CMPE455/CMSEA456 Security of Computer Systems and Networks

Lab 1- Access Control in Linux

Prepared by Alexander Chefranov and Tansel Sarihan in Spring 2019

Contents

ACCESS CONTIOL TN LINUX .uveeitieiiieieeesieest ettt et ettt st se e sse e e s e st e s bt e s a b e e sme e e st e e snbeesneeenneeeneeennes 1
T I T PSPPSR PSPPI 3
2. Fedora Operating SYSTEM ... ccceee et e e et e e e e st e e e e e st e e e e e eenrseeeeeeenstaeeeeeaeeeeanrenees 3
2.1 Bash T@rMIN@l....cocoiiiiiiiie ettt st e re e e s 3
2.2 List of Some Important and Useful CoOmMmMaNdScceoeeiiireeieeiiiiieeee e eecreeee e eerreeeeeesnreeeeeenanns 3

3. INtroduction t0 aCCESS CONTIOL ...c.uiiiiiiiiiiiiiiiete ettt st 5
4. Unix file permissions and iNOUESceeiieiiiiiiei it e e e e ere e e e e e s e aaaaeeaeeas 5
11001] L= USSP 6
3T 1 0] o (=0 2 USRS 6

[T00] o] LT TP SUPRRRPP 7

o T00] o] LT SRS SUPRRRPP 7
T T 0] o] LT RSP UPRUPUTTPPN: 8

5. Octal representation of PErmiSSIONScoociiiiiiiiiiiiiee et e s sbrae e e 8
11001 0] LT USSP 8

6. Changing file permissions on Linux system, adding users, groups, changing file owner and group 9
3T [41 o L= 2 USRS 9
T [0] o] LR S PP SUPPTPP 10
T [0] o1 LIRS T PP TSPRTIP 10
T [a1 o] LT 0 T PSPPI 11
3T [o1 o 100 e S 11
3T [41 o L0 1S 12
3T [o1 o L0 S 12
T [0] o] LT T PSPPI 12
T T a1 o] LT P PSPPI 13
T T a1 o] L= PSPPI 13

T [4] o] L= I S 13

3T [a1 o1 LT S 14
EXQIMPIE 20 uuiiiieeiiiitie ettt ettt e e ee et e e e e e e esaraeeeesastaaaeee e e abaaeeeeeatbaaaeeeeantbaaaeaeaeeeaaaraaaeaeeannras 14
T [a1 o] L= 30 PP RTSPRTIR 14
T [a1 o1 LT PSSP 15
T [o] o1 LT TS 15
T [o1 o1 L0 S 15
T [0] o1 LT 2 TS 16
(00 =11 1=T Y=L Tt TR U PRSP 16
7. COMMANG UMASK c.utiiiiiiiieiiee ettt sttt s e st e sat e e bt s bt e st e e sae e e bt e e abeesabeesebeesbeesanes 16
T [0] o] LN O P P URTPRTPT 16
(00 1= Y11= Y= SRS 16
8. SELUID (SUID) ceteiieiieieeie ettt ettt st sttt st sttt ettt st sr e et et sbeesbeen e e e e saeesre e sreenreenreennennes 17
EXAIMPIE 27 ettt ettt e ettt e e e e e e et ae e e e e e aaa e e e e e e b aaaeeeeaatbaaaeaeeaatrraaaaeaeeeaaaararaeeeeannras 17
EXQIMPIE 28ttt ettt e e ettt e e e e e e ettt aeee e eeetaaaeeeeea b aaaeeeeaabaaaeaeeaatraaaeaeaeeeannaraaaeeeeannras 17
T [0] o1 LT0 A OO URTUPRTTT 18
1T Y 0] LT T USRS 18
9. WIriting @ SUID Program inN C ...ttt eeeeee e e e s e e e s s ssssssssbasbeeaaeraeeaeeeaeeaaaessasesaesaaeaaeeas 18
1T Y 0] LT 21 USSR 18
EXAIMPIE 32 uiieiieiiicitie ettt e e e e e et e e e e e e e e araeee e ee e taaa e e e e e et aaaeeeeaatbaaaaaeeaatraaaeaeaeeeaaaraaaeeeeannras 19
EXAIMPIE 33 iiiiiiiiicieie ettt ettt e e e ee e e e e e e e e e trae e e e ea b aaeeeeea b aaaeeeeaatbaaaaaeeaatraaaaaeaaeeaaaararaeeeeannras 20
T [0] o] LT O PSPPI 21
o1 0Y 0] LT 1RSSR 21
(00 Y11= Y= SR 21
(08 0= =T o =< PSR 22
(0o Y1 1=T Y=L T T TP 22
(00 Y1 1=T Y=L T TR USRS 22
10. LINUX EXEENAEA ACLSeeeeeeeieeeeiteete ettt ettt ettt st st esaee e b e s bt e sbe e st aesneesares 22
T [0] o] LT T T PR UTUPRTIR 22
11. (600 a1 IV] 1] o TP PS PSPPI 23
REFEIEICES ...ttt et b et e st s b e e b et e e s n e s s e e sb e e ne e bt earesmeesreereenrenns 23

Our lab material is based on [1]. Section 1 describes the task. Sections 2, 3 briefly introduce the most
important Linux commands and access control concepts. You will work with Fedora Linux-based
operating system in the laboratories. Sections 4-10 contain examples (prepared in Kali Linux (with
alex@lenovo in the screenshots) and Fedora (with linuxlab@asus in the screenshots) operating systems)
and challenges. Section 11 concludes the material.

1. Task
Read material below in line with running your own examples repeating Examples 1-36
(screenshots) shown in the lab material (use your own user name instead of alex or linuxlab e.g “chmod
701 /home/your_username/”). There are Challenges 1-6 expected to be solved by you. The lab will be
done individually. You must prepare a report on the work done containing screenshots of your variants
of the Examples 1-36, Challenges 1-6 solutions, and explanations._Due date for reporting will be

announced by assistant. You will run your examples and solutions and explain them answering the
questions of the Lab Assistant.

2. Fedora Operating System

Fedora is a Linux distribution developed by the community-supported Fedora Project. It is an
open-source and free. Fedora operating system is user friendly because it is developed in collaboration
with the user.

2.1 Bash Terminal
We will use the bash terminal frequently for our experiments. Therefore, let's get to
know what we will see when we open the bash terminal.

When we open the terminal, we see an image as above. “linuxlab” is our user name, "asus" after
the "@" sign is the name of the machine we use, and "~" means the user's home directory.

Same way, “root” is an username(which has all privileges on the system), “asus” is machine
name and “#” means we are logged in as administrator(root).

2.2 List of Some Important and Useful Commands

e Fedora uses dnf package manager. If you want to install any open source program or
tool, you need to use dnf. For instance, you need to install a text editor to edit your texts or
program codes. A text editor “KWrite” can be installed by using “dnf install kwrite” command on

terminal.

sudo command - The sudo command makes it easier to manage your Fedora system. Certain
commands in Fedora expect to be run only by a privileged user or administrator. The sudo
command lets you run a command as if you're the administrator, known as root. For instance,
“sudo chmod 666 somefile”.

¢ sudo chmod y somefile

su command — switch user. For example, “su student” command can be used for switching
between current user and student user.

Is command — lists directory contents of files and directories. For example, when run “Is
/home/linuxlab” command, contents of /home/linuxlab directory will be shown on terminal
window.

Jhome/1in

cd command — changes the current directory. For example, “cd Desktop” command changes the
current directory to /Desktop directory. (in the same way, “cd ..” command can also be used to
return to the previous directory.)

mkdir — This command creates a new directory. Example usage for creating a new directory with
name “myLabWorks”: “mkdir myLabWorks”.

~1% mkdir myLabWorks

somefile

e rm command —this command can be used for deleting some file or directories. For example, we
can delete the “test.txt” file with "rm test.txt".

~]1% 1s
somefile test.txt
~1%5 rm test.txt

~]1% 1s

somefile

~15 |

3. Introduction to access control
Access control enforces authorization by determining and enforcing which actions are allowed. Some
terminology: a subject is an active entity taking actions, such as a user or program, and an object is the
(often passive) resource that can be accessed, such as a file or network resource. Access control
mediates subjects' access to objects by enforcing a security policy, limiting which actions are and are not
allowed. The policy expresses what is allowed, either formally or informally as a set of rules. An access
control mechanism is the code or thing that enforces a policy. An access control model is a way of
representing and reasoning about a policy or types of policy.

4. Unix file permissions and inodes

The traditional Unix security model is based on the discretionary access control (DAC) model,
which enables users to configure who can access the resources that they “own”. Each user can control
which other users can access the files that they create. This enables users to grant permissions, without
involving a system admin. This is the type of security that has traditionally been built into most
consumer OSs such as Windows and Unix. Unix file permissions uses an abbreviated (simplified) form of
access control list (ACL). A (full) ACL involves attaching a list of every subject and what they can do to
each file (this is how Windows manages file access). For example, a file may have this ACL: “Joe can
read, Frank can write, Alice can read, and Eve can read”. Unix simplifies permissions by only defining
rules for these three kinds of subjects:

® The user that owns the file (u)

e The file's group (g)

e Other users (0)

Is command is used to display the permissions of the files, -| flag provides detailed output, e.g., Is -l
/bin/Is displays permissions of the Is command

Example 1

_______ File
path
Owner can Group can Others can The file has File File Files
read, write, read and read and this many owner grou size
execute execute execute es (hard is root pis (byt
links

The meaning for a regular file (as is the case for /bin/ls, the first symbol is — (dash)):

® r: Read the contents of the file

e w: Change the contents of the file

e x: Execute the file as a process (The first few bytes describe what type of executable it is, a program or
a script)

For a directory (the first symbol is d):

e r: See what files are in the directory

e w: Add, rename, or delete files within the directory

e x: 'stat’ the file (view the file owners and sizes), cd into the directory, and access

files within the directory

e t (instead of x), AKA the “sticky bit”: prevents users from deleting or renaming files they do not own
The permissions for each file are stored in the file’s inode. An inode is a data structure in Unix
filesystems that defines a file. An inode includes an inode number, and defines the location of the file on
disk, along with attributes including the Unix file permissions, and access times for the file. View the
inode number for this file:

Is -i /bin/Is

File type may be also | for links on the files (with the help of the links one and the same data can be
accessed using different file names linked to one and the same inode for hard links).

Create a hard link to the Is program:

mkdir /bin/tmp (create a new directory for hard link)

In /bin/ls /bin/tmp/Is

Now view the details for your new filename, /bin/tmp/Is:
Is -I /bin/tmp/Is

Create a hard link to some file:

mkdir tmp (create a new directory for hard link)

In somefile /tmp/somefile_link

Now view the details for your new filename, /tmp/somefile_link:
Is -1 /tmp/somefile_link

Last
modif
ied

Example 3

~% 1n somefile tmp/somefile link

~% 1s -1 tmp/somefile link

-rW-r--r-- 2 user user @ May 7 18:16 tmp/somefile link
~% 15 -1 somefile

-rW-r--r-- 2 user user @ May 7 18:16 somefile

~% ls -i tmp/somefile link

415 tmp/somefile link

~% 15 -i somefile

415 somefile

Thus, we see that the both files share the same inode. Thus, change of one of these files will affect also
the other one.

Deleting one of the names simply decrements the link counter. Only when that
reaches 0 is the inode actually removed:
rm /tmp/somefile_link

Deleting one of the file names simply decrements the link counter. Only when link counter reaches 0 is
the inode actually removed:
rm /bin/tmp/Is

Example 4

[li

You may run into “Permission denied!” Interestingly, in this case as a normal user we can create
the link to /bin/Is, but cannot then delete that link since the sticky bit is set for the /tmp/
directory.

Is -Id /tmp/

Note the “t” in the permissions, and refer to the meaning described above.

You can delete the link as root:
sudo rm /bin/tmp/Is

Note that in our somefile example, the sticky bit may not be set for the /tmp directory, so we
may be able to delete the file with no issues:
rm /tmp/somefile_link

Example 5

~% rm tmp/somefile link
~% dir tmp

) do rm /tmp/ls
jord for :
$ dir /tmp/
%

We see no content in /bin/tmp/ after /bin/tmp/Is removal.

5. Octal representation of permissions

The stat command can be used to display further information from the inode:
stat /bin/Is

I0 Block: 4896
- l

Unix file

File’s owner File’s group
permissions

Look through this information. Note that the output includes the access rights, along with the last time
the file was accessed, modified, and when the inode was last changed.

The output from stat includes the format that the information is stored as, along with a more “human
readable” output. As we know, user accounts are referred to by UIDs by the system, in this case the UID
is 0, as the file is owned by the root user. Similarly, groups are identified by GID, in this case also 0. The
actual permissions are stored as four octets (digits 0-7), in this case “0755”. This translates to the (now
familiar) human-friendly output, “-rwxr-xr-x”. For now we will ignore the first octet, this is normally 0,
we will come back to the special meaning of this later. Each of the other three octets simply represents
the binary for rwx, each represented as a 0 or a 1. The first of the three represents the user, then the
group, then the other permission. An easy and quick way to do the conversion is to simply remember:

er=4

ow=2

ex=1

And add them together to produce each of the three octets. So for example, rwx = binary 111=(4+2 +
1)=7.

Likewise, r-x = binary 101 = (4 + 1) = 5.

Therefore, “-rwxr-xr-x” = 755.

6. Changing file permissions on Linux system, adding users, groups,

changing file owner and group
Now, we shall need an opportunity to switch between two users. The list of users can be
displayed by

cat /etc/passwd
showing contents of the /etc/passwd file.

Example 7

alex@Lenovo: ~ - [m| X

We see that /etc/passwd can be read every user. Let us now create a new user, student with password
student. We need for that task to use super user rights with the help of sudo. Rights of the users allowed
doing sudo (from sudo group) are enlisted in /etc/sudoers file

cat /etc/sudoers

Example 8

B alex@Lenovo: ~ — [m] X

This file MUST "y do”

content in ,

ils on how to write a

bin:/bin"

1low memb
AL

for more information on

We see that sudo group users have the same permissions as root. Groups and their members can
viewed by

cat /etc/group

Example 9

Select alex@Lenoveo: ~ - [m| X

We see that user alex belongs to sudo group as well as to adm (can monitor system tasks), cdrom (can

access CDROM), and dip (can use tools such as ppp, dip etc. to dial-up connection) groups. A new user is
created by

10

sudo adduser student

Example 10

student

“student’
new user ~student’ il gro “student” .

home dire

Enter new UR passwor
Retype new UNIX password:

updatec

infor i for student
the new lue, or pre ENTER for the default
Full Name [] {
loom Number

%

Check that the new user student is in the list of user:

Example 11

alex@Lenovo: ~ - [m| X

Create a file named “mysecret” in your home directory:
cat > ~/mysecret

11

2t

{hom

Enter a number of lines of content. Press Ctrl-D when finished entering a “secret” (that others may see).
Your first aim is to ensure your “mysecret” file is not visible to other users on the same system. First
view the permissions of your newly created file:

Is = ~/mysecret

Example 13
lex@lLenovo: $ 1s -1 ~/mysecret
alex alex 45 0Oct 2 19:24 /homefalex/

1
-2

Oh no! It’s not so secret...
The chmod command can be used to set permissions on a file. chmod can set permissions based on
absolute octal values, or relative changes. So for example, you could use chmod to set permissions on a
file based on octet: 770 would give the owner and group rwx, and others no permissions Example:
chmod 770 /home/tmp/somefile

Example 1
“fhome/tmp?: Permission denied
tmp
somefile
! denied

-1 /hom
rooct 8
= 1 oy — g

Thus, the permissions are changed from 644 (rw-) to 770 (rwxrwx---) for /home/tmp/somefile when
using sudo command. Or you can make relative changes: u-x would remove the owner (user) the ability
to execute the file. Example:

chmod u-x /home/tmp/somefile

xS home/tmp/sometl

-1 /home/tmp/somefile
root @ Oct 2 19:42 /fhome/f

12

Likewise, o+w would add other’s ability to write to the file
Example:

chmod o+w /home/tmp/somefile
Example 16

3 : sudo chmod o+x /fhome/tmp/somefile
1s -1 fhome/tmp/somefile

root 8 Oct

Use chmod to give read-write permissions to yourself to your mysecrets file and everyone else no
permissions to the file:

chmod 660 ~/mysecrets

Example 1

efalex/mysecrets

Try accessing the file on behalf of the user student:

cat /home/alex/mysecrets

Create a file “~/myshare”, and grant everyone read-write access. Test whether you have correctly set
permissions. Also give other necessary permissions to other users for finding file “~/myshare”.

Example 19

Create “mygroupshare”, grant only read access to everyone in your group. Test whether you have
correctly set permissions.

Add user student to group alex by

sudo usermod —a —G alex student

8:11 Sfhome/alex/mygroupshare

alex student

fhome/alex/mygroupshare

fhome /
3 28:11 /ho ygroupshare

d =t

Create a new group mygroup using
sudo groupadd mygroup

Example 22

Change group of mygroupshare from alex to mygroup using
Sudo chown :mygroup ~/mygroupshare

To change owner and group of a file use

chown new_owner:newgroup file

Example 23

chown :mygroup ~/mygroupshare
-1 ~/mygroupshare

ex mygroup 54 Oct 3 28:11 /home/alex/mygroupshare

Change back mygroupshare group to alex and give alex group only read access to mygroupshare:
sudo chown :alex ~/mygroupshare

sudo chmod g-w ~/mygroupshare

Example 24

$ sudo chown :alex ~/mygroupshare

8:11 /home/alex/mygroupshare

roupshare

fhome/alex/mygroupshar

Create a new group called “staff”, and create a file that you and a fellow classmate
(other user) can collaborate on (both edit). Test whether you have correctly set permissions. Both users
should be able to edit the file, yet other users should not have write access.

15

Example 25

mysecret mysecre mys h

mysecret mysecre myshare newfile

Challenge 1.

mkdir test

touch test/test1 test/test2 test/test3

Use a single chmod command to recursively set the permissions for all files contained in the new “test”
directory.

Hint: “man chmod”

7. Command umask

Remember that our newly created file started with permissions that meant that everyone could
read the file. This can be avoided by setting the user file-creation mode mask (umask) . Every process
has a umask: an octal that determines the permissions of newly created files. It works by removing
permissions from the default “666” for files and “777” for new executables (based on a logical NOT).
That is, a umask of “000” would result in new files with permissions “666”. A umask of “022” (which is
the default value) gives “644”, that is “rw- -r- -r-". The umask system call can be used to set the umask
for the current process.

Check the current umask value:
umask

uma -5
-s: invalid option
umask [-p] [-5] [mode]

umask

Challenge 2.

Using the umask builtin command, set your umask so that new files are only rw
accessible by you (but not to your group or others):

umask XXX

where XXX is the new umask to use.

Test your new umask value by creating a new file and checking its permissions:
touch newfilename

Is -l newfilename

Do the permissions read “rw------- ”? If not, change the umask and try again.

16

8. Set UID (SUID)

Sometimes a user needs to be able to do things that require permissions that they should not
always have. For example, the passwd command is used to change your password. It needs read and
write access to /etc/shadow. Clearly not every user should have that kind of access! Also, the ping
command needs raw network access... Again not something that every user can do. The Unix solution is
set UID (SUID). Using SUID, processes can be given permission to run as another user. For example,
when you run passwd, the program actually runs as root (on most Unix systems). In fact, every process
actually has multiple identities, including:

e The real UID (RUID): the user who is running the command
e The effective UID (EUID): the way the process is treated

Take a look at how the effective UID is specified:
Is -I /usr/bin/passwd

Example 27
= O1NS pasSsWo
root root ' 27 11:87 fusr/bin/passwd

3

The “s” in the file permissions means that the file UID will be used as the effective UID. Run
stat /usr/bin/passwd
Then switch to another user (bob) and run passwd

Example 28

I0 Block: 4896
.-l

$ passwd
sword for bob.
{current ¥ password:
Digit 4 in the octet permissions 4755 means that the file will be executed with UID=root. Thus, the SUID
bit is stored in the first (user) permission octet in the inode.
Viewing the processes running from another bash tab with
ps —af

17

Example 2

CMD
-bash
su bob
bash

su alex
bash

su bob
bash
passu
-bash
ps -af

[}
N = N -}

=] O

4
47

\ LM
oA

o

o

d

fay

ey

we see that passwd runs with UID=root in spite of launched by bob.
Find all programs with SUID in /home/ by

sudo find /home —perm -4000 —type f —print
and check the findings using stat:

Example 30

I0 Block: 4896

The program accessmysecrets is described below.

9. Writing a SUID program in C
You are going to create a SUID program, to grant access to the contents of your

“mysecret” file to anyone who runs the program, without sharing direct access to the file.

Make sure “~/mysecrets” is only accessible by the owner: Is -la should show “rw-------
for that file.

18

Create a C program by making a new file “accessmysecret.c”:
vi accessmysecret.c
Remember, vi is modal. Press
#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>
#include <unistd.h>

#include <errno.h>

int main()

{

printf(" UID GID \n"

"Real %d Real %d \n"
"Effective %d Effective %d \n",
getuid (), getgid (),

geteuid(), getegid());

FILE *fp = fopen("mysecrets", "r");
if (fp == NULL) {

printf("Error: Could not open file");
exit(EXIT_FAILURE);

}

charc;

while ((c=getc(fp)) != EOF) {
putchar(c);

}

putchar("\n');

return EXIT_SUCCESS;

}

Example 32

wn
|

to enter insert mode, then enter this code:

B alex@Leno

19

Save your changes and quit (Esc, “:wq”). You may use any other text editor (e.g., editor):

alex@Lenovo: ~ — O X

GNU nano 2.9.8 accessmysecrets.c

d \n Effective

Compile the program (which uses the C code to create an executable):
gcc accessmysecrets.c -0 accessmysecrets

Set the permissions for the file (using chmod) to setuid:
chmod u+s accessmysecrets

Check the permissions include SUID:

Is -l accessmysecrets

Example 33

1lar file

¥
Fa
I
o

20

Run the program:
./accessmysecrets

Note that the program outputs its real and effective identity.
Change to another user, and execute the program:
/home/yourusername/accessmysecrets

$ su student

% /home/ale

studentf@lenovo: $
Note that the effective ID is that of the owner of the program. You should also see the
contents of the mysecrets file, even though you don’t have access to the secrets file

directly.

Challenge 3

Switch to another user and use the SUID accessmysecrets program to

get read access to any one of the owner user’s files!

Hint: there is a security problem with this code.

Another hint: think about hard links.

Solution:

There is a security problem caused by not using an absolute filename when opening
the file, it opens “mysecrets” rather than “/home/user/mysecrets”. Remember, any
user can create a hard link to a file (therefore they can make a “copy” of the SUID
program wherever they like).

Make a hard link to the SUID program in a directory that the attacker can write to,
then also make a hard link to any file the SUID user owns, and name it “mysecrets” in
the same directory as the program, then when you execute the program it will write
out the contents of the file.

You can exploit this vulnerability as follows:

su - student

In /home/user/accessmysecrets /tmp/access

21

In /home/user/someotherfile /tmp/mysecrets
/tmp/access

Challenge 4
Modify the program to correct the above vulnerability.

Challenge 5
Modify the program so that only the first line of the mysecrets file is
displayed to others.

Challenge 6

Modify the program so that the script checks the UID and only continues
for a specific user (for example, if the user is root).

Hint: “man getuid

10. Linux Extended ACLs

We have explored standard Unix permissions. Modern Linux systems (and some other Unix-
based systems) now have more complete (and complicated) ACL support. As previously mentioned, an
access control list (ACL) is attached to an object (resource) and lists all the subjects (users / active
entities) that are allowed access, along with the kind of access that is authorised.

Set a file ACL on your mysecrets file, using the setfacl command:
setfacl -m u:student:r ~/mysecrets

Example 36

This grants the “student” user read access to the file.

Note that the stat program is not usually ACL aware, so won’t report anything out of
the usual:

stat ~/mysecrets

The Is program can be used to detect File ACLs:

Is -la ~/mysecrets

-rw-r---—-+ 1 cliffe users 22 Feb 28 11:47 mysecrets

Note that the output includes a “+”. This indicates an ACL is in place.

Use getfacl to display the permissions:

getfacl ~/mysecrets

Use Linux File ACLs to grant one or more specific users (other class members) read access to your
mysecrets file.

22

Using ACLs, grant any other group (you choose) read-write access to your mygroupshare file.
Remove the group permission you just added.
Example: setfacl -x g:staff file

11. Conclusion
At this point you have:

1. Learned about file permissions, hard links, and inodes
2. Learned about octal representations of permissions
3. Changed Unix file permissions to grant access to specific users and groups, using chmod
4. Used umask to change the permissions applied to new files
5. Learned about Set UID (SUID), become more familiar with C, and compiled a SUID C program
6. You may have also done some more programming of your own
7. Used Linux Extended ACLs to configure more advanced security policies
Well done!
References

1. Z. Cliffe Schreuders. Access controls and Linux/Unix file permissions,
z.cliffe.schreuders.org/edu/ADS/Access%20Controls.pdf

23

