 seconds */

/* During this period, the client starts, sends */

/* a request to the server and terminates */

/* After awaiking, the server reads */

/* the client's request and terminates */

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <netdb.h>

#include <arpa/inet.h>

#include <ctype.h>

#define PORT 7000 /* Port of this server */

#define SIZE sizeof(struct sockaddr_in)

int

main(void)

{

 char buf[1024];

 int n, s, ns, len;

 struct sockaddr_in srv = {AF_INET, PORT, INADDR_ANY};

 struct sockaddr_in cli; /* For client's address */

 int cli_len = SIZE;

 printf("SERVER: starting ...\n");

 /*

 * Create the Internet socket, of SOCK_DGRAM type.

 */

 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)

 {

 perror("socket problem");

 exit(1);

 }

 /*

 * For simplicity, use the IP address as the OS selects.

 * It is more preferable to set a specific IP address

 * which must be known to all clients...

 */

 /*

 * Bind the socket to the the IP address of this host.

 */

 if (bind(s, (struct sockaddr *) &srv, SIZE) < 0)

 {

 perror("bind problem");

 exit(1);

 }

 printf ("... and sleeping during 60 sec\n");

 /* Long sleep before reading */

 sleep(60); /* 60 sec */

 /*

 * Now read from the socket s

 */

 n = recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr *)&cli, &cli_len);

 if (n < 0) {perror("recvfrom problem"); exit(1);}

 write(1, buf, n);

 printf ("SERVER: terminated...\n");

 /*

 * Close the socket and terminate.

 */

 close(s);

 exit(0);

}
