Lab task 2
Q. Consider the functions functionFirst() and functionSecond() defined as follows:

Shared data:

Semaphore s1=1,s2=1,d=1;

int c1=0,c2=0;

void functionFirst() void functionSecond()

((|
wait(s1); wait(s2);
cl=cl+1; c2=¢c2+1;
if (c1==1) wait(d); ilf'(c2==1) wait(d);
signal(sl); signal(s2);
Critical Section code Critical Section code
wait(s1); wait(s2);
cl=cl-1; c2=c¢2-1;
if (c1==0) signal(d); if: (c2==0) signal(d);
signal(sl); signal(s2);

Remainder Section code

Remainder Section code

}

Two different functions involving critical section codes are given above. Assume that
there are N processes running in our system which may call functionFirst() or
functionSecond() including the semaphore operations wait() and signal().

a. How many processes may have functionFirst() calls running in their critical
sections? What would be the corresponding d value at that time?

Process count: N d value: 0

b. While one functionFirst() is in its critical section, how many functionSecond()
calls can be running in its critical section? What would be the corresponding d
value at that time?

Process count: 0 d value: 0

Lab 2 assignment

Q.2. (20 points) Consider a bank where there are N workers and assume
that any number of customers may exist at a time. A worker waits for a
€ustomer and then provides service. If no worker is free, then a customer
should wait. After completing service to a customer, the worker process
should update wrkr. Similarly, each customer should update cstmr as soon as
it arrives. Using two semaphore variables wrkr and cstmr, synchronize
workers and customer processes. Do not forget to initialize semaphore
variables appropriately.

Semaphore cstmr =0uny, WIKY = ceNoovonnn s
Worker Process: Customer Process:
do{ do{

wait(cstmr) ; signal (cstmr) ;

wait (wrkr) ;

provide service; get service;

signal (wrkr) ;

}Jwhile (true); }while (true);

@. Conslder the too-mosh-milk peoblesn which may ooour When 2 pecaans
BrE shiaring the sane hagse.

Parson A FPorasn B

JrdD Leak in feldos. W0 nilk.

305 Leave far market.

1] hrrive st markat, Lozk in fridge., ©ot of milk.
Az 15 Leave macket. Liswra For markak .

20 Arrive home, pak mdlk away. Arcive &1 macket.

b Pl laave market.

X: 30 Rrelive bome. Teo muoch milk,

In othar werds, 2 personm whao chack the fridge for milk at diffarent
times notice that no nilk is lsft. Each Givma to the marksat mnd baypo
nilk: ATt Che snd, thoara £9 mors nilk thars OEoESIary.

1o ordaer te awedd this, they should be synchronizad uring semaphores,
Bamams that the abored data sre defined as follows:

Shared data:

Semaphore ONToBugMilk = 1;:
int HoHilk;

Wemalk iz true when there ls oo odlk in the fridgs. ORTeBuMilk is gsad
Lo achiswe putual axcluaicn betvwesn prooesscs ko and 0. Defors buying
milk by cslling the funcbion “Bugbllk™, =ach proceass wshoyld chock
whether Che velus of ONTcBuydilk I[s 1. Ckherwise, than sheuld wait. An
dppropriate furskion call abwuld be waed for this Purpode which rirvatly
verlflas thar OFPeBuyMalk = 1 and then redoocs ier wslus asd hence
blacks ather process. Adtar this iz dane, the proce=s is In its
Grltlcal section where Lhe valos of Hailk is flestly checked, Tf thezs
13 so =milk, then Baydlle i3 galled. After completicn, amotheEr
appropriata function dahewld bs called Far ending the eritical sactlan,

Taking dnto accaunt this inCofmation, plazgs provide tha pesudocods far
Procsidms A amd B.

Proggsases A and B

Wait | DETeBuyMillk) e ol la’
"_T# ramo J'F}-:lg I\J . }-
if |HoMilk) ﬂ e I g
Braydilk; ﬂ

gignal (ONTaBuyMilk) ;

Lab 3 task

v~

Q. Consider the dining philosophers problem where 5 philosophers
are involved. Assume that there are two types of philosophers. The
first type named as lefty (L) picks up his left chopstick first and the
second type called righty (R) picks up his right chopstick first. The

behaviour of a righty is given below.

Philosopher i:
do{

wait(chopstick[{i+1) % 5]);

wait(chopstick[i]);
eat
signal{chopstick[i]);

signal({chopstick[(i+1) % 5]);

¥

may lead to a deadlock?

State whether the following sets of philosophers seating at the table

~ Philosophers

Deadlock / No Deadlock

| RRRRER (5 lefty philosophers) Deadlock
RRRLR (4/righty, one lefty) No Deadlock
JLLLLL Deadlock
/ LLRRR No Deadlock
/ RRLLL No Deadlock

! HTY
s

Lab task 3

Q. Consider the following concurrently running processes PO and P1.

Shared data:
bool waiting [0] = false, waiting [1 '] = false;
int turn = (),
Process P0: Process P1:
while (true) while (true)
{ (b
al . waiting [0] = true; bl waiting [1] = truey @
a2 while (turn =0) b2 while (turn != 1)
{ { R
a3 while (waiting [1]); b3 while (waiting [0]);- 4—
a4 turn = 0; b4 turn = 1;
}]
Critical Section code Critical Section code
waiting [0] = false; waiting [1] = false;
~> | _Remainder Section code Remainder Section code

} X
Give a sequence of instructions in terms of ai’s and bi’s to show that mutual exclusion is
not satisfied.

Sequence: bl.b2,b3.al.a2.b4

Lab task 3
Q. Consider the program segments of two concurrently running
processes A and B given below.

Shared data: inta = 1, b=1;

4

Semaphore s = /Zﬁ;

Process A: ’ ' Process B:
do{ - do{
wait(s) _ W‘/‘:"l O /
Al a=a+1; B.l: h=2*hb;
A2 b=b+1; B2-3=2%a
' signal(s
ywhile(true); }while(true);

Initially, a=b=1. However, although- the same statements are
executed for both a and b, the values of a and b may be different
when all four statements are executed once. Give such a sequence in
terms of the equation number given on the left of each statement so _

that we have a=4 and b=3.
Al1,B1,A2,B2 or B1,A1,A2,B2 or Al1,B1,B2,A2

Using semaphores, give a solution to this problem so that, when all
statements are executed the same number of times, a and b are
guaranteed to be equ_al. Give your solution on the process code -

given above.

Lab task 3
©.3. (15 points) There are 3 robots (red, blue, green) — each is controlled by its own
process. We need to ensure that the robots only move in the following order: red, blue, green,
red, blue, green, etc. Add the necessary code below that performs the appropriate
initializations and enforces this execution order. Use only semaphores for your

synchronization.

Shared Variables:

SemaphoreR=l......, .B=0....., G=0......;

Process Robot_red Process Robot_blue Process Robot_green
do { do { do {
wait(R); wait(B); wait(G);

MOVE(); MOVE(); MOVE();
Signal(B); Signal(G); Signal(R);
ywhile(true); twhile(true);

iwhile(true);

