Chapter 3

Analysis of experimental Data

Errors will creep into all experiments regardless of the care which is exerted.

Some of these errors are of a random nature, and some will be due to gross blunders on the part
of the experimenter.

If such bad points fall outside the range of normal expected random deviations, they may discard
on the basis of some consistent statistical data analysis.

Consistent: The elimination of data points must be consistent and should not be dependent on
what ought to be.

Causes and types of experimental errors

The data may be single sample or multisample.

Ex. For single sample

If one measures pressure with a pressure gage and a single instrument is the only one used for
the entire set of observations, then some of the error that is present in the measurement will be
sampled only once no matter how many time the reading is repeated.

Ex. For multi sample

If more than one pressure gage is used for the same total set of observations, then we might say
that a multi sample experiment has been performed. The number of observations will then
determine the success of this multi sample experiment in accordance with accepted statistical
principles.

Experimental uncertainty: The possible value the error may have.

Experimental errors: The real errors in experimental data are those factors that are always not
clear to some extent and carry some amount of uncertainty.

Types of Errors

1. Errors gross blunders in apparatus or instrument construction which may invalidate the
data. Careful experimenter will be able to eliminate most of these errors.

2. Certain fixed errors which will cause repeated readings to be in error by roughly the same
amount but for some unknown reason ( systematic errors, or bias errors ).

3. Random errors: usually follow a certain statistical distribution, but not always. In many
instances it is very difficult to distinguish between fixed errors and random errors.

The experimentalist may sometimes use theoretical methods to estimate the magnitude of a fixed
error.



Ex. Consider the measurement of the temperature of a hot gas stream flowing in a duct with a
mercury in glass thermometer.

he heat may be conducted from the stem of the thermometer, out of the body and into the
surroundings. Heat transfer from the gas to the stem of the thermometer, and consequently the
temperature of the stem must be lower than that of the hot gas. Therefore the temperature we
read on the thermometer is not the true temperature of the gas and it will not make any difference
how many readings are taken we shall always have an error resulting from the heat transfer
condition of the stem of the thermometer. This is fixed error, and its magnitude may be estimated
with theoretical calculations based on known thermal properties of the gas and the glass
thermometer.

Error analysis on a commonsense basis.

The uncertainity of final results is due to the instrument accuracy and competence of the people
using the instruments. This may be done by common sense analysis of the data which may take
many forms.

1. One rule of thumb that could be used is that the error in the result is equal to the
maximum error in any parameter used to calculate the result.

2. Another common sense analysis would combine all the errors in the most detrimental
way in order to determine the maximum error in the final result.

Ex. Calculation of electric power
P=IE

Where | and E are measured as
E=100V %2V
I=10A £0.2A

The normal value of power is
P=100 x 10 = 1000 W

The worst possible in variations in the voltage and current are,

1040.4—1000

Pmax=(100+2) x (10 + 0.2 ) = 1040.4 W (uncertainty = 500 =0.0404)

Pmin=(100-2)x(10-0.2) =960.4 W
The uncertainty in the power is +4.04%, -3.96 %
Uncertainty Analysis

A more precise method of estimating uncertainty in experimental results has been presented by
Kline and Mc Clintock. The method is based on a careful specification of the uncertainties in the
various primary experimental measurements.



Ex. A certain pressure reading might be expressed
P =100 kPa + 1 kPa
orP=100kPa+1kPa(20tol)

In other words, the experimenter is willing to bet with 20 to 1 odds that the pressure
measurement is within + 1 kPa.

Suppose a set of measurements is made and the uncertainty in each measurement may be
expressed wiyh the same odds.

R=R (X1, X2, X3, yeuvvurnen Xn )
Where R is a given function of the independent variables X, ....X; .
Let wr : the uncertainty in the result
W1, W2 . Wy the uncertanities in the independent variables.

If the uncertainties in the independent variables are all given wiyh the same odds. Then

W =[(Zw) + (Zws) ek (22 Wn)z]”z

Uncertainties for product Functions

R=xMx§% ... .....x2" take the partial differentiations
2L = % x,% (@i %) e xy ™ (divide with R)
Therefore 1R _ 4
R 0x; Xi
iWx; 1/2 - -
% = [Z(%)Z] Fractional uncertainty — .......cooooeiiiiiiiiiiie e, 1
EX.P=1E
I=10£02A
E=100+x2V

ws_ [(2) + ()] =280

Uncertainty for Additive Functions

R =R (a1X1, 82X2, 83X3, yereeneenn. AXn) = Ya; x;



Then the uncertainty in the result
aR 2 1/2
we = {2|G2) welf

We = {Z|(am,)’ ]}1/2 ................................................ 2

Note egn 1 and egn 2 may be used in combination when the result function involves both product
and additive terms.

Ex. The resistance of a copper wire is given by

R = R,[1+ (T — 20)]

Where R, =6 () +0.3% is the resistance at 20 °C
a=0.004 °C*
T=30 £1 temperature of wire

Calculate the resistance of the wire and its uncertainty.

R = 6[1+ 0.004(30 — 20)]=6.24 () normal resistance

a"’lf = 1+ (T — 20) = 1+0.004 ( 30-20) = 1.04 ()
22 = Ro(T'-20)=6(30-20)=60 0

OR

2 = Rox=6(0.004)=0024 0

Whro = 6 * 0.003 = 0.018 ()

W, =0.004 *0.01 =4 x 10°°C™

Wr=1°C

Wr = [(1.04x0.018)% + (60x0.00004)2 + (0.024x1)%]*/2 = 0.0305

or 0.0305 ()/6.24 () =0.49%



UNCERTAINTY IN POWER MEASUREMENTY. The two resistors B and R, are con-
nected in series as shown in the accompanying figure. The voltage drops across each resistor
are measured as

E=10V 0.1V {1%)
E, = 1.2V £ 0,005V (0.467%)

along with a value of

R; = 0.0066 2 £ 1/4%

From these measurements determine the power dissipated in resistor R and its uncertainty.

| e |
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R R,

Figure Example 3.2

Solution
The power dissipated in resistor R is

The current through both resistors is | = E; /R, so that
EE,

F
R,

[a]

The nominal value of the power is therefore
P={1{1.2)/(0.0066) = 18182 W

The relationship for the power givenin Eq. (@) is a product function, so the fractional uncertainty
in the power may be determined from Eqg. (3.2a). We have

ag =1 ag, = | and ag, =—1
s0 that
w _ﬂ-ul- : apwe \ dg W 2]
7o) () ()
: 12
— {I}:(%) +{1}’(%) +f—|}?(ﬂ.m25f] — 0.0111
Then

wp = (DOTTIS18.2) = 20018 W



SELECTION OF MEASUREMENT METHOD. A resistor hes a nominal stated value of
10 £2 %+ | percent. A voltage = impressed on the resistor, and the power dissipation is to be
calculated in two different ways: (1) from P = E2/R and (2) from P = EI. In (1) only a
voliage measurement will be made, while both cument and voltage will be measured in (2]
Calculate the uncerainty in the power determination in each case when the measured values
of E and I are

E=100V£1% {for both cases)
F=10A+1%

R
' o
—( WA

(E)
WA
Figure Example 3.3  Power measurement across a resistor.

Solution
The schematic is shown in the accompanying fgure. For the first case we have

P 1E  aP E?

aE KGR  RK®
and we apply Eq. (3.2) to give

2EN A
wp = T Wi + _E lerg [al
Dividing by P = E*/R gives
1wy we\ T fwe|
— =4 —= — b
[mserting the numerncal values for uncerainty gives

% = [4(D.01)* + (001" = 2.236%



For the second case we have
ak_ o ap
d al
and after similar algebraic manipulation we obtain

[ -]

Inserting the numerical valwes of uncerainty yields

E

T 5
?‘“ = [(0.01)° + (0.017°]'7 = 1.414%

INSTRUMEMNT SELECTION.  The power measurement in Example 3.2 is to be conducted
by measuring voltage and current across the resistor with the circuit shown in the accompa-
nying figure. The voltmeter has an internal resistance Ry, and the valoe of K is known only
gpproximately. Calculate the nominal value of the power dissipated in R and the unceriainty
for the following conditions:

R = 1004 {nof known exactly)
R, = 10004 £+ 5%

I =5Ax1%

E =500V + 1'%

Figure Example 3.4 Effect of meter iImpedance on measurement.

Solution
A current balance on the circuit yvields
II +I: = I
E E '
FRl
and
E
h=I—-— [a]



The power dissipated in the resistor is

E"_
P=FEl =E] —— k]
: R

The nominal value of the power is thus calculated as

%

P={Sﬂﬂ}{5}—% = Z250W

In terms of known quantities the power has the functional form P = fTE. [, Ba). and so we
form the denvatives

P 1E il o
BE R al
aP E?
aR. RL

The uncentainty for the power is now written as

3 ; 172
2ENT . E2NT :
wp = [(I — R_u) wi + Ewy + (R_?) H.IL] [<]

[nserting the appropriate numerncal values gives

; 3 Iz
wp = [(S - %) 5%+ (25 10%)(25 x 1074 + (ﬁ * :T?:) CM]]
= [16 4+ 25 + 6.25]"%(5)
=344W
wpE 344
- — = 3355 = 153%

In order of influence on the final uncertainty in the power we have

. Uncenainty of current determination
2. Uncertainty of voltage measurement
3. Uncerdainty of knowledge of internal resistance of voltmeter



WAYS TO REDUCE UNCERTAINTIES. A cerain obstruction-type Aowmeter (orifice,
venturd, nozzle), shown in the accompanying figure, is used to measure the fow of air ot low
velocities. The relation describing the flow rate is

112

2.1

n=0CA — D1
s FiT .ﬂ-]_ [a]
—_—

Figure Example 3.5 Uncerfainty in o Aowmeter.

where ' = empircal-discharge coefficient

A = fow area
f and py = upstream and downstream pressures, respectively
T1 = wpstream temperature
K = pas constant for air
Calculate the percent uncertainty in the mass flow rate for the following comditions:
C =092 120,005 (from calibration data)
M = 25 psia £ 0.5 psia
" =MNFF+xXF I =530FR
Ap = m — pr = 1.4 psia £ 0,005 psia (measured direct]y)
A = 1.0in" £0.001 in”
Solution
In this example the flow rate is a function of several variahles, each subject to an uncerainty.
m=fC A p. Ap. T)) [b]
Thus, we form the derivatives

. 12
i} 2p !
_'“=.q( #Flﬂpj

ac RT,
. 1T
3 2 -
2 o 2EP Ap
fA RT
- 112
am 2 :
T _oscA| Z=ap) p? [e]
dpm KT
1T
dm 2E-P 12
— =0.5CA -1z




The uncertainty in the mass fow rate may now be calculated by assembling these denivatives
in accordance with Eq. {3.2). Designating this assembly as Eqg. () and then dividing by Eq. (a)

oives
u:.-:zurllwzlurllwrim
—_— _"1 —_ [ =P _;'i"u - —L
() +(5) #5(3) +(5) (%)

We may now inser the numerical values for the guantities to obtain the percent uncertainty in
the mass flow rate.

L'y

[]

; 1 112
we _[f000s)\"  Fo001\* 1705y 1fooes\t o1 2 )
m |\ 002 10 I\E) T3 1a 3\ 530

=295 107° + 1.0 x 107% 4+ 1.0 » 107% 4+ 319 x 107° + 3.57 = 10-°]'7
= [1.373 = 1074]"? = 1.17T2% [=]

Comment

The main contribotion to uncertainty is the py measurement with its basic uncertainty of
2 percent. Thus, to improve the overall situation the accuracy of this measurement should be
attacked first. In order of influence on the flow-rate uncenainty we have:

Uncertainty in i measurement (2 percent)
Uncertainty in value of O

Uncertainty in determination of T)
Uncertainty in determination of Ap

ok o =

Uncertainty in determination of A

By inspecting Eqg. (e) we sec that the first and third items make practically the whole contri-
bution to uncertainty. The value of the uncertainty analysis in this example is that it shows the
investigator how to improve the overall measurement accuracy of this technigue. First, obtain a
meore precise measurement of py. Then, try to obtain a better calibration of the device, that is, a
better value of C. In Chap. 7 we shall see how values of the discharge coefficient C are obtained.

10



UNCERTAINTY CALCULATION BY RESULT PERTURBATION.  Calculate the uncer-
tainty of the wire resistance in Example 3.1 using the result-perturbation technigue.

Salutien

In Example 3.1 we have already calculated the nominal resistance as 6.24 £2. We now perturb
the three variables Ry, o, and T by small amounts to evaluate the partial derivatives. We shall

iake
AR, =10.01 Ao =1x 10" AT =01

Then R{Ro + ARy) = (60101 + (0.004)(30 — 200] = 6.2504

and the derivative is approximated as

3R R(Ro+ARs)— K _ 6254624
AR, AR, - 0.01 o

or the same result as in Example 3.1. Similarly,
Rio + Aa) = (6.0)[1 4 (D.OD401)(30 — 20)] = 6.2406

AR Rim+Ao)— K 6.2406 — 6.24

. A = T ¥

R(T + AT) = (6)[1 + (D.004)(30.1 — 20)] = 6.2424
R _R(T+AT)—R 62424624

ar AT - TN = 0.4

All the derivatives are the same as in Example 3.1, so the uncertainty in 8 would be the same,
or 00305 £2.

3.0 STATISTICAL ANALYSIS OF EXPERIMENTAL DATA

We shall not be able to give an exiensive presentation of the methods of statistical

analysis of experimental data; we may only indicate some of the more important

methods currently employved. First, it is important to define some pertinent terms.
When a set of readings of an instrument is taken, the individual readings will

vary somewhat from each other, and the experimenter may be concerned with the
mean of all the readings. If each reading is denoted by x; and there are »n readings,

the arithmetic mean is given by

J f
Xm = — Xi [3.3]
iy

T |

The deviation d; for each reading is defined by

dr' = X;j — Xy [3‘4]

11



We may note that the average of the deviations of all the readings is zero since
1 1
d; = - Zﬂﬁ' = ;E(I& — Xu)
L Jom

1
= xm — —(nim) =10 [3.5]
n
The averace of the absolute values of the deviations is given by
1o 1
|d;| = ;E |di| = ;_Z]‘, |x; — g [3.6]
Jmm Jom

Mote that this quantity is not necessarily zero.
The standard deviation or rool-mean-square deviation is defined by

L 112
=y (i — xmf] [3.7]
n

]

IF =

and the square of the standard deviation o is called the varignce. This is sometimes
called the population or biased standard deviation because it strictly applies only
when a laree number of samples is taken to describe the population.

In many circumstances the engineer will not be able to collect as many data
points as necessary to describe the underlying population. Generally speaking. it is
desired to have at least 20 measurements in order to obtain reliable estimates of
standard deviation and general validity of the data. For small sets of data an anbiased
of sample standard deviation is defined by

24172
o = lE?—][If_xm}jl [3.']

n—1

Mote that the factor n — | is used instead of # as in Eq. (3.7). The sample or unbiased
standard deviation should be used when the underlving population is not known. How-
ever, when comparisons are made against a known population or standard, Eq. (3.7)
is the proper one to use for standard deviation. An example would be the calibration
of a voltmeter against a known voltage source.

12



There are other kinds of mean values of interest from time o time in statistical
analysis. The median is the value that divides the data points in half. For example, if
measurements made on five production resistors give 10, 12, 13, 14, and 15 k€2, the
median value would be 13 k€2, The arithmetic mean, however, would be

04+ 12413414415
o 3

In some instances it may be appropriate o divide data into quartiles and deciles also.
So, when we say that a student is in the upper quartile of the class, we mean that that
student’s grade is among the top 23 percent of all students in the class.

Sometimes it is appropriate o use a geamelric mean when studying phenomena
which grow in proportion to their size. This would apply to certain biological processes

Rm = 12.8k82

and to growth rates in financial resources. The geometric mean is defined by

1/

xp=|[x1-x2-2x3---xa] [3.9]

As an example of the use of this concept, consider the 3-year record of 2 mutual fund
investment:

Assal Kaie of Increase
Year Value over Previous Year
l LI
2 w40 .84
3 G 11124
4 | 100 11111
5 | 250 I.1364

The average erowth rate is therefore

Average growth — [(0.89)(1.1124)1(1.1111){ 1.1364)]1/*
— 10574

To se2e that this is indeed a valid average growth rate, we can observe that
(10000(1.0574)* = 1250

13



CALCULATION ©OF POPULATION VARIABLES.  The following readings are taken of
acerain physical length. Compuote the mean reading, standard deviation, variance, and average
of the absolwte value of the deviation, using the “hiased™ basis:

1
7

X, CIm

530
373
6,77
5.26
413
545
.00
564
58]
375

D G ] O LA e L bed ==

=]

Solution
The mean value is given by

I 1
= - = —(56.13) =5.613
I ""E. 11, m[ﬁﬁ] I =5613cm

The other quantities are compated with the aid of the following table:

Reading i =X —Ta % —Xa ) x 1P
I —0.313 9797
2 alr? 1564
1 1.157 |33 845
4 —.353 12.461
5 —1283 | 64 &K
& —{ 163 2657
) 0477 X153
B T 00729
0 0157 3881

[ [F] 0137 1877

o = [HLZ{:. — ) } l—{3 533}] — (1.5944 cm

o’ = 0.3533 cm®

] = igw - igu. x

= -(4.224) = 04224 cm



3.7 PROBABILITY DISTRIBUTTONS

Suppose we toss a horseshoe some distance x. Even though we make an effort to toss
the horseshoe the same distance each time, we would not always meet with success.
On the first toss the horseshoe might travel a distance x;, on the second toss a distance
of x». and 50 forth. If one is a good plaver of the zame, there would be more tosses
which have an x distance equal to that of the objective. Also, we would expect fewer
and fewer tosses for those x distances which are farther and farther away from the
taroet. For a laree number of tosses the probability that it will travel a distance is
obtained by dividing the number traveling this distance by the total number of tosses.
Since each x distance will vary somewhat from other x distances. we might find it
advantageous to calculate the probability of a toss landing in a certain increment of
x between x and x + Ax. When this calculation is made, we might get something
like the situation shown in Fig. 3.1. For a2 good plaver the maximum probability is
expected to surmound the distance x,, designating the position of the target.

Pl

I x4 Ax I

In

Figure 3.1 Distribufion of throws for o "good™ horseshoes player.

15



The curve shown in Fig. 3.1 is called a probability distribution. It shows how the
probability of success in a certain event is distributed over the distance x. Each value
of the ordinate p(x) gives the probability that the horseshoe will land between x and
x4+ Ax, where Ax is allowed to approach zero. We might consider the deviation from
Xy 45 the emror in the throw. If the horseshoe playver has o0d aim, large errors are
less likely than small errors. The area under the curve is unity since it is certain that
the horseshoe will land somewhere.

We should note that more than one variable may be present in a probability
distribution. In the case of the horseshoes player a person might throw the object an
exact distance of x5 and vet to one side of the target. The sideways distance is another
variable, and a large number of throws would have some distribution in this variable
as well.

A particular probability distribution is the binomial disiribution. This distribution
eives the number of successes n out of & possible independent events when each event
has a probability of success p. The probability that n events will succead is given in
Eef. [2] as

Nt Nen

pin) = [N_n]!ﬂ!p‘(l - p) [3.10]
It will be noted that the quantity (1 — p) is the probability of failure of each independent
event. Now, suppose that the number of possible independent events N is very large
and the probability of occumence of each p is very small. The calculation of the
probability of n successes out of the N possible events using Eq. (3.10) would be
most cumbersome because of the size of the numbers. The limit of the binomial
distribution as N — o0 and p — 0 such that

Np = a = const

is called the Poisson distribation and is given by

ate 2
pain) = — [3.11]
n.

The Poisson distribution is applicable to the calculation of the decay of radioactive
nuclei, as we shall see in a subsequent chapter. It may be shown that the standard
deviation of the Poisson distribution is

=3 [3.12]

16



Example 3.9 TOS55ING A COIN—BINOMIAL DISTRIBUTION.  Anunweightedcoinis flipped three
times. Caloulate the probability of getting zero, one, tao, or three heads in these tosses.,
Solution
The binomial distribution applies in this case since the probability of each flip of the coin is
independent of previous or successive flips. The probability of getting a head on each throw is
P = % and & = 3, while r takes on the values 0, 1, 2, and 3. The probabilities are calculated

BE
o 3 (Y Yyt
PO = oy (2) (2) B
L 2
AWAAEE
P = Enmy (E) (E) BE
2 1
N A WA
P2 = iy (E) (E) BE
SRR
R RTTITET (E) (E] T
Comment

Mote that the swm of the four probabilities, that is, % - % - % - é is unity of cerfainty because
there are no other possibilities. Heads must come up zero, one, two, or three times in three
flips. OF course, one would obtain the same result for probabilities of obtaining zero, one, two,
or three tails in three Aips.

17



HisTogrAMS

We have noted that a probability distribution like Fig. 3.1 is obtainad when we observe
frequency of occurrence over a laree number of observations. When a limited number
of observations is made and the raw data are plotted, we call the plot a histogram.
For example, the following distribution of throws might be observed for a horseshoes
plaver:

Mistance from Mumber
Target, cm of Throws

0110 5
10-20 15
050 13
040
40-50
5050
B0-10
TO-80
RO
D010

100110
110-120
Crver 120

Todal

.

Ellum!—nmqmamﬂ

These data are plotted in Fig. 3.2 using increments of 10 cm in Ax. The same
data are plotted in Fig. 3.3 using a Ax of 20 cm. The relative frequency, or fraction of

18
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Wumber al throes

20 Al ] By 100 1m X
Distance from tarpet, cm

Figure 3.2 Histogrom with Ax = 10 cm.

) -

Murnker of thrirs

1]

]

20 40 L] B 1D 120 ¥
Distance from target. cm

Figure 3.3 Histogrom with Ax = 20 cm.

throws in each Ax increment, could also be used to convey the same information. A
cumulative frequency diagram could be employed for these data, as shown in Fig. 3.4,
If this figure had been constructed on the basis of a very laree number of throws, then
we could appropriately refer to the ordinate as the probability that the horseshoe will

land within a distance x of the target.

19
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3.8 THE GAUSSIAN OR NORMAL
ERROR DISTRIBUTION

Suppose an experimental observation is made and some particular result is recorded.
We know (or would strongly suspect) that the observation has been subjected to many

random errors. These random errors may make the final reading either too laroe or
too small, depending on many circumstances which are unknown to us. Assuming
that there are many small errors that contribute to the final emror and that each small
errof is of equal magnitude and equally likely to be positive or negative, the paussian
or aormal error distribulion may be derived. If the measurement is designated by x.
the gaussian distribution zives the probability that the measurement will lie between
x and x + dx and is written

Pix) = g Tal 2o [3.13]

a2

In this expression x., 15 the mean reading and o is the standard deviation. Some may
prefer to call Plx) the probability deasity. The units of Px) are those of 1/x since
these are the units of 1/o. A plot of Eq. (3.13) is given in Fig. 3.5. Note that the
most probable reading is xm. The standard deviation is a measure of the width of the
distribution curve; the lareer the value of &, the flatter the curve and hence the larger
the expected error of all the measurements. Equation (3.13) is normalized so that the
total area under the curve is unity. Thus,

+-2a
Plx)dx = 1.0 [3.14]

-3
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Figure 3.5 The gaussian or normal ermor distribuion for two values
of the siandard deviation.



Al this point we may note the similarity between the shape of the normal error
curve and the expected experimental distribution for tossing horseshoes, as shown in
Fig. 3.1. This is what we would expect because the good horseshoes player’s throws
will be bunched around the tareet. The better the player is at the game, the more
closely the throws will be grouped around the mean and the more probable will be
the mean distance x,. Thus, in the case of the horseshoes plaver a smaller standard
deviation would mean a larger percentage of “ringers.”

We may quickly anticipate the next step in the analysis as one of trying to deter-
mine the precision of a set of experimental measurements through an application of the
normal error distribution. One may ask: But how do you know that the assumptions
pertaining to the derivation of the normal error distribution apply to experimental
data? The answer is that for sets of data where a large number of measurements is
taken, experiments indicate that the measurements do indeed follow a distribution
like that shown in Fig. 3.5 when the experiment is under control. If an imporiant
parameter is not controlled, one gets just scatter, that is. no sensible distribution at all.
Thus, as a matter of experimental verification. the gaussian distribution is believed
to represent the random errors in an adeguate manner for a properly controlled
experiment.

23



By inspection of the gaussian distribution function of Eq. (3.13) we see that the
maximum probability occurs at x = x,,. and the value of this probability is

P(xm) = [3.15]

1
o/2m
It is seen from Eq. (3.15) that smaller values of the standard deviation produce larger
values of the maximum probability, as would be expected in an intuitive sense. P{x,,)
is sometimes called a measure of precision of the data because it has a larger value
for smaller values of the standard deviation.

We next wish to examine the gaussian distribution to determine the likelihood
that certain data points will fall within a specified deviation from the mean of all the
data points. The probability that a measurement will fall within a certain range x, of
the mean reading is

Xm+X1
p= e g [3.16]
Xg—xp O 2

Making the variable substitution

X=X

= o
Eq. (3.16) becomes

1 -+ =y

P = N e ' 'Tdn [3.17]

e L

where
X

Values of the gaussian normal error function

1

2

— ﬂ: |,"2

[

and integrals of the gaussian function corresponding to Eq. (3.17) are given in Tables

3.1 and 3.2

If we have a sufficiently large number of data points, the error for each point
should follow the gaussian distribution and we can determine the probability that
certain data fall within a specified deviation from the mean value. Example 3.10
illustrates the method of computing the chances of finding data points within one
or two standard deviations from the mean. Table 3.3 gives the chances for certain

deviations from the mean value of the normal distribution curve.
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¥alues of the function 1[,-’*.-“2::}5"?1-"1 for different values of the argument ». Each figure in the body of

the table is preceded by a decimal point.

n 0,04 .01 002 0.03 0.04 0.05 .06 o7 008 0.0
00 39894 J9B92  398B6 39876 39862 30B44 30822 39797 39767 39733
0.1 39693 39634 39608 39359 39505 30448 30387 39322 39253 39181
0.2 39104 39024 3E040  38E53 3BV6 38667 38568 34606 38361 38251
0.3 38139 3R023 37903 3TTRO 3Ta54 37534 37391 3TI55 0 3TINS 36973
04 36827 366TE 36326 36371 36213 36053 3589 35723 35553 33381
0.5 35207 35029 34849 34667 34482 34204 34105 33912 33TIE 33521
0.6 33322 33121 32918 32713 32506 32297 32086 3IETS 31659 31443
0.7 31225 31006 30785 30563 30339 30114 20887 20658 20430 29200
08 28969 2BTIT 28BS4 28269 2BOG34 2T7T9R 27562 27324 IT0BG  26E4E
09 26600 26360 36129  I5EBR 23647 25406 25164 24923 246B1 24430
[0 24197 23955 23713 23471 23230 2298 22747 22506 22265 22025
1.1 21785 21546 21307 21069 20831 20594 20357 20121 198B6 19652
1.2 19419 19186 1829354 18724 18494 18265 18037 17810 17585 17360
1.3 17137 16915 16694 16474 16256 16038 15822 15608 15395 15183
l4 14973 14764 14556 14350 14146 13943 13742 13542 13344 13147
1.5 12052 12758 12366 12376 12188 12001 11816 11632 11450 11270
l& 11092 10915 10741 10567 10396 10226 10059 0993 00728 (9366
1.7 09403 09246 09089  0F933  O0BVED  OB62E  OB478 08320 0BIB3 08038
1.8 07893 07734 O07el4 07477 07341 07206 07074 06943 06314 06687
1.9 06562 6438 06316 06195 06077 05950 05844 05730 05618 03308
20 05399 05292 05186 05082 04980 (48790 (4780 04682 04386 04491
1 04398 04307 04217 04128 04041 03955 03871 03TEE 03706 03626
11 03547 03470 03394 03319 03246 03174 03103 03034 02965 (2808
23 D2833 02768 02705 02643 02582 02522 02463 02406 02349 0229
14 02239 02186 02134 02083 020533 01984 01936 01888 01842 01797
25 01733 01709 Olee7 01625 01585 01545 01506 01468 01431 01394
o 01338 01323 01289 01256 01223 01191 Olleld  O1130  O1000  O1071
27 0142 01014 00987 Od9al 00935 0909 00885 0086l 00337 00814
28 00792 00770 00748 00727 00707 OD6ET 00668 00649 00631 00613
29 00593 00578 00362 00345 00530 00514 00499 00485 00470 00457
0 043

35 00TV

4.0 001338

4.5 0000160

50 000001487
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Table 3.2 Infegrals of the gaussian normal error funcfion
“alues of the integral LI,-'E]LH" E"J:-'lidr; are given for different valoes of the srgument ;. It may be
ohserved that

1 +h . 1 fu
E f E-T_n'lm]. — Evll_? -E'_If'l'ldﬂ
—T

=T Jn

The valoes are related to the error function since

1 +1y
—

s that the tabular values are equal 1o %eﬁ{qlfﬁ].&chﬁgmmﬂiebndyufme table is preceded by a
decimal point.

T [0 R a2 a3 (LRI .05 . iy LLELE s LKLY
00 DD 0399 00798 o197 01595 01994 02392 027 O31BE 03536
0.1 O39E3 380 4776 05172 05567 05962 06356 06749 07142 07355
02 06 08317 08706 00095 O94E3 09871 10257 10642 11026 101409
LI T ]| 12172 12552 129300 13307 13683 14058 14431 14803 15173
04 15554 15910 16376 lesdd 17003 17364 17724 1BOR2 18430 1793
05 19145 19497 19847 20194 250 20884 21236 20566 21904 23240
06 22575 12907 IPIFT IS5 23E01 24215 53T MES5T 25175 25490
07 25084 26115 26424 267300 27035 273FT O XTR3T 27035 2R2MD M5
08 2ER14 103 FEE9 RT3 29955 30234 30511 30T7RS 31057 31327
09 31594 FIB5D 32121 32381 32639 32894 33147 33308 334646 33891
L0 34134 34375 Meld4 34E50 35083 353013 35543 35T 35993 38204
.1 36433 36650 3GBA4 3TOTE 3TIER 37493 3TROE 37000 3FI00 3E298
1.2 3493 J86E6  IEETT 30065 39251 30435 3GIT 30T9q 39971 40047
.3 40320 40490 40658 40E24 ADREE 410198 41508 dldes 41621 41774
1.4 41924 42073 42720 42364 42507 42647 427E6 42972 43056 43189
1.5 43319 43448 43574 43699 A3RIT 43043 44062 179 44295 44408
.6 44520 44630 44738 J4B45 44050 45053 45154 45254 45352 45449
1.7 45543 45637 45T28  ASEIR 45007 45994 46080 delsd 46246 46327
1.8 46407 46485 46562 4663R 46TIT  46TE4 46856 46T26 46995 47042
1.9 47128 47193 ATIST 47320 4TIE] 47441 47500 47558 47615 47670
20 47715 47778 4TRI1]  ATERZ  4ATDIZ 47962 4RO0G0  4B0TT 48124 4E]A9
21 424 48257 48300 48341 ABIEI O ARAZ?  4H46] 4RS00 48537 48574
22 4Es10 48645 48679 ARTIZ  4ET4S  ARTTE 4RROD AERAD  J4EET0D 4REQ9
13 4R9IR 48956 48983 400100 49036 49061 49085 49111 490134 4958
24 40180 49202 49224 49245 49266 49786 49305 49324 49343 49361
25 49379 49296 49413 49430 49446 49461 49477 40492 49506 49520
b6 48534 49547 49560 49573 49585 49598 49609 40621 49632 49643
27 49653 49664 49674 4D6RE3 49603 49702 49711 49730 J4972E 49734
28 40044 49752 49760 49767 49774 A97E1 497ER 40705 49801 49807
29 4nE13 49819 49825 4DE3] 49836 49841 49846 40B5] 49856 49861
10 40865

15 4997574

4.0 4583

4.5  4%EE66

50 4599997133
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Table 3.3 Chances for deviations
from mean value of normal
distribufion curve

Chances of Results Falling

Deviation within Specified Deviation
H0 67450 -1
o 2151
2o 21-1
3o 3601

Example 3.10

PROBABILITY FOR DEVIATION FROM MEAN VALUE. Calculate the probabilities
that a measurement will fall within one. two, and three standard deviations of the mean value
and compare them with the values in Table 3.3,

Solution

We perform the calculation using Eq. (317 with iy = 1, 2, and 3. The values of the integral
may be obtained from Table 3.2. We observe that

+ } i
f . ']--"zdr] _ Ef g 'i'z-"ldr,l
4 L1]
so that

Fil) = (2)00.34134) = 0.6827
P2y = (2)i047725) = 0.9543
Pi3) = (2)i0.49865) = 0.9973
Uzing the odd=s given in Table 3.3, we would calculate the probabalitics as

Ay = 215 = [.6E2T
21541
21
A2y = TP = [.0545
3609
P3) = Wl 0.9973
Commacnt

This example shows how the concept of probabality in the gaussian distnbution is related to
the “odds” concept mentioned in the previows discussion of uncertainty specifications.

CONFIDENCE INTERVAL AND LEVEL OF SIGNIFICANCE

The confidence interval expresses the probability that the mean value will lie within
a certain number of o values and 1s given by the symbol z. Thus,

I=x+zo0 (% conhdence level)
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Table 3.4

Confidence Level, Level of Significance,

Confidence Inferval T £

3130 9.9 0.1
30 w7 03
257 0.0 1.0
o 95.4 4.6
1.96 5.0 5.0
.65 S 1000
1.0 68.3 31.7

and using the procedure of Example 3.10, the confidence level in percent could be
expressed as in Table 3.4, For small data samples z should be replaced by

o
S
We thus expect that the mean value will lie within £2.57: with less than | percent error

(confidence level of 99 percent). The level of significance is 1 minus the confidence
level. Thus, for z = 2.57 the level of significance is | percent.

A= [2.19]

DETERMINATION OF NUMBER OF MEASUREMENTS TO ASSURE A SIGNIFI-
CAMNCE LEVEL. A certain steel bar is measured with a device which has a known precision
of £0.5 mm when a large number of measurements 15 taken. How many measurements are
necessary o establish the mean length & with a 5 percent level of significance such that

I=x+0.2mm

Solution

For a large number of measurements the 3 percent level of significance 1s obtmned at - = 1.96
and for the population here

T i — {1.96300.53 mm)
N - ]
which yields
n =201

So, for 25 measurements or more we could state with a confidence level of 95 percent that the
population mean value wall be within £0.2 mm of the sample mean valoe.

Example 3.11

POWER SUPPLY. A cerain power supply is stated to provide a constant voltage output Example 3.12
of 10,0 within =0.1 V. The output 15 assumed to have a normal distnbution. Calculate the

probabality that a single messurement of voltage wall bie between 10,1 and 10,2 V.

28



Solution

For this problem & = 0.1 V. The probability that the voltage will hie between 10.0 and
10.1 V (+ 1o} is, from Table 3.2,

Pi+0.1) =034134
while the probabality it will lie between 100 and 102V {+20) 15
Pi+0.2y = 047725
The probability that it will lic between 101 and 102 V is therefore
100 o 10.2) = 0.47725 — 0.34134 = 0.1359]

CHAUVENET’'S CRITERION

It 1s a rare circumstance indeed when an experimenter does not find that some of
the data points look bad and out of place in comparison with the bulk of the data.
The experimenter is therefore faced with the task of deciding if these points are
the result of some gross expenimental blunder and hence may be neglected or if
they represent some new type of physical phenomenon that 1s peculiar to a certain
operating condition. The engineer cannot just throw out those points that do not fit
with expectations—there must be some consistent basis for elimination.

Suppose n measurements of a quantity are taken and n is large enough that we
may expect the results to follow the gaussian error distribution. This distribution may
be used to compute the probability that a given reading will deviate a certain amount
from the mean. We would not expect a probability much smaller than 1 /n because
this would be unlikely to occur in the set of # measurements. Thus, if the probability
for the observed deviation of a certain point is less than 1 /s, a suspicious eye would
be cast at that point with an idea toward eliminating it from the data. Actually, a more
restrictive test 1s usually applied to eliminate data points. It 1s known as Chauvenet’s
criterion’ and specifies that a reading may be rejected if the probability of obtaining
the particular deviation from the mean is less than 1/2n. Table 3.5 lists values of
the ratio of deviation to standard deviation for various values of n according to this
criterion with Fig. 3.6 furmishing a graphical representation.

In applying Chauvenet’s criterion to eliminate dubious data points, one first cal-
culates the mean value and standard deviation using all data points. The deviations
of the individual points are then compared with the standard deviation in accordance
with the information in Table 3.5 (or by a direct application of the criterion), and
the dubious points are eliminated. For the final data presentation a new mean value
and standard deviation are computed with the dubious points eliminated from the
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Table 3.5 Chauvenet's criterion for rejecting a reading

Number of Readings, Ratio of Maximum Acceptable Deviation
n to Standard Deviation, dmax/ @
3 1.38
4 1.54
5 1.65
f 1.73
7 1.80
10 1.96
15 2.13
25 2.33
50 2.57
100 2.81
300 .14
500 3.29
1000 348
._1_
3.5 i
.l".-r .
3 [~
=
25 g
5 At
§ 2 -
1.5 J,a"‘
1
0.5
0

1 10 100 10000

n = number of readings

Figure 3.6 Chauvenet's criterion.



calculation. Note that Chauvenet’s criterion might be applied a second or third time
to eliminate additional points; but this practice 1s unacceptable, and only the first
application may be used.

Example 3.13 | APPLICATION OF CHAUVENET'S CRITERION.  Using Chauvenet's criterion, test the
data points of Example 3.7 for possible inconsistency. Eliminate the questionable points and
calculate a new standard deviation for the adjusted data.

Solution
The best estimate of the standard deviation is given in Example 3.8 as 0,627 cm. We first
calculate the ratio 4; /o and eliminate data points in accordance with Table 3.5.

Reading dif o

0.499
0.187
1.845
0.563
2.046
0.260
0.761
0.043
0314
0219

=l = - AT LB R R S

In accordance with Table 3.5, we may eliminate only point number 5. When this point is
eliminated, the new mean value is

Xm = 1(51.80) = 5.756 cm

The new value of the standard deviation is now calculated with the following table:

Reading d; =x; — Xy (X — X x 102
1 —0.456 20,7936
2 —0.026 00676
3 .014 1028196

4 —0.494 24,602

f —0.306 0364
7 (.334 11.156
i —116 1.346

9 0,054 0.202

10 —0.006 0.0036

u 12

! ) , 12 .
— C— ) — [1i1.7044)] 7 = (0.213)'7 = 0.4615 cm
o p— ;{x T ) [a': }:I [ ]

Thus, by the elimination of the one point the standard deviation has been reduced from 0.627
to 0.462 cm. This is a 26.5 percent reduction.
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Comment

Please note that for the revised calculation of standard deviation a new mean value must be
computed leaving out the excluded data point.
The Chauvenet's criterion we have applied in this example is

e fo = 1.96 for n = 10

This value may be calculated directly from the gaussian distribution shown in Table 3.2 in
the following way. The criterion is that the probability of a point lying outside the normal
distribution should not exceed 1/2n or 1/20. The probability of the point lying inside the
normal distribution would then be

The entry point for Table 3.2 is half this value or 0.475. We obtain
n= 196

which agrees, of course, with Table 3.5 and Fig. 3.6.
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