MENG203

EXPERIMENTAL METHODS FOR ENGINEERS

RESSURE, FLOW AND TEMPERATURE
o MEASUREMENT

A ‘ ASSOC.PROF.DR.HASAN HACISEVKI

A\ EASTERN

MEDITERRANEAN
UNIVERSITY



WHAT IS PRESSURE?

PRESSURE IS THE FORCE PER UNIT AREA.

ABSOLUTE PRESSURE: IS THE ABSOLUTE
FORCE PER UNIT AREA EXERTED BY
FLUID ON THE CONTAINING WALL BY A
FLUID.

GAGE PRESSURE: REPRESENTS THE
DIFFERENCE BETWEEN ABSOLUTE
PRESSURE AN LOCAL ATYMOSPHERIC
PRESSURE.

VACUM PRESSURE: REPRESENTS THE
AMOUNT BY WHICH THE ATMOSPHERIC
PRESSURE EXCEEDS THE ABSOLUTE
PRESSURE.
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SOME COMMON PRESSURE UNITS

1 atmosphere (atm) = 14.696 pounds per square inch absolute
= 1.01325 x 10° newtons per square meter (Pa)
= 2116 pounds-force per square foot (Ibf/ft*)
1 N/m* = 1 pascal (Pa)
I atmosphere (atm) = 760 millimeters of mercury (mmHg)
1 bar = 10° newtons per square meter (100 kPa)
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GRAPHICAL REPRESENTATION OF
THREE PRESSURES

p (absolute) = p (gage) + p (atm)

f

Positive gage
pressure

MNegative gage
Pressure or vacuum

|

piabsolute)

0 Zero absolute pressure

Figure 1 Relationship between pressure terms.
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MECHANICAL PRESSURE
MEASUREMENT DEVICES

Mechanical devices offer the simplest means for pressure measurement. In this section
we shall examine the principles of some of the more important arrangements.

MANOMETER
BOURDON TUBE GAUGE
DIAPHRAGM AND BELLOW S GAUGE




1) U-TUBE MANOMETER

Pressure
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Figure 2 U-tube manometer.
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A pressure balance of the two columns dictates that

8 8
Pa+ —hp, = P _ﬂ.lij_f

c gr:

5
P—Pa= g_h[ﬂm — ﬂj)




SENSITIVITY OF U TUBE
MANOMETER

The sensitivity of the U-tube manometer may be defined as
SE[‘[Siti‘Fil’}’ — fﬁf(P — pﬂ} — hfﬁp — lf{g!'rgr:){ﬁm — }5’_}")
or for a manometer with p,, > py,

Sensitivity = 1/p,,(2/2.)




EXAMPLE: 1
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U-TUBE MANOMETER. A U-tube manometer employs a special oil having a specific
gravity of 0.82 for the manometer fluid. One side of the manometer is open to local atmospheric
pressure of 29.3 inHg and the difference in column heights is measured as 20 cm = 1.0 mm
when exposed to an air source at 25°C. Standard acceleration of gravity is present. Calculate
the pressure of the air source in pascals and its uncertainty.

The manometer fluid has a density of 82 percent of that of water at 25°C; so,
Pm = 0.82p,, = (0.82)(996 kg/m’) = 816.7 kg/m’
The local atmospheric pressure is
Pa = 29.3 inHg = 9.922 x 10" Pa

The *“fluid™ in this problem is the air which has a density at the above pressure and 25°C (298 K)
of

P 9.922 x 10° 3
= Py = = = 1.16 kg/
Pr="«=TRT = 287)(298) =
For this problem the density is negligible compared to that of the manometer fluid, but we shall
include it anyway. From Eq. (6.11)

g
P— Pa= —h(pm — pr)

C

9.807
= W{U.E][Blﬁ.? — 1.16)

= 1600 Pa

or p = 1600 + 9.922 x 10* = 1.0082 x 10° Pa




For altitudes between 0 and 36,000 ft the standard atmosphere is expressed by
= | - —
P pﬂ( Iy )

where py = standard atmospheric pressure at sea level
Z = altitude, m or ft
T, = 518.69°R = 288.16 K = 15°C
B = 0.003566°R/ft = 0.00650 K/m
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EXAMPLE 2:

EASTERN

INFLUENCE OF BEAROMETER READING ON VACUUM MEASUREMENT. Apres-
sure measurement is made in Denver, Colorado (elevation 5000 ft), indicating a vacuum of
75 kPa. The weather bureau reports a barometer reading of 29.92 inHg. The absolute pressure is

to be calculated from this information. What percent crror would result if the above barometric
pressure were taken at face value?”

Solution
The absolule [ressure i~ tr;ivr:rl h}f

Pabsolute — Patm — Pvacoum lal

If the barometer report is taken at face value,

Pam = (29.92)(25.1) = 760 mmHg = 101.32 kPa

and the absolute pressure is

Pabsolute = 10132 — 75 = 26.32 kPa [b]

Assuming the correction for altitude is eiven by Ey. (6.14), the true aunospheric pressure al
the weather burcau is

Pam — (760)[1 — (0.003566)(5000)/518.69]"*° — 632.3 mmllg — 84.29 kPa

Aszsuming the local atmospheric pressure where the measurement is taken has this same value,
the true absolute pressure 1s therefore

Pal:l:.uluu: — 84.29 — 75 — 9.29 kPa ['I'.']

The percent error between the values in Eqs. (b) and (¢) is
26.32 —9.29
% errur = 929 * 100 = +183 percent
Obviously, the [ocal barometric pressure must be used instead of the value reported by the

wveather burean.
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BOURDON-TUBE PRESSURE GAGE

The construction of a bourdon-tube gage is shown in Figure . The bourdon tube
itself is usually an elliptical cross-sectional tube having a C-shape configuration.
When the pressure is applied to the inside of the tube, an elastic deformation results,
which, ideally, is proportional to the pressure. The degree of linearity depends on the
quality of the gage. The end of the gage is connected to a spring-loaded linkage, which
amplifies the displacement and transforms it to an angular rotation of the pointer.
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Bourdon tube

Adjusting
SCTEW

Adjusting
linkage

Figure Schematic of a bourdon-tube pressure gage.




3) DIAPHRAGM AND BELLOWS GAGES

Diaphragm and bellows gages represent similar types of elastic deformation devices
useful for many pressure-measurement applications. Consider first the flat diaphragm
subjected to the differential pressure p; — p». as shown in Figure . The diaphragm will
be deflected in accordance with this pressure differential and the deflection sensed by
an appropriate displacement transducer.

J!

.
|

Diaphragm

Il

|l

Figure 4 Schematic of a diaphragm gage.
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Figure 5 Schematic of a bellows pressure gage.




EXAMPLE:

NATURAL FREQUENCY OF A DIAPHRAGM GAGE. A diaphragm pressure gage
is to be constructed of spring steel (E = 200 GN/m?, i = 0.3) 5.0 cm in diameter and is
to be designed to measure a maximum pressure of 1.4 MPa. Calculate the thickness of the
gage required so that the maximum deflection is one-third this thickness. Calculate the natural
frequency of this diaphragm.

Solution
Using the relation from Fig. 6.10, we have

1 3Ap ., ,
—f— [ — 2
3 = 6Ep U =)

4 (0)(1.4 x 10°)(0.025)*[1 — (0.3)*]
N (16)(2 x 10')

t = 1.09 mm

We may calculate the natural frequency from Eq. (6.16)

f

1021 [(1.0)2 x 10")(0.00109)2 ]
= 10.025)2 | T (12)[1 — (0.3)2](7800)

= 27,285 Hz
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FLOW MEASUREMENT

The measurement of fluid flow is important in applications ranging from measure-
ments of blood-flow rates in a human artery to the measurement of the flow of liquid
oxygen in a rocket. Many research projects and industrial processes depend on a mea-
surement of fluid flow to furnish important data for analysis. In some cases extreme
precision is called for in the flow measurement, while in other instances only crude
measurements are necessary. The selection of the proper instrument for a particular
application is governed by many variables, including cost.

Positive-displacement flowmeters are generally used for those applications
where consistently high accuracy is desired under steady-flow conditions. A typi-
cal positive-displacement device is the home water meter shown schematically
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Flow rate is expressed in both volume and mass units of varying sizes. Some
commonly used terms are

I gallon per minute (gpm)
=231 cubic inches per minute (in’/min)
= 63.09 cubic centimeters per second (cm?/s)
1 liter
=0.26417 gallon = 1000 cubic centimeters
I cubic foot per minute (cfm, or ft*/min)
=0.028317 cubic meter per minute
=471.95 cubic centimeters per second

I standard cubic foot per minute of air at 20°C, 1 atm
=0.07513 pound-mass per minute
=0.54579 gram per second
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—— Diniveshaft to
*{F readout mechanism

Disk with [nlet Outlet
LISk wit — 7 - —
partition
—_— Rotating
Outlet eccentric drum
Inlet T Spring-loaded

vane
Figure 6 Schematic of a nutating-disk meter.

Figure 7 Schematic of rotary-vane flowmeter.

The nutating-disk meter may give reliable flow measurements within 1 percent,

over an extended period of time. The uncertainties of rotary-vane meters
are of the order of (.5 percent,

EASTERN

MEDITERRANEAN

UNIVERSITY



EXAMPLE

UNCERTAINTY IN FLOW CAUSED BY UNCERTAINTIES IN TEMPERATURE AND
PRESSURE. A lobed-impeller flowmeter is used for measurement of the flow of nitrogen
at 20 psia and 100°F. The meter has been calibrated so that it indicates the volumetric flow with
an accuracy of £ one-half of 1 percent from 1000 to 3000 cfm. The uncertainties in the gas
pressure and temperature measurements are £0.025 psi and =1.0°F, respectively. Calculate
the uncertainty in a mass flow measurement at the given pressure and temperature conditions.

Solution
The mass flow i1s given by

m= pQ
where the density of nitrogen is given by
P = RuT

Using Eq. (3.2), we obtain the following equation for the uncertainty in the mass flow:

] I.':I_

= _[(5)+(2) - (2)]
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Using the given data, we obtain

2 2 1/2
w, 0.025 I
" — | (0.005)% + (= —5.05x 107
i ( 20 ) (56D) .

or 0.505 percent. Thus, the uncertainties in the pressure and temperature measurements do not
appreciably influence the overall uncertainty in the mass flow measurements.
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FLOW OBSTRUCTION METHODS

Several types of flowmeters fall under the category of obstruction devices. Such
devices are sometimes called head meters because a head-loss or pressure-drop mea-
surement is taken as an indication of the flow rate. They are also called differential
pressure meters. Let us first consider some of the general relations for obstruction
meters. We shall then examine the applicability of these relations to specific devices.
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Consider the one-dimensional flow system shown in Fig. 7.4. The continuity
relation for this situation is

= p Aty = prAsu [ 1]

where u is the velocity. If the flow is adiabatic and frictionless and the fluid is incom-
pressible, the familiar Bernoulli equation may be written

u- TE
ppon Pk [ 2]
£ 28, 22 28,

where now p; = p-. Solving Egs. (7.1) and (7.2) simultaneously gives for the pressure

drop
2 2
Uus P A
= [ 2 3
P P2 zgc' [ (Al) ] [ ]
and the volumetric flow rate may be written
A 28,
Q= Ay = = = (pr— p2) [ 4]
V1=(A2/ADY P
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where Q = ft*/s or m’/s
A=ftorm’
p = Ibm/ft? or ke/m’
p = Ibf/ft* or N/m*
g. =32.17 Ibm - ft/Ibf - s or 1.0 kg - m/N - s*

Py Ty pa. T

P1: Al P2 Ay
Iy \_ 0
— _ Flow i ] =

Figure 8 General one-dimensional flow system.
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discharge coefficient C by the following relation:

Q.‘il:'[llﬂ]
OQideal

The discharge coefficient is not a constant and may depend strongly on the flow
Reynolds number and the channel geometry.

When the flow of an ideal gas is considered, the following equation of state
applies:

=C [ 5]

where T is the absolute temperature and R is the gas constant for the particular gas,
which can be expressed in terms of the universal gas constant i and the molecular

weight by
R

M

The value of R is 8314 kl/kg - mol - K or 1545 ft - Ibf/lbm - mol - “R. For reversible
adiabatic flow the steady-flow energy equation for an ideal gas is

R

ui 3
CFTl +2—3._~ = CPT2+ 22 [ 7]
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where ¢, is the specific heat at constant pressure and is assumed constant for an ideal
eas. When Eqs. (7.1). (7.6), and (7.7) are combined, there results

2 S 2/ (y+1)/y
w? = 2g.A2 P (P—) - (E) [ 8]
y — 1 RT, P Pi

where the velocity of approach, that is, the velocity at section 1 of Fig. 7.4, is assumed
to be very small. This relationship may be simplified to

N e T3PV SN LS Nap?+ . [ o]
m = RT, 2| P2ApP — v P

with Ap=p, — p, and y=c,/c, is the ratio of specific heats for the gas. Equation
(7.9)1s valid for Ap < p, /4. When Ap < p, /10, a further simplification may be made
to give

20, P
?ﬂzﬂz-\/ gp_[Pl—Pz) [ 10]

RT,




where m = mass flow rate, Ibm/s or kg/s
A = area, ft* or m”
g.=32.17 Ibm - ft/Ibf - s*> or 1.0 kg - m/N - s*
p = pressure, Ibf/ft> or N/m*(Pa)
R = gas constant, Ibf - ft/Ibm - “R or N - m/kg - K
T = absolute temperature, "R or K
Note that Eq. (  10) reduces to Eq. ( 4) when the relation for density from Eq. ( 6)is

substituted. Thus, for small values of Ap compared with p, the flow of a compressible
fluid may be approximated by the flow of an incompressible fluid.




O®

Flow —
(a)
1Y A
O @
%
Flow —=
A
(b)
® @
|
Flow — |
(c)
Figure 9 Schematic of three typical obstruction meters. (a) Venturi; (b} flow nozzle;

(¢) orifice.
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Three typical obstruction meters are shown in Fig. 9 . The venturi offers the
advantages of high accuracy and small pressure drop, while the orifice is considerably
lower in cost. Both the flow nozzle and the orifice have a relatively high permanent
pressure drop. Flow-rate calculations for all three devices are made on the basis of
Eq. ( 4) with appropriate empirical constants defined as follows:

1
M = velocity of approach factor = [ 11]

V1—(Ar/A))?
K = flow coefficient = CM [ 12]

d A
B = diameter ratio = 5= A—z [ 13]
\! 1

When flow measurements of a compressible fluid are made, an additional parameter,
the expansion factor Y, is used. For venturis and nozzles this factor is given by

, 1/2
v, = (E)Z”’ y L= (pa/p0" 11— (As/A)
‘ P y—1 1—=(p2/p1) 1 —=(A2/AD*(p2/p1)?Y

[ 14]
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while for orifices an empirical expression for ¥ is given as

As\ 2 —
r.:1-[0.41+0.35(—2)}p' P [ 15]
A M

when either flange taps or vena contracta taps are used. For orifices with pipe taps the
following relation applies:

Pr— P2
¥
The empirical expansion factors given by Eqgs. (7.15) and (7.16) are accurate within
£0.5 percent for 0.8 < p»/p,; < 1.0. Plots of the expansion factors ¥, and ¥, are given
in Figs. 7.14 and 7.15, respectively.
We thus have the following semiempirical equations, which are conventionally
applied to venturis, nozzles, or orifices:

Yo =1—[0.333 4+ 1.145(8> + 0.78° + 128")] [ 16]

VENTURIS, INCOMPRESSIBLE FLOW:

|28,
anlual = CMAE f: &P — P2 [ 11]

NOZZLES AND ORIFICES, INCOMPRESSIBLE FLOW:

28,
Qaclual = KAE- i AP — P2 [ 1 B]

The use of the flow coefficient instead of the product CM is merely a matter of con-
vention. When compressible fluids are used, the above equations are modified by the
factor ¥ and the fluid density is evaluated at inlet conditions. We then have




VENTURIS, COMPRESSIBLE FLOW:

mﬂclual - YCMAZ\/EECFJI (PI - PE:' [ 1 g]
NOZZLES AND ORIFICES, COMPRESSIBLE FLOW:
mactual — Ym?\/zgrﬂlfpl — PE) [ 20]

In Egs. ( 17)to( 20) the appropriate units are

O = volume flow rate, ft*/s or m*/s

A = area, ft> or m’

g. =32.17 Ibm - ft/Ibf - s* or 1.0 kg - m/N - s°
p = density, Ibm/ft* or kg/m’

p = pressure, 1bf/ft> or N/m*

Detailed tabulations of the various coefficients have been made in Ref. [1], some of
which are presented in Figs.10 through 16 . Examples 2and 3 illustrate the use
of these charts for practical calculations.




[ EK': [1 j
T ﬂ; W\ o \ Direction §J
D # ﬂ]]dl ! 0y . i
| l & /}_, — J of flow ?.
| L
§ ||~ o=~
- (] ‘ :—_,:J_';—:-

D) = Pipe diameter inlet and outlet
d = Throat diameter as required

a=025Dto0.753D for4" =D =6",0.25D to 0.50D for 6" = D = 32"

b=d
c=d/2

8 = 3/16into 1/2 in according to D). Annular pressure chamber

with at least four piezometer vents
rp = 3.5d to 3.75d
ry = 0to 1.375D
a; = 2lee = oo
Q5 = oo to ] 5=

Figure 10 Recommended proportions of venturi tubes, according to Ref. [1].
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T — TS
;’? t‘ .-f; :T'_:l 2 —=
R 'S S f | ! [+
5 + § | [—n—bti— ) -
o -i—f"l—l- "'L_r-'" d— E —P|"'E'D‘D_d-
5 Finish 2 _
= E \ f E ]Dn [
£ D, i & Finish \
| L= 4B
4 —— roo] !
- t 457 3
—|ty | o 5 o
Low 8 series: B < 0.5 High g senes: B = (.25 Optional designs
— _ 1
ry = {If ry =<0 of nozzle outlet
rs = __‘iﬂr % rs =
L; = 0.6d L, =06dor L, =D

/8" =r=1/2"
1/8" =, =0.15D

Figure 11
to Ref. [1].
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U=D—(d+ 1/8")
1/8" = t,= 0.15D

Recommended proportions of the ASME long-radius flow nozzle, according

(D —

d)
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Vena contracta connections: P, at vena contracta }

1D and %D connections: P, at Df2 (See Fig. 7.12)

Qutlet pressure
D———— connection

Inlet pressure p

L

. ! | P.?
connection —:-| I | ‘ -—-—""/

1"

Flange connections

Figure 12 Recommended location of pressure taps for use with concentric, thin-plate,
square-edged orifices, according to Ref. [1].
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{jgg '_..-r_"' ----- | —— - — ——
-""“—
- .',f" /’__.——
~ 0.98 —
£ 097 / %
e / P
~ /
W / 7
BL p y
2 0.96 ’
E 7 7
0.95 !
)
4
i
0.94 #
;
10* 2 5 10° 2 5 106
Re” _ pu 1D

Figure 13 Discharge coefficients for the venturi tube shown in Fig. 7.6, according to
Ref. [1]. Values are applicable for 0.25 < 3 < 0.75and D > 2 in.
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1.00

B Y. X N30 X 157
s, N Pgcgr 16X 8
. - 1 X~
& 2
= 0.95
3z
k= B
= - Numbers on curves are upstream
3 B and throat diameters, respectively
&
= -
5
Z 0.90
-
0gsl— L 1 111111 N Y S N B N L L 1Ll
100 2 5 104 2 5 10° 2 5 108 2 5 107
i il
Throat Reynolds number. Re; = PT
Figure 14 Approximate venturi coefficients for various throat diameters, according to

Ref. [15].
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0.8 N |

|
Concentric
0.7 \

\\mi fices

0.6 \'*\

0.5

= \
0.4 \

0.3 \

0.2

0.2 03 04 05 06 07 O3

Pipe diameters from inlet face of onfice plate

Figure 16 location of outlet pressure connections for orifices with vena confracta
taps, according to Ref. [1].
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Reynolds numbers are based on

velocity in pipe, inlet conditions f
0.85

080

Flose costlicient, M0
=
_.__\\.]
T
=
= |.|
Nﬁ

. 4
| I Re - m,m;aQ%

0.60 —
|

1 l l 1 l
0.10 0.20 030 (.40 0.50 0.60 0.70 0.80

Ratio of onfice diameter to pipe diameter, 3

Figure 17 Flow coefficients for conceniric orifices in pipes. Pressure faps one
digmeter upstream and one-half diameter downsiream. Applicable for

1.25 « D < 3.00 in. (From Ref. [15].)
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Values of x = 2 __P&
Figure 18 Adiabatic expansion factors for use with venturis and flow nozzles as

calculated from Ea. [7.14). (From Ref [4].)
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The various flow coefficients are plotted as a function of Reynolds number,

defined by
Pl md
7

Re =

[ 21]

where  p = fluid density
(= dynamic viscosity
u, = mean flow velocity
d = diameter at the particular section for which the Revnolds number

is specified
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1.00

0.95

from Eq. [7.16]). [From Ref. [2].)

‘g
g 0.90
=3
-
0.85
0.80 ] ] ] ] ] ] ] ]
1.00 0.00 (.80 0.70
P
Yalues of r = "
| | | |
] 010 0.20 0.30
Values of 1 = 2 P:| B
Figure 190

Expansion factors for square-edged orifices with pipe taps as calculated



M= plimAc [ 22]

where A i1s the cross-sectional area for the low where u,, 15 measured. For a cir-
cular cross section A, = nd”/4. Further information on orifice and venturi meters is

contained in Refs. [33] to [37].
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EXAMPLE

DESIGN OF VENTURI METER. A venturi tube 1s to be used to measure a maximum flow
rate of water of 50 gpm (gallons per minute) at 70°E. The throat Reynolds number is to be at
least 10F at these flow conditions. A differential pressure gage is selected which has an accuracy
of 0.25 percent of full scale, and the upper scale limit is to be selected to correspond to the
maximum fow rate. Determine the size of the venturi and the maximum range of the differential
pressure gage and estimate the uncertainty in the mass flow measurement at nominal flow rates
of 30 and 25 gpm. Use either Fig. 7.9 or Fig. 7.10 to determine the discharge coefficient.

Solution
The properties of water are

p = 62.4 Ibm/ft’ = 8.33 Ibm/eal p = 2.36 Ibm/h - ft

From the given maximum flow rate and throat Reynolds number we may calculate the maximum

allowable throat diameter:

Pl gyl rid dri
o (md* A wdu

Re, = — 107
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The maximum flow rate 1s
m o= (501(8.33)(60) = 2.5 = 10* Ibm/h (3.027 ke/s)

RS x 10 e
m = 5 2.36) =0.135ft = 1.621n (4.11 cm)

We shall select a venturi with a 1.0-in throat diameter since we have a discharge coefficient
curve for this size in Fig. 7.10. The upstream pipe diameter is taken as 2.0 in. From Fig. 7.10

we estimate the discharge coefficient for this size venturi as 0.976 for 8 = 10* = Re, =3 = 10°,
The uncertainty in this coefficient will be taken as £0.002 since Fig. 7.10 is a general set of

curves. With this selection of venturi size, the maximum throat Reynolds number becomes

1.62
0 ) = 1.62 x 1P

50 that

{Reﬂm:utﬁ}(

The minimum Reynolds number is thus one-half this value, or 8.1 x 10*. The maximum pressure
differential may be calculated with Eq. (7.17).

2g.
Osctmat = CMAs :f v Ap [ 17]




: 2
or (30231  (0.976)=(1.0) (2)(32.2) /&P

60 (1728) i 2 62.4

Ap =948 psf = 6.38 psi (45.4 kPa)

This yields

Let us assume that a differential pressure gage with a maximum range of 1000 psf s at our
disposal. In accordance with the problem statement the uncertainty in the pressure reading
would be

wa, = 2.5 psf (119.7 Pa)

When the flow 1s reduced to 25 gpm, the pressure differential will be one-fourth of that at
50 gpm. To estimate the uncertainty in the flow measurement, we shall assume that the

AEDITERRANEAN
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dimensions of the venturi are known exactly, as well as the density of the water. For the
calculation we utilize Eq. (3.2). The quantities of interest are

3¢ 2g.
—= = MA WA
3C 2 - P
90 CMA, [2g.
aap 2 /Ap\ »p

w, = +0.002

Thus, Wo _ E:lﬁz
g |\cC 4\ Ap

For @ = 50 gpm

12

3 2 172
wo _ [(0002)* 1(25
Qo 0.976 4\ 948
= (L.O02435 or 0.2435%

For @ = 25 gpm

=

] g

we | 0002\ 1/ 25\
o (1}.9?6) +1(934;4)

= 0.00566 or 0.566%
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